Zitieren Sie bitte immer diese URN: urn:nbn:de:kobv:b43-357833

A Numerical Model for Self-Compacting Concrete Flow through Reinforced Sections: a Porous Medium Analogy

  • This thesis addresses numerical simulations of self-compacting concrete (SCC) castings and suggests a novel modelling approach that treats reinforcement zones in a formwork as porous media. As a relatively new field in concrete technology, numerical simulations of fresh concrete flow can be a promising aid to optimise casting processes and to avoid on-site casting incidents by predicting the flow behaviour of concrete during the casting process. The simulations of fresh concrete flow generally involve complex mathematical modelling and time-consuming computations. In case of a casting prediction, the simulation time is additionally significantly increased because each reinforcement bar occurring in succession has to be considered one by one. This is particularly problematic when simulating SCC casting, since this type of concrete is typically used for heavily reinforced structural members. However, the wide use of numerical tools for casting prediction in practice is possible only ifThis thesis addresses numerical simulations of self-compacting concrete (SCC) castings and suggests a novel modelling approach that treats reinforcement zones in a formwork as porous media. As a relatively new field in concrete technology, numerical simulations of fresh concrete flow can be a promising aid to optimise casting processes and to avoid on-site casting incidents by predicting the flow behaviour of concrete during the casting process. The simulations of fresh concrete flow generally involve complex mathematical modelling and time-consuming computations. In case of a casting prediction, the simulation time is additionally significantly increased because each reinforcement bar occurring in succession has to be considered one by one. This is particularly problematic when simulating SCC casting, since this type of concrete is typically used for heavily reinforced structural members. However, the wide use of numerical tools for casting prediction in practice is possible only if the tools are user-friendly and simulations are time-saving. In order to shorten simulation time and to come closer to a practical tool for casting prediction, instead to model steel bars one by one, this thesis suggests to model zones with arrays of steel bars as porous media. Consequently, one models the flow of SCC through a reinforcement zone as a free-surface flow of a non-Newtonian fluid, propagating through the medium. By defining characteristic parameters of the porous medium, the influence on the flow and the changed (apparent) behaviour of concrete in the porous matrix can be predicted. This enables modelling of any reinforcement network as a porous zone and thus significantly simplifies and fastens simulations of reinforced components’ castings. Within the thesis, a computational model for SCC flow through reinforced sections was developed. This model couples a fluid dynamics model for fresh concrete and the macroscopic approach for the influence of the porous medium (formed by the rebars) on the flow. The model is implemented into a Computational Fluid Dynamics software and validated on numerical and experimental studies, among which is a large-scale laboratory casting of a highly reinforced beam. The apparent rheology of concrete within the arrays of steel bars is studied and a methodology to determine unknown input parameters for the porous medium is suggested. Normative tables defining characteristic porous medium parameters as a function of the topology of the rebar zone for different reinforcement cases are generated. Finally, the major contribution of this work is the resulting numerical package, consisting of the numerical solver and the parameter library. The thesis concludes on the ability of the porous medium analogy technique to reliably predict the concrete casting behaviour, while being significantly easier to use and far less time consuming than existing tools.zeige mehrzeige weniger
