Addressing ESC using FNCT enhanced by optical fracture surface analysis

  • During their lifetime, polymer components subjected to mechanical loads and environmental influences show a loss of their mechanical properties required for their specific applications. In this respect, the craze-crack damage mechanism slow crack growth (SCG) is relevant for PE-HD components used in high-performance applications such as pipes and containers for the storage and transport of dangerous goods. SCG is considered to be the major failure mechanism in polyolefins and it typically occurs suddenly and unexpectedly. Due to the fields of application, SCG is a safety relevant issue. To test for the resistance of PE-HD pipe and container materials against SCG, the full-notch creep test (FNCT) is widely applied in Europe. In this study, SCG phenomena in PE-HD are investigated in detail based on an improved FNCT, especially including the consideration of the influence of environmental liquids effecting the damage mechanism. Using an enhanced fracture surface and a crack propagationDuring their lifetime, polymer components subjected to mechanical loads and environmental influences show a loss of their mechanical properties required for their specific applications. In this respect, the craze-crack damage mechanism slow crack growth (SCG) is relevant for PE-HD components used in high-performance applications such as pipes and containers for the storage and transport of dangerous goods. SCG is considered to be the major failure mechanism in polyolefins and it typically occurs suddenly and unexpectedly. Due to the fields of application, SCG is a safety relevant issue. To test for the resistance of PE-HD pipe and container materials against SCG, the full-notch creep test (FNCT) is widely applied in Europe. In this study, SCG phenomena in PE-HD are investigated in detail based on an improved FNCT, especially including the consideration of the influence of environmental liquids effecting the damage mechanism. Using an enhanced fracture surface and a crack propagation analysis with imaging techniques such as light microscopy (LM), laser scanning microscopy (LSM), X-ray computed tomography (CT-scan) and scanning electron microscopy (SEM), detailed data concerning SCG are obtained. The combined application of FNCT and such imaging techniques is explicitly advantageous and recommended to gain important information on damage occurring to PE-HD induced by mechanical stress and the influence of environmental liquids, which is essential within the Fourth Industry Revolution.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Markus_Schilling_Adressing_ESC_with_FNCT.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Markus Schilling
Koautoren/innen:Ute Niebergall, Martin Böhning
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.3 Mechanik der Polymerwerkstoffe
7 Bauwerkssicherheit
7 Bauwerkssicherheit / 7.5 Technische Eigenschaften von Polymerwerkstoffen
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Environmental stress cracking; Fracture surface analysis; Full-Notch Creep Test (FNCT); Laser Scanning Microscopy (LSM); Polyethylene, PE-HD; Scanning Electron Microscopy (SEM); Slow crack growth
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Degradation von Werkstoffen und Materialien
Veranstaltung:PPS Europe-Africa 2019 Regional Conference (PPS 2019)
Veranstaltungsort:Pretoria, South Africa
Beginndatum der Veranstaltung:18.11.2019
Enddatum der Veranstaltung:21.11.2019
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:29.06.2020
Referierte Publikation:Nein