Synthesis and Optical Quantification of Surface Groups on Organic and Inorganic Particle-Carriers

  • Differently sized organic and inorganic particles are of great interest in the life and material sciences, as they can be used e.g. as drug carriers, fluorescent sensors, and multimodal labels in bioanalytical assays and imaging applications.1 Particle performance in such applications depends mainly on the sum of their intrinsic physicochemical properties. Here, the surface chemistry, i.e., the total number of surface functional groups (FG) and the number of FG accessible for subsequent modification with ligands and/or biomolecules, is one of the key parameters. Moreover, the surface chemistry of these materials controls the behavior and fate of the particles when released to the environment or taken up by cells. Nevertheless, it is still relatively rare that FG are quantified in particle safety studies. Methods for FG quantification should be simple, robust, reliable, fast, and inexpensive, and allow for the characterization of a broad variety of materials differing in size, chemicalDifferently sized organic and inorganic particles are of great interest in the life and material sciences, as they can be used e.g. as drug carriers, fluorescent sensors, and multimodal labels in bioanalytical assays and imaging applications.1 Particle performance in such applications depends mainly on the sum of their intrinsic physicochemical properties. Here, the surface chemistry, i.e., the total number of surface functional groups (FG) and the number of FG accessible for subsequent modification with ligands and/or biomolecules, is one of the key parameters. Moreover, the surface chemistry of these materials controls the behavior and fate of the particles when released to the environment or taken up by cells. Nevertheless, it is still relatively rare that FG are quantified in particle safety studies. Methods for FG quantification should be simple, robust, reliable, fast, and inexpensive, and allow for the characterization of a broad variety of materials differing in size, chemical composition, and optical properties. Aiming at the development of simple, versatile, and multimodal tools for the quantification of bioanalytically relevant FG such as amine2,3, carboxy2,3, thiol, and aldehyde4 functionalities, we designed a catch-and-release assay utilizing cleavable probes that enable the quantification of the cleaved-off reporters in the supernatant after particle separation, and thus, circumvent interferences resulting from particle light scattering and sample-inherent absorption or emission.2 The potential of our cleavable probes for the quantification of carboxy and amino groups was demonstrated for commercial and custom-made polymer and silica particles of varying FG densities, underlining the benefit of the catch-and-release assays as a versatile method for the FG quantification on all types of transparent, scattering, absorbing and/or fluorescent particles.2,3 In the future, our cleavable probe strategy can be easily adapted to other analytical techniques requiring different reporters, or to different types of linkers that can be cleaved thermally, photochemically, or by pH, utilizing well-established chemistry, e.g. from drug delivery systems. It can contribute to establish multi-method characterization strategies for particles to provide a more detailed picture of the structure-properties relationship and thus can support the design of sustainable and safe(r) materials.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Nanosafety Poster_200928_final.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Nithiya Nirmalananthan-Budau, Isabella Tavernaro
Koautoren/innen:Bastian Rühle, Daniel Geißler, Ute Resch-Genger
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2020
Organisationseinheit der BAM:1 Analytische Chemie; Referenzmaterialien
1 Analytische Chemie; Referenzmaterialien / 1.2 Biophotonik
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Cleavable probe; Polymer particles; Silica particles; Surface functional groups
Optical quantification
Themenfelder/Aktivitätsfelder der BAM:Analytical Sciences
Analytical Sciences / Sensorik
Veranstaltung:Nanosafety 2020
Veranstaltungsort:Online meeting
Beginndatum der Veranstaltung:05.10.2020
Enddatum der Veranstaltung:07.10.2020
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:14.10.2020
Referierte Publikation:Nein