A realistic remote gas sensor model for three-dimensional olfaction simulations

  • Remote gas sensors like those based on the Tunable Diode Laser Absorption Spectroscopy (TDLAS) enable mobile robots to scan huge areas for gas concentrations in reasonable time and are therefore well suited for tasks such as gas emission surveillance and environmental monitoring. A further advantage of remote sensors is that the gas distribution is not disturbed by the sensing platform itself if the measurements are carried out from a sufficient distance, which is particularly interesting when a rotary-wing platform is used. Since there is no possibility to obtain ground truth measurements of gas distributions, simulations are used to develop and evaluate suitable olfaction algorithms. For this purpose several models of in-situ gas sensors have been developed, but models of remote gas sensors are missing. In this paper we present two novel 3D ray-tracer-based TDLAS sensor models. While the first model simplifies the laser beam as a line, the second model takes the conical shape of theRemote gas sensors like those based on the Tunable Diode Laser Absorption Spectroscopy (TDLAS) enable mobile robots to scan huge areas for gas concentrations in reasonable time and are therefore well suited for tasks such as gas emission surveillance and environmental monitoring. A further advantage of remote sensors is that the gas distribution is not disturbed by the sensing platform itself if the measurements are carried out from a sufficient distance, which is particularly interesting when a rotary-wing platform is used. Since there is no possibility to obtain ground truth measurements of gas distributions, simulations are used to develop and evaluate suitable olfaction algorithms. For this purpose several models of in-situ gas sensors have been developed, but models of remote gas sensors are missing. In this paper we present two novel 3D ray-tracer-based TDLAS sensor models. While the first model simplifies the laser beam as a line, the second model takes the conical shape of the beam into account. Using a simulated gas plume, we compare the line model with the cone model in terms of accuracy and computational cost and show that the results generated by the cone model can differ significantly from those of the line model.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Remote_Gas_Sensor_Model_ISOEN_2019.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Dino Hüllmann, Patrick P. Neumann, J. Monroy, A. J. Lilienthal
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Graue Literatur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.1 Sensorik, mess- und prüftechnische Verfahren
Verlag:IEEE
Erste Seite:1
Letzte Seite:3
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:Gas detector; Remote gas sensor; Sensor modelling; TDLAS
Themenfelder/Aktivitätsfelder der BAM:Infrastruktur
Infrastruktur / Sicherheit von Industrieanlagen und Verkehrswegen
Infrastruktur / Transport und Lagerung von Gefahrstoffen und -gütern
Umwelt
Umwelt / Umweltschadstoffe
Analytical Sciences
Analytical Sciences / Sensorik
Veranstaltung:2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)
Veranstaltungsort:Fukuoka, Japan
Beginndatum der Veranstaltung:26.05.2019
Enddatum der Veranstaltung:29.05.2019
DOI:https://doi.org/10.1109/ISOEN.2019.8823330
ISBN:978-1-5386-8327-9
ISBN:978-1-5386-8328-6
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:11.09.2019
Referierte Publikation:Nein