Zitieren Sie bitte immer diese URN: urn:nbn:de:kobv:b43-354507

Reactive Boundary Layers in Metallic Rolling Contacts

  • In order to meet the goal of reducing CO2 emissions, automotive industry places significant importance on downsizing components to achieve greater efficiency through lower weight and reduced friction. As friction reductions are associated with energy efficiency and wear protection with resource conservation, ever greater attention has been given to adamantine carbon- based coatings and high-alloyed steels. Such applications are, however, associated with high production costs and energy expenditures, as well as many technical difficulties. Therefore a key issue in meeting the goals of friction reduction, wear protection and development of comprehensive lightweight strategies is whether or not the functional profiles of state-of-the art alloys can be enhanced by affordable solutions. The running-in phase of mechanical systems is inevitable and, from a tribological standpoint, critical for the lifetime of such systems, though receives little attention and is poorly understood. TheIn order to meet the goal of reducing CO2 emissions, automotive industry places significant importance on downsizing components to achieve greater efficiency through lower weight and reduced friction. As friction reductions are associated with energy efficiency and wear protection with resource conservation, ever greater attention has been given to adamantine carbon- based coatings and high-alloyed steels. Such applications are, however, associated with high production costs and energy expenditures, as well as many technical difficulties. Therefore a key issue in meeting the goals of friction reduction, wear protection and development of comprehensive lightweight strategies is whether or not the functional profiles of state-of-the art alloys can be enhanced by affordable solutions. The running-in phase of mechanical systems is inevitable and, from a tribological standpoint, critical for the lifetime of such systems, though receives little attention and is poorly understood. The growth of micro-cracks accelerates premature material failure and wear during this phase of heightened friction. With this in mind, the ultimate goal of this current work is to transfer the running-in phase into the final step of the mechanical finishing process through the targeted pre-conditioning of novel, high toughness steel bearings without thermo-chemical treatments and compare these to conventional, case-hardened steels. Two mechanisms were investigated: a. Cold work hardening and b. Chemical tribofilm formation. Steels that showed a tendency toward work hardening and tribofilm formation in previous testing were chosen for this investigation. Thorough characterization of the chosen Steels was carried out before any pre-conditioning techniques were applied. The widely used 20MnCr5, seen as a reference gear steel, underwent case-hardening and subsequent deep freezing treatments in an attempt to yield discrete sample groups with respect to residual austenite. This allowed for a more thorough investigation into the effects of residual austenite on the properties of this material. The high-performance alternative steels, 36NiCrMoV1-5-7 (hot working steel) and 45SiCrMo6 (spring steel), were heat treated as recommended by their respective manufacturers, and were not case-hardened. The selection of materials with and materials without case-hardening allows for an investigation into whether or not case-hardening is even necessary to deliver acceptable friction behaviour and wear performance. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual Austenite contents of the steels and the depth profiles of residual stresses were determined by X-Ray diffraction (XRD), for 20MnCr5 ranging from approximately 6 – 14 vol.%, and under 2 vol.% for the alternative alloys. Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-case-hardened 20MnCr5. Residual stresses from machining and case-hardening were measured directly at the sample surface. The high-performance Steels fulfilled manufacturer expectations in terms of elemental content, with hardness values between 50 – 55 HRC and strongly martensitic microstructure character. With characterization of the chosen materials complete, the materials could then be subjected to pre-conditioning. The first pre-conditioning method involved targeted generation of cold work hardening as induced boundary layers to protect the contact zone against wear. Work hardening was identified both by variations in residual stress profiles, i.e. the introduction of beneficial compressive residual stresses, and hardness increases in the contact zone, providing enhanced wear resistance. Parameters for work hardening were further optimized to reduce damage to the surface substrates of the treated materials. The second pre-conditioning method involved the targeted generation of chemically reactive tribolayers (tribofilms) on