Multifunctional efficiency: Extending the concept of atom economy to functional nanomaterials

  • Green chemistry, in particular, the principle of atom economy, has defined new criteria for the efficient and sustainable production of synthetic compounds. In complex nanomaterials, the number of embedded functional entities and the energy expenditure of the assembly process represent additional compound-associated parameters that can be evaluated from an economic viewpoint. In this Perspective, we extend the principle of atom economy to the study and characterization of multifunctionality in nanocarriers, which we define as “multifunctional efficiency”. This concept focuses on the design of highly active nanomaterials by maximizing integrated functional building units while minimizing inactive components. Furthermore, synthetic strategies aim to minimize the number of steps and unique reagents required to make multifunctional nanocarriers. The ultimate goal is to synthesize a nanocarrier that is highly specialized but practical and simple to make. Owing to straightforward crystalGreen chemistry, in particular, the principle of atom economy, has defined new criteria for the efficient and sustainable production of synthetic compounds. In complex nanomaterials, the number of embedded functional entities and the energy expenditure of the assembly process represent additional compound-associated parameters that can be evaluated from an economic viewpoint. In this Perspective, we extend the principle of atom economy to the study and characterization of multifunctionality in nanocarriers, which we define as “multifunctional efficiency”. This concept focuses on the design of highly active nanomaterials by maximizing integrated functional building units while minimizing inactive components. Furthermore, synthetic strategies aim to minimize the number of steps and unique reagents required to make multifunctional nanocarriers. The ultimate goal is to synthesize a nanocarrier that is highly specialized but practical and simple to make. Owing to straightforward crystal engineering, metal−organic framework (MOF) nanoparticles are an excellent example to illustrate the idea behind this concept and have the potential to emerge as next-generation drug delivery systems. Here, we highlight examples showing how the combination of the properties of MOFs (e.g., their organic−inorganic hybrid nature, high surface area, and biodegradability) and induced systematic modifications and functionalizations of the MOF’s scaffold itself lead to a nanocarrier with high multifunctional efficiency.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • ACS_Nano_2018_12_2094-2105.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:R. Freund, U. Lächelt, T. Gruber, Bastian Rühle, S. Wuttke
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):ACS Nano
Jahr der Erstveröffentlichung:2018
Organisationseinheit der BAM:1 Analytische Chemie; Referenzmaterialien
1 Analytische Chemie; Referenzmaterialien / 1.2 Biophotonik
Verlag:ACS Publications
Verlagsort:Washington, DC
Jahrgang/Band:12
Ausgabe/Heft:3
Erste Seite:2094
Letzte Seite:2105
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Metal-organic frameworks; Multifunctional efficiency; Nanomaterial; Nanomedicine; Theranostics
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Materialien und Stoffe
DOI:https://doi.org/10.1021/acsnano.8b00932
URL:http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=WOS:000428972600003
ISSN:1936-0851
ISSN:1936-086X
Verfügbarkeit des Volltexts:Volltext-PDF im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.04.2018
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:20.04.2018