Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 4 von 47188
Zurück zur Trefferliste

Fluorescent molecularly imprinted polymers (MIPs) for sensing of phosphorylated protein epitopes

  • Early detection of cancer is instrumental for successful therapeutic outcomes, but it is presently a considerable challenge. Biopsy of potentially cancerous tissues is the gold standard in medicine for the diagnosis and prognosis of this disease; however, it may not be possible in many cases due to tumour position or other complications. Liquid biopsy-based detection of specific cancer markers in biological fluids can be easily performed via immunoanalytical techniques. However, antibody-based methods suffer from high cost of tumour specific antibodies due to difficult and lengthy production. Furthermore, antibodies may have limited specificity to the target molecule, and limited lifetimes. The so-called “plastic antibodies” as MIPs can be a more affordable, reliable and stable alternative to antibodies, especially for cancer diagnostics. Our goal is to create MIP particles to selectively bind cancer biomarkers and rapidly display a fluorescence change upon interaction with moleculesEarly detection of cancer is instrumental for successful therapeutic outcomes, but it is presently a considerable challenge. Biopsy of potentially cancerous tissues is the gold standard in medicine for the diagnosis and prognosis of this disease; however, it may not be possible in many cases due to tumour position or other complications. Liquid biopsy-based detection of specific cancer markers in biological fluids can be easily performed via immunoanalytical techniques. However, antibody-based methods suffer from high cost of tumour specific antibodies due to difficult and lengthy production. Furthermore, antibodies may have limited specificity to the target molecule, and limited lifetimes. The so-called “plastic antibodies” as MIPs can be a more affordable, reliable and stable alternative to antibodies, especially for cancer diagnostics. Our goal is to create MIP particles to selectively bind cancer biomarkers and rapidly display a fluorescence change upon interaction with molecules of interest. Epitopes containing the phosphorylated tyrosine (pY) motif such as tripeptide YpYG and tetrapeptide pYEEI were selected as target analytes. Cancers may disrupt tyrosine phosphorylation processes regulated by human tyrosine kinases such as ZAP-70 and subsequently lead to a pronounced increase in pY residues on proteins. To ensure fast diffusion of analyte and rapid response core/shell silica micro- and nanoparticles with a thin polymer shell was chosen as the format for MIP synthesis. Fluorescent probe monomers consisting of fluorophore and recognition units are directly integrated in the polymer shell to obtain fluorescence response upon analyte binding. We have synthesized the fluorescent MIP particles based on the previously published report [W. Wan et al., Chem. Eur. J., 2017, 23, 15974-1598] for the novel phosphorylated targets with a high imprinting factor and high degree of discrimination between target analyte and non-phosphorylated and smaller competitors. The synthesized particles may be used in microfluidic devices for the rapid diagnostics of cancer.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Fluorescent molecularly imprinted polymers (MIPs) for sensing of phosphorylated.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Evgeniia Kislenko
Koautoren/innen:Kornelia Gawlitza, Knut Rurack
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:1 Analytische Chemie; Referenzmaterialien
1 Analytische Chemie; Referenzmaterialien / 1.9 Chemische und optische Sensorik
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Sensorik
Analytical Sciences
Themenfelder/Aktivitätsfelder der BAM:Analytical Sciences
Analytical Sciences / Sensorik
Veranstaltung:GSSMIP2019
Veranstaltungsort:Berlin, Germany
Beginndatum der Veranstaltung:28.08.2019
Enddatum der Veranstaltung:30.08.2019
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:13.01.2020
Referierte Publikation:Nein