Erweiterung bestehender Werkstoff- und Rechenmodelle zur Lebensdauervorhersage für Abgasturbolader-Heißteile unter thermomechanischer Ermüdungsbeanspruchung

  • In diesem Forschungsvorhaben erfolgte eine Überprüfung der Übertragbarkeit der Werkstoff- und Rechenmodelle für die Lebensdauervorhersage von ATL-Heißteilen unter TMF-Beanspruchung auf eine andere Werkstoffklasse, d. h. auf eine austenitische Gusseisenlegierung mit Kugelgraphit. Dafür wurde die Legierung EN-GJSA-XNiSiCr35-5-2 (Ni-Resist D-5S) ausgewählt. Zunächst wurde für diesen Werkstoff eine experimentelle Datenbasis geschaffen, da diese vor Beginn des Vorhabens nicht ausreichend war. Dazu wurden Zug-, Kriech-, LCF- und TMF-Versuche durchgeführt, die der Kalibrierung der Modelle dienten. Unter TMF-Belastung zeigte der untersuchte Werkstoff ein stark abweichendes Verhalten von den im vorangegangenen Vorhaben untersuchten ferritischen SiMo-Legierungen: Der Werkstoff Ni-Resist zeigte insgesamt eine vergleichbare Festigkeit unter OP- und IP-Bedingungen, während die ferritischen Legierungen unter IP-Beanspruchung eine deutlich höhere Festigkeit aufweisen. Mit zunehmenden Temperaturen undIn diesem Forschungsvorhaben erfolgte eine Überprüfung der Übertragbarkeit der Werkstoff- und Rechenmodelle für die Lebensdauervorhersage von ATL-Heißteilen unter TMF-Beanspruchung auf eine andere Werkstoffklasse, d. h. auf eine austenitische Gusseisenlegierung mit Kugelgraphit. Dafür wurde die Legierung EN-GJSA-XNiSiCr35-5-2 (Ni-Resist D-5S) ausgewählt. Zunächst wurde für diesen Werkstoff eine experimentelle Datenbasis geschaffen, da diese vor Beginn des Vorhabens nicht ausreichend war. Dazu wurden Zug-, Kriech-, LCF- und TMF-Versuche durchgeführt, die der Kalibrierung der Modelle dienten. Unter TMF-Belastung zeigte der untersuchte Werkstoff ein stark abweichendes Verhalten von den im vorangegangenen Vorhaben untersuchten ferritischen SiMo-Legierungen: Der Werkstoff Ni-Resist zeigte insgesamt eine vergleichbare Festigkeit unter OP- und IP-Bedingungen, während die ferritischen Legierungen unter IP-Beanspruchung eine deutlich höhere Festigkeit aufweisen. Mit zunehmenden Temperaturen und Haltezeiten unter Zugspannungen wurden dagegen beim Werkstoff Ni-Resist Hinweise auf Kriechschädigung gefunden, die schädigungsrelevant sind. Auch dies ist ein deutlicher Unterschied zu den SiMo-Legierungen. Das Spannungs-Verformungs-Verhalten in den LCF- und TMF-Versuchen wird durch das Modell auch für den neuen Werkstoff überwiegend gut beschrieben. Das Gleiche gilt für die Lebensdauervorhersage, die mit Ausnahme der Prüftemperatur 900 °C innerhalb eines Fak-tors zwei liegt. Eine Verifikation des Modells erfolgte mit Hilfe eines Bauteilversuchs an einem Abgassammler, der abwechselnd mit heißem und kaltem Gas durchströmt wurde. Ziel der Bauteilsimulation war insbesondere die Vorhersage der Rissbildungsorte. Eine Vorhersage der exakten Lebensdauer wurde nicht erwartet, da das Bauteil mit einer Gusshaut behaftet war, während die für die Kalibrierung des Lebensdauermodells verwendeten Versuche an bearbeiteten, glatten Proben ohne Gusshaut durchgeführt wurden. Die überwiegende Anzahl der experimentell ermittelten Rissorte wurden vorhergesagt. Schließlich war ein wesentliches Ziel des Vorhabens, den Einfluss von HCF-Schwingungen auf die TMF-Lebensdauer vertieft experimentell zu untersuchen und das bereits bestehende Lebensdauermodell auf HCF-Überlagerung zu erweitern. Dazu wurde zunächst die Daten-basis aus dem Vorgängervorhaben am Bespiel von SiMo 4.05 deutlich ausgebaut, um die verschiedenen Einflussparameter zu erfassen. Es wurde ein Ansatz entwickelt, in dem die Lebensdauerminderung durch die überlagerten HCF-Schwingungen abgebildet wird. Dabei wird davon ausgegangen, dass ab einer bestimmten Risstiefe die Überlagerung der HCF-Schwingungen die Rissausbreitung stark beschleunigt. Der Zeitpunkt, wann diese Beschleunigung eintritt, wird als maßgeblich für die Lebensdauerminderung angesehen. Mit diesem Ansatz lassen sich die Lebensdauern für beide Werkstoffe in guter Übereinstimmung mit dem Experiment vorhersagen.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Skrotzki_Erweiterung bestehender Werkstoff- und Rechnemodelle.pdf
    deu

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Birgit Skrotzki, Danilo Uckert, Kathrin Matzak, Hans-Joachim Kühn, Birgit Rehmer, Frauke Peter, Bernard Fedelich, Rainer Falkenberg, Cetin Haftaoglu, Vitaliy Kindrachuk
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Verlagsliteratur
Sprache:Deutsch
Titel des übergeordneten Werkes (Deutsch):Abschlussbericht über das Vorhaben Nr. 1100 (IGF-Nr. 17084 N)
Jahr der Erstveröffentlichung:2016
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.2 Experimentelle und modellbasierte Werkstoffmechanik
Jahrgang/Band:Heft R575
Erste Seite:1
Letzte Seite:35
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Ermüdung; LCF; Modellierung; Schädigung; Simulation; TMF
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Degradation von Werkstoffen und Materialien
Veranstaltung:Informationstagung Turbomaschinen, Frühjahr 2016
Veranstaltungsort:Bad Neuenahr, Germany
Beginndatum der Veranstaltung:13.04.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:28.04.2016
Referierte Publikation:Nein