twin disk testing rigs. The lubrication strategies were based on: a. CaCO3, which is predominant in engine oils, and b. MoDTC, which is commonly used in engine and gear oils. The films generated in pre-conditioning were analyzed by SEM-EDX with Element-Mapping, Raman spectroscopy, and XPS to elucidate their molecular composition and concentration on the sample surfaces. The combination of these methods of analysis gave a clear indication that 104 cycles were sufficient to generate stable and lasting tribofilms. CaO and CaCO3 were the main components of the tribofilm from the first lubricant package, while MoS2, MoO2 and MoO3 were the main components from the second lubricant package. Finally, slip-rolling endurance testing (T = +120 °C, 107 cycles, approximately 19 days in a factory fill engine oil) was carried out on all materials. It was shown that both pre-conditioning methods could achieve significant reductions in friction and wear during testing at up to and including P0Mean =1.94 GPa (P0Max = 2.91 GPa, FN = 2,000 N). Ultimately, this research showed that: 1. non-case-hardened high-performance steels offer competitive wear performance and better friction behaviour than the case-hardened 20MnCr5. 2. pre-conditioning led to COF reductions to under 7/10 and wear coefficient reductions to an astonishing 1/10 of the original values for the untreated steels under mixed/boundary lubrication. 3. the observed improvements to friction behaviour and wear performance are indicative of a technically simple, cost- and energy-efficient pre-conditioning strategy that may provezeige mehrzeige weniger
  • Die Automobilindustrie legt im Hinblick auf das Ziel der CO2-Emissionsreduktionen viel Wert auf die Erhöhung des Wirkungsgrades von mechanischen Komponenten durch Leichtbau. Eine Reduzierung der Reibung wirkt sich direkt auf die Energieeffizienz aus, währenddessen eine Verschleißminderung zu Materialeinsparungen führt. Aus diesen Gründen genießen diamantartige, kohlenstoffbasierte Beschichtungen und hochlegierten Stähle derzeit große Aufmerksamkeit. Deren Herstellung ist allerdings sowohl mit einem hohen Energie- und Kostenaufwand verbunden, als auch technisch sehr anspruchsvoll. Zur Erreichung der Ziele der Reibungsminderung, des Verschleißschutzes und der Entwicklung umfassender Leichtbaustrategien ist es daher von großer Bedeutung, ob sich das Leistungsprofil neuartiger Legierungen durch kostengünstigere Lösungen verbessern lässt. Obwohl der mechanische Einlauf aus tribologischer Sicht entscheidend für die Lebensdauer mechanischer Systeme ist, genießt er wenigDie Automobilindustrie legt im Hinblick auf das Ziel der CO2-Emissionsreduktionen viel Wert auf die Erhöhung des Wirkungsgrades von mechanischen Komponenten durch Leichtbau. Eine Reduzierung der Reibung wirkt sich direkt auf die Energieeffizienz aus, währenddessen eine Verschleißminderung zu Materialeinsparungen führt. Aus diesen Gründen genießen diamantartige, kohlenstoffbasierte Beschichtungen und hochlegierten Stähle derzeit große Aufmerksamkeit. Deren Herstellung ist allerdings sowohl mit einem hohen Energie- und Kostenaufwand verbunden, als auch technisch sehr anspruchsvoll. Zur Erreichung der Ziele der Reibungsminderung, des Verschleißschutzes und der Entwicklung umfassender Leichtbaustrategien ist es daher von großer Bedeutung, ob sich das Leistungsprofil neuartiger Legierungen durch kostengünstigere Lösungen verbessern lässt. Obwohl der mechanische Einlauf aus tribologischer Sicht entscheidend für die Lebensdauer mechanischer Systeme ist, genießt er wenig Aufmerksamkeit und ist bis heute nur begrenzt verstanden. So kann die Ausbreitung von Mikrorissen während dieser Phase der erhöhten Reibung zum vorzeitigen Materialversagen führen. In diesem Sinne war es das oberste Ziel dieser Forschungsarbeit, den Einlauf in die mechanische Endbearbeitung vorzuverlegen. Neuartige Stähle wurden dabei ohne kostenintensive, thermochemische Behandlungen gezielt vorkonditioniert und ihre so verbesserten Eigenschaften mit denen von gängigen Einsatzstählen verglichen. Zu den untersuchten Vorkonditionierungsmechanismen gehören die Erzeugung von: a. Kaltverfestigungen und b. chemischen Tribofilmen. Stähle, die in Vorversuchen eine Zuneigung zur Kaltverfestigung und Tribofilmentstehung, wurden für diese Forschungsarbeit ausgewählt. Die ausgewählten Stähle urden vor jeglicher Vorkonditionierung einer gründlichen, metallurgischen Charakterisierung unterzogen. Der Referenzgetriebestahl 20MnCr5 wurde einsatzgehärtet und in getrennten Gruppen bei verschiedenen Temperaturen tiefgekühlt, um Proben in verschiedenen Nuancen des Restaustenitgehaltes zu erhalten. Damit ließ sich der Einfluss des Restaustenits auf die Materialeigenschaften genauer untersuchen. Die Hochleistungsstähle, 36NiCrMoV1-5-7 (Warmarbeitsstahl) und 45SiCrMo6 (Federstahl), wurden nach den Vorschriften der jeweiligen Hersteller wärmebehandelt, und wurden nicht einsatzgehärtet. Die Auswahl an Stählen, mit und ohne Einsatzhärtung, lässt eine Untersuchung darüber zu, ob eine Einsatzhärtung überhaupt notwendig ist, um gutes Reibungs- und Verschleißverhalten zu erzielen. Elementanalysen wurden mittels mehrerer Methoden zur Gewährleistung der bestmöglichen Genauigkeit der Ergebnisse durchgeführt. Die Restaustenitgehalte der Stähle und Eigenspannungstiefenprofile wurden an einem Röntgendiffraktometer ermittelt. Die Restaustenitgehalte des 20MnCr5 lagen zwischen 6 – 14 Vol.