Using Shape Diversity on the Way to Structure-Function Designs for Magnetic Micropropellers

  • Synthetic microswimmers mimicking biological movements at the microscale have been developed in recent years. Actuating helical magnetic materials with a homogeneous rotating magnetic field is one of the most widespread techniques for propulsion at the microscale, partly because the actuation strategy revolves around a simple linear relationship between the actuating field frequency and the propeller velocity. However, full control of the swimmers’ motion has remained a challenge. Increasing the controllability of micropropellers is crucial to achieve complex actuation schemes that, in turn, are directly relevant for numerous applications. However, the simplicity of the linear relationship limits the possibilities and flexibilities of swarm control. Using a pool of randomly shaped magnetic microswimmers, we show that the complexity of shape can advantageously be translated into enhanced control. In particular, directional reversal of sorted micropropellers is controlled by theSynthetic microswimmers mimicking biological movements at the microscale have been developed in recent years. Actuating helical magnetic materials with a homogeneous rotating magnetic field is one of the most widespread techniques for propulsion at the microscale, partly because the actuation strategy revolves around a simple linear relationship between the actuating field frequency and the propeller velocity. However, full control of the swimmers’ motion has remained a challenge. Increasing the controllability of micropropellers is crucial to achieve complex actuation schemes that, in turn, are directly relevant for numerous applications. However, the simplicity of the linear relationship limits the possibilities and flexibilities of swarm control. Using a pool of randomly shaped magnetic microswimmers, we show that the complexity of shape can advantageously be translated into enhanced control. In particular, directional reversal of sorted micropropellers is controlled by the frequency of the actuating field. This directionality change is linked to the balance between magnetic and hydrodynamic forces. We further show an example of how this behavior can experimentally lead to simple and effective sorting of individual swimmers from a group. The ability of these propellers to reverse swimming direction solely by frequency increases the control possibilities and is an example for propeller designs, where the complexity needed for many applications is embedded directly in the propeller geometry rather than external factors such as actuation sequences.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 2019Bachmann_Shape_Diversity.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:F. Bachmann, Klaas Bente, A. Codutti, D. Faivre
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Physical Review Applied
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.4 Akustische und elektromagnetische Verfahren
Verlag:American Physical Society
Jahrgang/Band:11
Ausgabe/Heft:3
Erste Seite:034039
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Active Matter; Actuating materials; Low Reynolds number swimmers; Microstructure; Swarming
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Nanoskalige Materialien und deren Eigenschaften
DOI:https://doi.org/10.1103/PhysRevApplied.11.034039
URL:http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000461927700003
Verfügbarkeit des Volltexts:Volltext-PDF im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:08.04.2019
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:08.04.2019