Effect of modification on acidity and porosity of natural zeolite clinoptilolite

  • 1. Introduction Catalytic processing of heavy feedstock can meet the increased demand of energy up to a great extent. It requires the application of acidic catalysts like zeolites. However, the used synthetic catalysts are difficult to recover and reuse and are mostly spent. The use of natural zeolite as spent catalysts may open new perspectives in the chemical use of heavy feed feedstock by chemical conversion. Natural zeolites are not expensive, widely available and environment friendly. Clinoptilolite is a natural, most abundant medium pore size zeolite, consisting of 2-deminsional pore system containing of oxygen-8- membered and oxygen-10-membered rings.Although clinoptilolite is porous and can be acidified by ion exchange or acid treatment. Samples were characterized by XRD regarding crystallinity and phase composition. The acidity was studied by ammonia-TPD measurements and 1H solid state MAS NMR as well as REDOR experiments. Structure and structural changes caused by applied1. Introduction Catalytic processing of heavy feedstock can meet the increased demand of energy up to a great extent. It requires the application of acidic catalysts like zeolites. However, the used synthetic catalysts are difficult to recover and reuse and are mostly spent. The use of natural zeolite as spent catalysts may open new perspectives in the chemical use of heavy feed feedstock by chemical conversion. Natural zeolites are not expensive, widely available and environment friendly. Clinoptilolite is a natural, most abundant medium pore size zeolite, consisting of 2-deminsional pore system containing of oxygen-8- membered and oxygen-10-membered rings.Although clinoptilolite is porous and can be acidified by ion exchange or acid treatment. Samples were characterized by XRD regarding crystallinity and phase composition. The acidity was studied by ammonia-TPD measurements and 1H solid state MAS NMR as well as REDOR experiments. Structure and structural changes caused by applied modifications were studied by 27Al- and 29Si MAS NMR measurements and thermal analysis. 2. Experimental Part The ion exchange behaviour of natural zeolite tuff contained ca. 90 ma. % of clinoptilite was studied in 0.1 and 0.5 M ammonium nitrate solution and for comparison with HCl solution of similar concentration. The activation temperature was varied between 300-600°C.The catalytic test was performed using ca. 0.2 g of the catalyst and ca.10g of the aldehyde and alcohol using toluene as solvent and under reflux. Reaction water was removed via a by-pass. 3. Results and discussion The experiments show that a part of the cations of clinoptilolite readily exchange with ammonium ions and protons supplied by acid treatment. Substitution of the compensating cations by NH4+ followed by calcination and HCl treatment does not produce structural changes in the original material, but it opens the channels and increases acidity and thermal stability. Calcination at higher temperature and exchange with concentrated acid has a more severe impact on the clinoptilolite structure dealumination as indicated by the appearance of 5- and 6-fold coordinated aluminum. Catalytic activity of sample is related to the surface acidity. The presence of acidic protons of medium to strong strength is confirmed by ammonia-TPD and proton NMR measurements. 4. Conclusions Acidic natural clinoptilolite catalysts prepared via ammonium exchange followed by calcination and acid treatment shows a positive influence on acidity and porosity. Modification creates hierarchical micro-nano porosity. The specific surface area varies between ca. 45 m2/g and 245 m2/g.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Riaz-Summer School-pdf.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Muhammad Riaz
Koautor*innen:H. Kosslick, F. Ibad, R. Al-Otabi, F. Al-Otabi, Christian Jäger, A. Schulz
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Natural Zeolite Clinoptilolite
Veranstaltung:Catalysis summer school-UK
Veranstaltungsort:Liverpool, UK
Beginndatum der Veranstaltung:17.07.2017
Enddatum der Veranstaltung:21.07.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:22.06.2017
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.