Zitieren Sie bitte immer diese URN: urn:nbn:de:kobv:b43-392506

Immunochemical determination of caffeine and carbamazepine in complex matrices using fluorescence polarization

  • Pharmacologically active compounds are omnipresent in contemporary daily life, in our food and in our environment. The fast and easy quantification of those substances is becoming a subject of global importance. The fluorescence polarization immunoassay (FPIA) is a homogeneous mix-and-read format and a suitable tool for this purpose that offers a high sample throughput. Yet, the applicability to complex matrices can be limited by possible interaction of matrix compounds with antibodies or tracer. Caffeine is one of the most frequently consumed pharmacologically active compounds and is present in a large variety of consumer products, including beverages and cosmetics. Adverse health effects of high caffeine concentrations especially for pregnant women are under discussion. Therefore, and due to legal regulations, caffeine should be monitored. Automated FPIA measurements enabled the precise and accurate quantification of caffeine in beverages and cosmetics within 2 min. Samples could bePharmacologically active compounds are omnipresent in contemporary daily life, in our food and in our environment. The fast and easy quantification of those substances is becoming a subject of global importance. The fluorescence polarization immunoassay (FPIA) is a homogeneous mix-and-read format and a suitable tool for this purpose that offers a high sample throughput. Yet, the applicability to complex matrices can be limited by possible interaction of matrix compounds with antibodies or tracer. Caffeine is one of the most frequently consumed pharmacologically active compounds and is present in a large variety of consumer products, including beverages and cosmetics. Adverse health effects of high caffeine concentrations especially for pregnant women are under discussion. Therefore, and due to legal regulations, caffeine should be monitored. Automated FPIA measurements enabled the precise and accurate quantification of caffeine in beverages and cosmetics within 2 min. Samples could be highly diluted before analysis due to high assay sensitivity in the low μg/L range. Therefore, no matrix effects were observed. The antiepileptic drug carbamazepine (CBZ) is discussed as a marker for the elimination efficiency of wastewater treatment plants and the dispersion of their respective effluents in surface water. The development of a FPIA for CBZ included the synthesis and evaluation of different tracers. Using the optimum tracer CBZ-triglycine-5-(aminoacetamido) fluorescein, CBZ concentrations in surface waters could be measured on different platforms: one sample within 4 min in tubes or 24 samples within 20 min on microtiter plates (MTPs). For this study, a commercially available antibody was used, which led to overestimations with recovery rates up to 140% due to high cross-reactivities towards CBZ metabolites and other pharmaceuticals. For more accurate CBZ determination, a new monoclonal antibody was produced. In this attempt, methods for improving the monitoring during the production process were successfully applied, including feces screening and cell culture supernatant screening with FPIA. The new monoclonal antibody is highly specific for CBZ and showed mostly negligible cross-reactivities towards environmentally relevant compounds. Measurements at non-equilibrium state improved the sensitivity and selectivity of the developed FPIA due to slow binding kinetics of the new antibody. Additionally, this measure enables for CBZ determination over a measurement range of almost three orders of magnitude. The comprehensively characterized antibody was successfully applied for the development of sensitive homogeneous and heterogeneous immunoassays. The new antibody made the development of an on-site measurement system for the determination of CBZ in wastewater possible. After comprehensive optimization, this automated FPIA platform allows the precise quantification of CBZ in wastewater samples only pre-treated by filtration within 16 min. Recovery rates of 61 to 104% were observed. Measurements in the low μg/L range are possible without the application of tedious sample preparation techniques. Different FPIA platforms including MTPs, cuvettes and tubes were successfully applied. For the choice of the right format, the application field should be considered, e.g. desired sample throughput, usage for optimization or characterization of antibodies or if a set-up for routine measurements is sought for. For high sample throughput and optimization, FPIA performance on MTPs is advantageous. The best results for the application to real samples were obtained using kinetic FP measurements in cuvettes.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Lidia Oberleitner
Dokumenttyp:Dissertation
Veröffentlichungsform:Eigenverlag BAM
Schriftenreihe (Bandnummer):BAM Dissertationsreihe (154)
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
Organisationseinheit der BAM:1 Analytische Chemie; Referenzmaterialien
1 Analytische Chemie; Referenzmaterialien / 1.8 Umweltanalytik
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Titel verleihende Institution:Technische Universität Berlin, Fakultät III − Prozesswissenschaften
Gutachter/innen:Leif-Alexander Garbe, Rudolf J. Schneider, Michael G. Weller
Datum der Abschlussprüfung:31.03.2016
Verlag:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlagsort:Berlin
Jahrgang/Band:154
Erste Seite:1
Letzte Seite:124
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:Antibody; Coffee; ELISA; Fluorophore tracer; Wastewater
Themenfelder/Aktivitätsfelder der BAM:Energie
Infrastruktur
Umwelt
Material
Analytical Sciences
URN:urn:nbn:de:kobv:b43-392506
ISSN:1613-4249
ISBN:978-3-9818270-2-6
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - Namensnennung-Nicht kommerziell-Keine Bearbeitung
Datum der Freischaltung:27.02.2017
Referierte Publikation:Nein