Comparison of Raman spectroscopic approaches for the quantitative characterization of Escherichia coli cultivation samples

  • The growing need to implement sensors such as NIR or Raman spectroscopy for the in-situ monitoring of bioprocesses which follows the standards of Quality by Design is either restricted by the impact of the huge water signal or by a disturbing fluorescence background originating from compounds in the culture media. Furthermore, the characterization of the bioprocess samples is challenging due to changing conditions in course of cultivation. Here we evaluate two different process-suitable Raman spectroscopic approaches, namely time-gated Raman which bears the potential to extract the Raman signal from the fluorescence background, and cw- Raman with NIR excitation in combination with Surface Enhanced Raman Spectroscopy- (SERS) to investigate cell-free supernatants of Escherichia coli sampled over the course of a cultivation. A confocal Raman microscope was used as a reference for the process devices. The concentration of the analytes, glucose, acetate as well as metabolites such asThe growing need to implement sensors such as NIR or Raman spectroscopy for the in-situ monitoring of bioprocesses which follows the standards of Quality by Design is either restricted by the impact of the huge water signal or by a disturbing fluorescence background originating from compounds in the culture media. Furthermore, the characterization of the bioprocess samples is challenging due to changing conditions in course of cultivation. Here we evaluate two different process-suitable Raman spectroscopic approaches, namely time-gated Raman which bears the potential to extract the Raman signal from the fluorescence background, and cw- Raman with NIR excitation in combination with Surface Enhanced Raman Spectroscopy- (SERS) to investigate cell-free supernatants of Escherichia coli sampled over the course of a cultivation. A confocal Raman microscope was used as a reference for the process devices. The concentration of the analytes, glucose, acetate as well as metabolites such as cAMP, AMP and amino-acids were determined by offline by High-Performance Liquid Chromatography (HPLC) to serve as reference for the calibration of the Raman and SERS spectral data. Multivariate evaluation of the Raman and SERS spectra by Partial Least Squares Regression (PLSR) yielded for most of the analytes robust correlations at each sampling point. Repeated investigation of the off-line samples over a larger experimental period suggested not only a high reliability of the Raman data in general but also a high repeatability of the SERS experiments. Similar spectral features in different quality and signal/noise ratios were measured with all three set-ups. Major results of the comparison of the different Raman spectroscopic approaches and their combination with SERS are summarized and conclusions are drawn on which approach provides the most accurate concentration data among the target analytes. Acknowledgement The authors kindly thank Mario Birkholz (IHP, Frankfurt (Oder), Germany) for the opportunity to use a confocal Raman microscope, Alex Bunker and Tapani Viitala (Division of Pharmaceutical Biosciences, Centre for Drug Research, University of Helsinki, Finland).zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Basel-2017-09-20-AP.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Andrea PaulORCiD
Koautor*innen:Martin Koegler, Stefan Junne, Peter Neubauer, Michael Maiwald
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Bioprocess; Raman; SERS; TimeGated
Veranstaltung:PAT ERFA Workshop 2017
Veranstaltungsort:Basel, Switzerland
Beginndatum der Veranstaltung:19.09.2017
Enddatum der Veranstaltung:20.09.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:25.09.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.