-% und die Restaustenitgehalte der Alternativstähle lagen unter 2 Vol.-%. Härtetiefenprofile wurden auch ermittelt. Die Aufkohlung des 20MnCr5 führte zu einer Steigerung der Härte und der Kohlenstoffkonzentration im Randbereich, sodass dieser Bereich des Stahls eher einem gehärteten SAE 52100, oder 100Cr6/102Cr6, als einem nicht einsatzgehärtetem 20MnCr5 entsprach. Eigenspannungen, die durch die mechanische Endbearbeitung entstanden, wurden direkt unter der Oberfläche detektiert. Die Hochleistungsstähle erfüllten mit Härtewerten zwischen 50 – 55 HRC und ihrem ausgeprägt martensitischen Charakter die Herstellervorgaben. Nach dem Abschluss der metallurgischen Charakterisierung wurden die Stähle vorkonditioniert. Zur ersten Vorkonditionierungsmethode gehörte die Erzeugung gezielter Kaltverfestigungen an Zweischeibenprüfständen in der Form von induzierten Grenzschichten, die die Randschicht gegen Verschleiß schützen. Die Wirksamkeit dieser Vorkonditionierung wurde anhand der Zunahme der vorteilhaften Druckeigenspannungen und der Steigerung der Oberflächenhärte nachgewiesen. Beide Eigenschaften verleihen den Stählen eine erhöhte Verschleißbeständigkeit. In einem weiteren Schritt wurden die Vorkonditionierungsparameter zur Erzeugung von Kaltverfestigung optimiert, um die evtl. Deformierung der Substratoberflächen abzumildern. In einer alternativen, zweiten Vorkonditionierung wurden zwei verschiedene Schmierstoffkonzepte implementiert, um an den Zweischeibenprüfständen chemisch reaktive Triboschichten (Tribofilme) zu generieren. Die Schmierstoffkonzepte basierten auf: a. CaCO3, was überwiegend in Motorenölen eingesetzt wird und b. MoDTC, was häufig in Motoren- und Getriebeölen eingesetzt wird. Die durch die Vorkonditionierung erzeugten Tribofilme wurden mittels REM-EDX mit Element- Mapping, Raman-Spektroskopie und XPS analysiert, um ihre molekulare Zusammensetzung und Oberflächenkonzentration zu ermitteln. Der Tribofilm aus dem ersten Schmiermittel bestand hauptsächlich aus CaO und CaCO3 und der Tribofilm aus dem zweiten Schmiermittel bestand hauptsächlich aus MoS2, MoO2 und MoO3. Aus diesen Analysen wurde ersichtlich, dass 104 Laufzyklen zur Generierung stabiler und beständiger Tribofilme vollkommen ausreichend sind. Anschließend wurden alle Stähle in Dauerwälzversuchen (T = +120 °C, 107 Zyklen, etwa 19 Tage in einem Erstbefüllungsmotorenöl) in ihrem Reibungs- und Verschleißverhalten untersucht. Es wurde gezeigt, dass durch vorkonditionierte Kaltverfestigungen oder durch vorkonditionierte Tribofilme die Reibung und der Verschleiß in Wälzkontakten bei Dauerwälzen bis P0Mean =1,94 GPa (P0Max = 2,91 GPa, FN = 2.000 N) signifikant erniedrigt werden können. Im Endeffekt wurde in dieser Arbeit gezeigt, dass: 1. nicht einsatzgehärtete Hochleistungsstähle konkurrenzfähig zu dem einsatzgehärteten 20MnCr5 sind. 2. die Vorkonditionierungen zu einer Senkung des Reibungskoeffizienten bis auf 7/10 und zu einer Senkung des Verschleißkoeffizienten bis auf 1/10 der Koeffizienten der nicht vorkonditionierten Stähle unter Misch-/Grenzreibungsbedingungen führten. 3. die Verbesserungen des Reibungs- und Verschleißverhaltens auf eine technisch einfache, energie- und kosteneffiziente Vorkonditionierungsstrategie weisen, die noch bestehende thermochemische Behandlungen ersetzen könnte.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:John Burbank
Dokumenttyp:Dissertation
Veröffentlichungsform:Eigenverlag BAM
Schriftenreihe (Bandnummer):BAM Dissertationsreihe (143)
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
Organisationseinheit der BAM:6 Materialschutz und Oberflächentechnik
6 Materialschutz und Oberflächentechnik / 6.3 Makro-Tribologie und Verschleißschutz
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Titel verleihende Institution:Technische Universität Berlin, Fakultät III − Prozesswissenschaften
Gutachter/innen:W. Reimers, Mathias Woydt
Datum der Abschlussprüfung:20.11.2005
Verlag:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlagsort:Berlin
Jahrgang/Band:143
Erste Seite:1
Letzte Seite:133
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Friction; Steel; Tribofilm; Wear; Work hardening
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Life Cycle von Komponenten
URN:urn:nbn:de:kobv:b43-354507
ISSN:1613-4249
ISBN:978-3-9817502-5-6
Verfügbarkeit des Volltexts:Volltext-PDF für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoAllgemeines Deutsches Urheberrecht
Datum der Freischaltung:09.03.2016
Jahr der Fertigstellung:2016
Referierte Publikation:Nein