Pore water state in heated concrete

  • Spalling of concrete structures is a serious issue for their safety. A better understanding of the pore water distribution and state during a fire is a prerequisite for numerical approaches to such problems. Temperature-driven water transport in concrete consists of multiple phenomena, such as convection, diffusion, adsorption and dehydration. Distinguishing the different influences experimentally is difficult because typically they cannot be disentangled. A common experimental setup approximates a one-dimensional flow, and places temperature and pressure gauges along the propagation direction. For direct information about the water content inside a sample, methods such as NMR or neuron radiography are necessary. A multiphase model for the flow in porous media is presented, with dehydration and changes in the pore size distribution taken into consideration. NMR measurements for temperature-driven flow have been performed. The numerical and experimental results are comparedSpalling of concrete structures is a serious issue for their safety. A better understanding of the pore water distribution and state during a fire is a prerequisite for numerical approaches to such problems. Temperature-driven water transport in concrete consists of multiple phenomena, such as convection, diffusion, adsorption and dehydration. Distinguishing the different influences experimentally is difficult because typically they cannot be disentangled. A common experimental setup approximates a one-dimensional flow, and places temperature and pressure gauges along the propagation direction. For direct information about the water content inside a sample, methods such as NMR or neuron radiography are necessary. A multiphase model for the flow in porous media is presented, with dehydration and changes in the pore size distribution taken into consideration. NMR measurements for temperature-driven flow have been performed. The numerical and experimental results are compared for water transport at temperatures below the critical point. Since both the finite-element model and the experiment allow the distinction between adsorbed, capillary and bulk water, a more fine-grained view of the pore water state is obtained.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 2019-07-15 Pohl CM4P presentation.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Christoph Pohl
Koautor*innen:Jörg F. Unger
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:7 Bauwerkssicherheit
7 Bauwerkssicherheit / 7.7 Modellierung und Simulation
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Finite element method; Multiphase flow; Porous media; Spalling
Themenfelder/Aktivitätsfelder der BAM:Infrastruktur
Veranstaltung:CM4P - Computational methods in multi-scale, multi-uncertainty and multi-physics problems
Veranstaltungsort:Porto, Portugal
Beginndatum der Veranstaltung:15.07.2019
Enddatum der Veranstaltung:17.07.2019
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:19.08.2019
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.