Zitieren Sie bitte immer diese URN: urn:nbn:de:kobv:b43-633

Untersuchungen zum Schallfeld niederfrequenter Ultraschallprüfköpfe für die Anwendung im Bauwesen

  • Durch intensive praxisbezogene Forschung konnte in den letzten Jahrzehnten das Spektrum der zerstörungsfreien Prüfverfahren im Bauwesen deutlich erweitert werden. Die akustischen Methoden im Bereich des Niederfrequenz-Ultraschalls nehmen hierbei eine zentrale Rolle ein. Mit der Einführung von kontaktmittelfrei arbeitenden Prüfköpfen gelang es schließlich, eine breite Akzeptanz für diese Untersuchungsmethode in der Praxis zu erzielen. Bedingt durch die oft großen Untersuchungsflächen, rückte die Dauer der Messdatenaufnahme unter wirtschaftlichen Gesichtspunkten immer mehr in den Fokus der Forschung. Eine Optimierung der Messzeit durch den Einsatz von vollautomatischen Scannern oder von parallel arbeitenden Prüfköpfen ist nur einem begrenzten Umfang möglich. In der Grundlagenarbeit „Luftgekoppeltes Ultraschallecho-Verfahren für Betonbauteile“ zeigt Herr Dr.- Ing. B. Gräfe das Potenzial der berührungslos arbeitenden Schallanregung hinsichtlich der Verringerung der Messzeit auf. Das ZielDurch intensive praxisbezogene Forschung konnte in den letzten Jahrzehnten das Spektrum der zerstörungsfreien Prüfverfahren im Bauwesen deutlich erweitert werden. Die akustischen Methoden im Bereich des Niederfrequenz-Ultraschalls nehmen hierbei eine zentrale Rolle ein. Mit der Einführung von kontaktmittelfrei arbeitenden Prüfköpfen gelang es schließlich, eine breite Akzeptanz für diese Untersuchungsmethode in der Praxis zu erzielen. Bedingt durch die oft großen Untersuchungsflächen, rückte die Dauer der Messdatenaufnahme unter wirtschaftlichen Gesichtspunkten immer mehr in den Fokus der Forschung. Eine Optimierung der Messzeit durch den Einsatz von vollautomatischen Scannern oder von parallel arbeitenden Prüfköpfen ist nur einem begrenzten Umfang möglich. In der Grundlagenarbeit „Luftgekoppeltes Ultraschallecho-Verfahren für Betonbauteile“ zeigt Herr Dr.- Ing. B. Gräfe das Potenzial der berührungslos arbeitenden Schallanregung hinsichtlich der Verringerung der Messzeit auf. Das Ziel der vorliegenden Arbeit ist es, grundlegende Fragestellungen für eine baupraktische Anwendung des luftgekoppelten Ultraschallecho-Verfahrens zu beantworten. Die sich ausbildenden Wellenarten hängen maßgeblich vom Winkel, unter dem der Schallimpuls aus der Luft auf die Oberfläche auftrifft und dem Abstand des Prüfkopfes zum Bauteil ab. Ein zentraler Punkt ist daher die genaue Kenntnis der Eigenschaften der angeregten Schallfelder unter Berücksichtigung dieser Randbedingungen. Mit der physikalischen Beschreibung des Schallfeldes ist es möglich, das Messverfahren hinsichtlich der verschieden gestellten Prüfaufgaben zu optimieren und Auswertungs- algorithmen zur sicheren Interpretation der Messdaten zu entwickeln. Recherchen zum Thema der Schallfeldanalysen in Festkörpern im Niederfrequenz-Bereich ergaben, dass auch die Kenntnisse zu den bereits weitverbreiteten Kontaktprüfköpfen nicht in einem ausreichenden Umfang messtechnisch abgesichert waren. Daher wurden diese ebenfalls in das Messprogramm aufgenommen. Für die Bestimmung der Kennwerte des Schallfeldes von Ultraschallprüfköpfen wurde ein Prüfstand geplant und gebaut. Das Konzept des Prüfstandes ist so ausgerichtet, dass neben der räumlichen Erfassung des Schallfeldes zusätzlich die stofflichen Einflüsse des durchschallten Mediums erfasst werden. Dies wird durch die Messung an halbkugelförmigen Probekörpern mit unterschiedlichen Durchmessern erreicht. Der Schwerpunkt der Untersuchungen liegt auf dem Werkstoff Beton. Bei dem Probenmaterial handelt es sich um einen selbstverdichtenden Beton, dessen Zusammensetzung geringe schallschwächende Eigenschaften aufweist. Die Rezepturen für diese Betone wurden an der Technischen Universität Berlin entwickelt. Es wurden Serien von jeweils vier Probekörpern unterschiedlicher Materialeigenschaften hergestellt. Variiert wurde bei den Serien der Probekörper die Größe der Gesteinskörnung, um eine erste Einschätzung des Einflusses der Materialzusammen- setzung auf das Schallfeld vornehmen zu können. Die Messdaten werden mit einer eigenständig entwickelten Software aufgezeichnet und ausgewertet. Aus den experimentell gewonnenen Kennwerten werden anschließend erstmalig räumliche Schallfelder für den Niederfrequenz-Bereich im Beton berechnet. Die Verifikation der Messergebnisse erfolgte durch den Einsatz unterschiedlicher Simulationsverfahren, die durch Partnerinstitute durchgeführt wurden. Im baupraktischen Teil der Arbeit werden die Erfahrungen aus realen Schadensanalysen präsentiert. Hierauf aufbauend wurden im Rahmen einer parallel laufenden Forschungsarbeit Probekörper hergestellt, an denen erste Untersuchungen mit einer luftgekoppelten Schallanregung durchgeführt wurden. Zu diesem Zweck wurden neben den Schallfeldanalysen Parameterstudien zu den optimalen Bedingungen der Schallanregung notwendig. Insbesondere die Oberflächenwellen und deren störender Einfluss wurden hierbei systematisch untersucht. Neben der Präsentation erfolgreicher Ergebnisse werden auch die gegenwärtigen Grenzen des Verfahrens aufgezeigt.zeige mehrzeige weniger