  • Die Arbeit behandelt die numerische Modellierung des Fließverhaltens von selbst-verdichtendem Beton (SVB) in bewehrten Schalungselementen. Die numerische Simulation des Fließens von Frischbeton kann eine vielversprechende Unterstützung bei der Optimierung von Befüllvorgängen sein, indem diese bereits im Vorfeld vorhergesagt werden. Die Simulation des Fließens von Frischbeton verwendet komplizierte mathematische Modelle und zeitintensive Rechenoperationen. Darüber hinaus wird die Simulationszeit für die Vorhersage des Füllvorgangs zusätzlich deutlich verlängert, weil aufeinanderfolgende Bewehrungsstäbe einzeln zu berücksichtigen sind. Das ist insbesondere für die Simulation von SVB ein entscheidendes Problemfeld, da SVB oft gerade für hochbewehrte Bauteile verwendet wird. Dennoch ist ein weitreichender Einsatz von numerischen Hilfsmitteln bei der Vorhersage von Füllprozessen nur denkbar, wenn die Anwenderfreundlichkeit und eine Zeitersparnis gewährleistet werdenDie Arbeit behandelt die numerische Modellierung des Fließverhaltens von selbst-verdichtendem Beton (SVB) in bewehrten Schalungselementen. Die numerische Simulation des Fließens von Frischbeton kann eine vielversprechende Unterstützung bei der Optimierung von Befüllvorgängen sein, indem diese bereits im Vorfeld vorhergesagt werden. Die Simulation des Fließens von Frischbeton verwendet komplizierte mathematische Modelle und zeitintensive Rechenoperationen. Darüber hinaus wird die Simulationszeit für die Vorhersage des Füllvorgangs zusätzlich deutlich verlängert, weil aufeinanderfolgende Bewehrungsstäbe einzeln zu berücksichtigen sind. Das ist insbesondere für die Simulation von SVB ein entscheidendes Problemfeld, da SVB oft gerade für hochbewehrte Bauteile verwendet wird. Dennoch ist ein weitreichender Einsatz von numerischen Hilfsmitteln bei der Vorhersage von Füllprozessen nur denkbar, wenn die Anwenderfreundlichkeit und eine Zeitersparnis gewährleistet werden können. Um die Simulationszeit zu verkürzen und näher an eine anwenderfreundliche Lösung für die Vorhersage von Füllprozessen zu kommen, wird als Alternative zur einzelnen Modellierung aller Stahlstäbe in dieser Arbeit vorgeschlagen, Zonen mit Bewehrungsstäben als poröse Medien zu modellieren. Infolgedessen wird das Fließen von SVB durch bewehrte Zonen als Strömung eines nicht-Newton’schen Fluides durch ein poröses Medium betrachtet. Durch die Definition charakteristischer Parameter des porösen Mediums kann das veränderte Verhalten des Betons in der porösen Matrix vorhegesagt werden. Dies ermöglicht die Modellierung beliebiger Bewehrungszonen und vereinfacht und beschleunigt folglich die numerische Simulation bewehrter Bauteile. Im Rahmen der Arbeit wird ein Rechenmodell für das Fließverhalten von SVB durch bewehrte Schalungszonen entwickelt. Das Modell verkoppelt das Strömungsverhalten von Beton mit dem makroskopischen Ansatz für den Einfluss von porösen Medien, welche in diesem Fall die Bewehrungsstäbe ersetzen. Das entwickelte Modell wird in eine CFD-Software implementiert und anhand mehrerer numerischer und experimenteller Studien validiert, darunter auch ein maßstabsgetreues Fließexperiment eines hochbewehrten Balkens. Darüber hinaus wird die scheinbare Rheologie des Betons innerhalb der Anordnung der Stahlstäbe untersucht und daraus eine Methode zur Bestimmung unbekannter Parameter für das poröse Medium vorgeschlagen. Es werden hierfür auch normative Tabellen generiert, die die charakteristischen Eigenschaften der porösen Medien für unterschiedliche Bewehrungsanordnungen abbilden. Zuletzt ist der Hauptbeitrag dieser Arbeit das resultierende Numerikpaket, bestehend aus dem numerischen Solver einschließlich des implementierten Modells sowie der Parameterbibliothek. Im Abschluss werden die Verlässlichkeit der Vorhersage von Füllvorgängen durch die Analogie zu porösen Medien erörtert sowie Schlussfolgerungen zur deutlichen Ersparnis an Aufwand und Zeit gegenüber herkömmlichen Methoden vorgenommen.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Ksenija Vasilić
Dokumenttyp:Dissertation
Veröffentlichungsform:Eigenverlag BAM
Schriftenreihe (Bandnummer):BAM Dissertationsreihe (144)
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
Organisationseinheit der BAM:7 Bauwerkssicherheit
7 Bauwerkssicherheit / 7.4 Baustofftechnologie
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Titel verleihende Institution:Technische Universität Dresden, Fakultät Bauingenieurwesen
Gutachter/innen:Viktor Mechtcherine, Nicolas Roussel
Datum der Abschlussprüfung:16.04.2015
Verlag:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlagsort:Berlin
Jahrgang/Band:144
Erste Seite:1
Letzte Seite:175
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Bewehrung; Rheologie; numerische Modellierung; poröses Medium; selbstverdichtender Beton
CFD; numerical modelling; porous medium; reinforcement; rheology; self-compacting concrete
Themenfelder/Aktivitätsfelder der BAM:Infrastruktur
URN:urn:nbn:de:kobv:b43-357833
ISSN:1613-4249
ISBN:978-3-9817502-6-3
Verfügbarkeit des Volltexts:Volltext-PDF für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoAllgemeines Deutsches Urheberrecht
Datum der Freischaltung:20.04.2016
Referierte Publikation:Nein