Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 38 von 106
Zurück zur Trefferliste

Evaluation of the tensile properties of X65 pipeline steel in compressed gaseous hydrogen using hollow specimens

  • Hydrogen has great potential into the decarbonization process of the energy and transport sectors, thus helping to mitigate the urgent issue of global warming. It can be sustainably produced through water electrolysis with potentially zero emissions, and efficiently used in fuel cell systems. Despite its environmental advantages, hydrogen is an extremely flammable substance and its interaction with most metallic materials could result in their mechanical properties degradation to an extent that could make them inherently unsafe. Extensive material testing under realistic operating conditions is required to determine the criteria under which hydrogen-induced damage is to be expected. In-situ slow strain rate tensile (SSRT) test is an option that allow the quantification of the behavior of metals in hydrogenated environments. The standardized procedure for testing in-situ the pressurized gaseous hydrogen effect on metals consists of the utilization of an autoclave as a containmentHydrogen has great potential into the decarbonization process of the energy and transport sectors, thus helping to mitigate the urgent issue of global warming. It can be sustainably produced through water electrolysis with potentially zero emissions, and efficiently used in fuel cell systems. Despite its environmental advantages, hydrogen is an extremely flammable substance and its interaction with most metallic materials could result in their mechanical properties degradation to an extent that could make them inherently unsafe. Extensive material testing under realistic operating conditions is required to determine the criteria under which hydrogen-induced damage is to be expected. In-situ slow strain rate tensile (SSRT) test is an option that allow the quantification of the behavior of metals in hydrogenated environments. The standardized procedure for testing in-situ the pressurized gaseous hydrogen effect on metals consists of the utilization of an autoclave as a containment volume. Testing inside an autoclave is difficult, expensive, and time-consuming, and requires specialized equipment and trained personnel. A relatively recent method to circumvent these issues and provide affordable and reliable test results consists in using hollow specimens as the gas containment volume, thus applying the hydrogen pressure inside rather than outside the specimen. This experimental setup allows us to minimize the volume of hydrogen and perform the tests safely and effectively. This study focuses on the evaluation of tensile properties of X65 pipeline steel, which was in vervice for natural gas transport, tested in a high-pressure hydrogen environment using hollow specimens. A constant nominal strain rate of 1ꞏ10-6 s-1 is applied. Tests are performed with different manufacturing techniques for the drilling process, which results in difeerent surface conditions. The effect of the roughness on the HE was investigated. For the evaluation the effect on the reduced area at fracture (RA) and the elongation loss were determined. Further fractographic analysis were performed. In this way, this study provides insights on the applicability of novel, reliable, and safer testing method which can be used to assess HE, particularly in relation with hydrogen-induced loss of ductility in metallic material.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • ICSI 2023_final.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Florian Konert
Koautor*innen:A. Campari
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:9 Komponentensicherheit
9 Komponentensicherheit / 9.0 Abteilungsleitung und andere
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:Ferritic steel; Hollow-specimen; Hydrogen; Hydrogen embrittlement; SSRT
Themenfelder/Aktivitätsfelder der BAM:Energie
Energie / Wasserstoff
Veranstaltung:ICSI 2023 | 5th International Conference on Structural Integrity
Veranstaltungsort:Funchal, Portugal
Beginndatum der Veranstaltung:29.8.2023
Enddatum der Veranstaltung:31.8.2023
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:05.09.2023
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.