  • Using intensive practical research, the spectrum of non-destructive testing methods has been able to be clearly extended in civil engineering over recent decades. Low frequency ultrasound plays a central role in the acoustic methods in this sector. Finally, with the introduction of contact agent-free testing heads, success was achieved in gaining wide acceptance for this Investigation method in practice. Conditioned by the often large surfaces, the duration of the measuring data itself came ever more into focus of the research, with regard to an economic point of view. An optimisation of the measuring time with the application of fully automatic scanners or from in-parallel working test heads is possible only to a limited extent. In the basic underlying work, qualified engineer Mr. B Gräfe shows with his work "Luftgekoppeltes Ultraschallecho-Verfahren für Betonbauteile“, the potential of contact agent-free clangour with regard to the reduction of overall measuring time. It is theUsing intensive practical research, the spectrum of non-destructive testing methods has been able to be clearly extended in civil engineering over recent decades. Low frequency ultrasound plays a central role in the acoustic methods in this sector. Finally, with the introduction of contact agent-free testing heads, success was achieved in gaining wide acceptance for this Investigation method in practice. Conditioned by the often large surfaces, the duration of the measuring data itself came ever more into focus of the research, with regard to an economic point of view. An optimisation of the measuring time with the application of fully automatic scanners or from in-parallel working test heads is possible only to a limited extent. In the basic underlying work, qualified engineer Mr. B Gräfe shows with his work "Luftgekoppeltes Ultraschallecho-Verfahren für Betonbauteile“, the potential of contact agent-free clangour with regard to the reduction of overall measuring time. It is the aim of this work to provide answers to the basic questions regarding practical construction problems of the air-coupled ultrasonic echo procedure. The resulting waves depend on the angle at which the sound impulse meets the surface, as well as the distance of the test head to the component itself. A central criteria is the precise knowledge of the qualities of the animated sound fields whilst taking into consideration these Framework conditions. Using a physical description of the sound field it is possible to optimise the test results with regard to the various measuring procedures and develop evaluation algorithms for secure interpretation of the measuring data. Research on the subject of sound field analyses in solid states in low frequency Areas proved that the knowledge regarding widespread contact test heads has not been sufficiently metrologically secured. For this reason, these were also considered in the measuring programme. For regulation of the sound field core values for the ultrasonic test heads, a test bench was planned and constructed. The test bench concept was so targeted that, in addition to the spatial capture of the sound field, the seismic influence of the material could also be registered. This was achieved using hemispherically-shaped test bodies with differing diameters. The main focus of the investigation was on concrete. The test material was self-compacting concrete, and ist composition displayed low sound-proofing qualities. The recipes for this concrete were developed at the University of Technology in Berlin. These were developed as a series of four test bodies, in each case. The variable introduced were a size variety of coarse aggregate in order to obtain an initial idea of the influence of the material composition on the sound field. The measuring data was recorded on independently developed software and evaluated. Using the data gleaned from the experimental stage, initial calculations for spatial sound fields were made to assess low frequency response in concrete. The verification of these measuring results occurred via the application of a variety of simulation procedures which were carried out by partner institutes. In the practical construction section, experiences from genuine damage analyses are presented. Building on these results, test bodies were constructed in a parallel-running research project, whose initial investigations were carried out using an air-coupled sound source. For this purpose, parameter studies to ascertain the optimum conditions of the sound source became necessary, in addition to the sound field analyses. In particular, surface waves and their annoying influence were systematically examined. As well as the presentation of successful results, the present borders of the procedure have also been indicated.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Stefan Maack
Dokumenttyp:Dissertation
Veröffentlichungsform:Eigenverlag BAM
Schriftenreihe (Bandnummer):BAM Dissertationsreihe (95)
Sprache:Deutsch
Jahr der Erstveröffentlichung:2012
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Titel verleihende Institution:Technische Universität Berlin, Fakultät VI – Planen Bauen Umwelt
Gutachter/innen:Bernd Hillemeier, Herbert Wiggenhauser, Martin Krause
Datum der Abschlussprüfung:04.06.2012
Verlag:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlagsort:Berlin
Jahrgang/Band:95
Erste Seite:1
Letzte Seite:182
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Bauwesen; Richtcharakteristik; Schallfeld; Ultraschall; Werkstoffprüfung
URN:urn:nbn:de:kobv:b43-633
ISSN:1613-4249
ISBN:978-3-9815134-0-3
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoAllgemeines Deutsches Urheberrecht
Datum der Freischaltung:23.01.2015
Referierte Publikation:Nein