Phyiscochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation

Adeline Tarantini, K. David Wegner, Fanny Dussert, Géraldine Sarret, David Beal, Lucia Mattera, Christophe Lincheneau, Olivier Proux, Delphine Truffer-Boutry, Christine Moriscot, Benoit Gallet, P.-H. Jouneau, Peter Reiss, Marie Carrière

ABSTRACT

Due to their unique optical properties, quantum dots (QDs) are used in a number of optoelectronic devices and are forecasted to be used in the near future for biomedical applications. The most popular QD composition consists of cadmium selenide (CdSe) or cadmium telluride (CdTe), which has been shown to pose health risks due to the release of toxic cadmium (Cd) ions. Due to similar optical properties but lower intrinsic toxicity, indium phosphide (InP) QDs have been proposed as a safer alternative. Nevertheless, investigations regarding their safety and possible toxicological effects are still in their infancy.

The fate and toxicity of seven different water-dispersible indium (In)-based QDs, either pristine or after ageing in a climatic chamber, was evaluated. The core of these QDs was composed of indium, zinc and phosphorus (InZnP) or indium, zinc, phosphorus and sulfur (InZnPS). They were assessed either as core-only or as core-shell QDs, for which the core was capped with a shell of zinc, selenium and sulfur (Zn(Se,S)). Their surface was functionalized using either penicillamine or glutathione. In their pristine form, these QDs showed essentially no cytotoxicity. The particular case of InZnPS QD showed that core-shell QDs were less cytotoxic than core-only QDs. Moreover, surface functionalization with either penicillamine or glutathione did not appreciably influence cytotoxicity but affected QD stability. These QDs did not lead to over-accumulation of reactive oxygen species in exposed cells, or to any oxidative damage to cellular DNA. However, accelerated weathering in a climatic chamber led to QD precipitation and degradation, together with significant toxic effects. Ageing led to dissociation of InZnP and InZnPS QD. These results show that InZnP and InZnPS alloyed QDs are safer alternatives to CdSe QDs. They underline the
1. Introduction

Colloidal semiconductor nanocrystals, also termed quantum dots (QDs), possess unique optical properties including size-tunable absorbance and emission, narrow emission bands, high photoluminescence quantum yield (QY) and resistance to photobleaching (Alivisatos, 1996). This makes them attractive for a wide range of applications, such as biosensing and imaging (Wegner and Hildebrandt, 2015), in photovoltaics and light-emitting devices including light-emitting diodes, TVs and displays (Reiss et al., 2016). The most popular QD composition consist of II-VI QDs such as cadmium selenide (CdSe) and cadmium telluride (CdTe), which display the highest quantum yields and can be synthesized with a high degree of monodispersity (Wegner and Hildebrandt, 2015). However, these heavy metal containing QDs have been shown to be toxic in human and environmental models (Bottrill and Green, 2011; Rocha et al., 2017). The main reasons explaining their toxicity is the leakage of Cd ions during QD degradation, which results in the generation of reactive oxygen species (ROS) (Kaufler et al., 2014). QD degradation is triggered via surface oxidation by molecular oxygen from air and under UV irradiation, or in intracellular acidic compartments such as lysosomes (Corazzari et al., 2013; Derfus et al., 2004; Kirchner et al., 2005). Capping CdSe or CdTe cores with a shell of zinc sulfide (ZnS) not only improves their photophysical properties but also reduces their degradation and thus their toxicity (Bottrill and Green, 2011). However, cadmium (Cd) compounds are classified as carcinogenic to humans (Group 1) by the International Agency for Research on Cancer (IARC) (IARC, 1993), and their use in electrical and electronic equipment has been restricted in the European Union through the Restriction of Hazardous Substances (RoHS) directive (Directive 2011/65/EU of the European Parliament).

Recently, the concept of safer-by-design has been applied to nanoscience and nanotechnology with first reports published in the literature a little more than ten years ago (Schwarz-Plaschgy et al., 2017). The core of this concept is the integration of safety considerations in the design of nanomaterials or nano-enabled products, to make sure that these products will have a low risk potential from their production until their end-of-life (Bastus and Puntes, 2018; Kraegeloh et al., 2018; Lin et al., 2018). In this context, a safer-by-design concept for QDs would include: i) replacement of potentially toxic elements like Cd by less toxic chemical elements, ii) enhancement of the structural stability limiting the release of chemical elements, and iii) prevention of toxic intermediates such as ROS during utilization.

