Mechanochemically synthesized COF for PFAS adsorption
- Since the 1950s, per- and polyfluoroalkyl substances (PFAS) have been widely used in a range of consumer products, including clothing, paints, cookware and fast-food packaging. Properties such as high thermal resistance and water and oil repellency contribute to their wide usage. After decades of production, these substances have eventually found their way into our drinking water. Given the adverse effects of PFAS molecules on human health, the removal of these substances from our drinking water is a matter of urgency.1 This study employs the use of materials known as covalent organic frameworks (COFs) to adsorb PFAS molecules from an aqueous medium. COFs are crystalline, highly porous, two- or three-dimensional polymers with tunable topology and functionalities.² For the purposes of this study, a COF was synthesised using 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 1,3,5-triformylbenzene (TFB) via a mechanochemical process. Mechanochemistry represents a green synthesis method thatSince the 1950s, per- and polyfluoroalkyl substances (PFAS) have been widely used in a range of consumer products, including clothing, paints, cookware and fast-food packaging. Properties such as high thermal resistance and water and oil repellency contribute to their wide usage. After decades of production, these substances have eventually found their way into our drinking water. Given the adverse effects of PFAS molecules on human health, the removal of these substances from our drinking water is a matter of urgency.1 This study employs the use of materials known as covalent organic frameworks (COFs) to adsorb PFAS molecules from an aqueous medium. COFs are crystalline, highly porous, two- or three-dimensional polymers with tunable topology and functionalities.² For the purposes of this study, a COF was synthesised using 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 1,3,5-triformylbenzene (TFB) via a mechanochemical process. Mechanochemistry represents a green synthesis method that uses mechanical energy to initiate chemical reactions, as opposed to using harmful solvents and heat.3 Adsorption tests were carried out to test the effectiveness of the material in question against PFAS. The COF was exposed to a solution of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid PFOS). Following a 13-hour period, it was observed that 90% of PFOA and 99% of PFOS had been adsorbed by the COF. Most of the adsorption appeared to have occurred within the first 10 minutes of exposure. It can therefore be concluded that the TAPB-TFB COF is a promising material for the adsorption of PFAS molecules.…
Autor*innen: | Maroof Arshadul HoqueORCiD |
---|---|
Koautor*innen: | Thomas Sommerfeld, Jan Lisec, Christian Heinekamp, Tomislav Stolar, Martin Etter, Biswajit Bhattacharya, Franziska Emmerling, Prasenjit Das |
Dokumenttyp: | Posterpräsentation |
Veröffentlichungsform: | Präsentation |
Sprache: | Englisch |
Jahr der Erstveröffentlichung: | 2024 |
Organisationseinheit der BAM: | 1 Analytische Chemie; Referenzmaterialien |
1 Analytische Chemie; Referenzmaterialien / 1.7 Organische Spuren- und Lebensmittelanalytik | |
6 Materialchemie | |
6 Materialchemie / 6.3 Strukturanalytik | |
DDC-Klassifikation: | Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten |
Freie Schlagwörter: | Covalent organic framework; In situ Xray diffraction; Mechanochemistry; PFAS |
Themenfelder/Aktivitätsfelder der BAM: | Material |
Material / Materialdesign | |
Veranstaltung: | Adlershofer Forschungsforum 2024 |
Veranstaltungsort: | Berlin, Germany |
Beginndatum der Veranstaltung: | 11.11.2024 |
Verfügbarkeit des Dokuments: | Datei im Netzwerk der BAM verfügbar ("Closed Access") |
Datum der Freischaltung: | 28.11.2024 |
Referierte Publikation: | Nein |