In the literature, several alternative QD compositions have been proposed, which can be used to follow the safer-by-design concept of Cd-free QDs. Among them, the most promising candidates are III/IV and I/III/VI QDs based on indium (In), including indium phosphide (InP) and copper-indium-sulfur (CuInS2) QDs (Reiss et al., 2016). Thereby, InP QDs are the first nanocrystals that made the transition from laboratory bench into a commercial application, namely in the generation of TV screens (Reiss et al., 2016). Their potential was further shown for medical applications, owing to their ability to quickly, efficiently and specifically target sentinel lymph nodes when subcutaneously injected in mice or rats, without causing overt toxicity (Helle et al., 2012; Lin et al., 2015; Pons et al., 2010; Yaghini et al., 2018; Yaghini et al., 2016). InP is classified as probably carcinogenic to humans by the IARC (IARC, 2006), and InP QDs have been shown to be toxic in some in vitro studies (Chibli et al., 2011; Soenen et al., 2014). Their toxicity was shown to be dependent on the cell line (Chibli et al., 2011), and to be correlated with ROS accumulation in exposed cells (Chibli et al., 2011; Soenen et al., 2014). Nevertheless, InP QDs are less toxic than CdSe QDs due to the lower toxicity of In ions released from QDs, compared to Cd ions (Brunetti et al., 2013). An advantage of InP QDs in comparison to Cd-based QDs is the covalent nature of the bond between In and phosphorous (P), which makes them more stable in comparison to the ionic bond of CdSe (Bharali et al., 2005). The passivation of the InP QDs with a semiconductor shell, such as ZnS or zinc selenide (ZnSe), improves their photoluminescence and their long-term stability as the core will be protected from oxidative degradation (Reiss et al., 2016). An important characteristic for a core/shell material is their lattice mismatch. The lattice mismatch for InP/ZnS is around 7%, but is only 3.3% for InP/ZnSe (Reiss et al., 2016). A gradient shell of a ZnSe rich layer close to the InP core, combined with a ZnS layer on the outside, have shown to result in improved photophysical properties and photostability (Lim et al., 2011). These more stable QDs would eventually be less toxic than InP/ZnS QDs. Finally, the quantum yield of InP QDs can be improved by alloying their core with zinc (Zn) and/or sulfur (S), leading to highly fluorescent indium-zinc-phosphorus (InZnP) or indium-zinc-phosphorus-sulfur InZnPS QDs (Huang et al., 2010; Ung et al., 2010). These QDs would have improved optical properties compared to InP/ZnS QDs, and consequently smaller quantities would be necessary to achieve the same brightness. Physical, chemical and toxicological properties of these emerging QDs have been well characterized in their pristine state. However, these QDs are intended to be integrated into electronic devices (Reiss et al., 2016), therefore they will be exposed to daylight under normal conditions of use and potentially at the end of their lifecycle if they are not properly recycled. Therefore, to take into account the whole life cycle of these products, their physicochemical transformation and toxicity should be also assessed after exposing them to UV light, in environmental conditions.

In accordance with these safer-by-design principles, we synthesized some In-based QDs with modified chemistry in order to minimize their hazard. QDs with a core composed of InZnP or InZnP were prepared and further studied as core-only QDs or as core-shell QDs where the cores were capped with a gradient shell composed of zinc, sulfur and selenium (ZnS(Se,S)). The intrinsic hydrophobic QDs were rendered water-soluble using a ligand exchange reaction with either D-penicillamine (Pen) or L-glutathione (GSH). Pen was chosen because the obtained QDs are very compact, which is beneficial in biosensing applications (Mattera et al., 2016), while GSH was chosen because it is a well-documented antioxidant (for review, see (Calabrese et al., 2017)), which would reduce the oxidative stress induced by the QDs, as reported by others (Chibli et al., 2011; Soenen et al., 2014). The toxicity of these In-based QDs was evaluated on primary keratinocytes isolated from skin explants from human donors, and compared to the toxicity of Cd-based QDs. These QDs were then weathered in environmental conditions, consisting of exposure to whole spectrum sunlight for 64 h, as suggested in the ISO norms 4892-1 (2000) and 4892-2 (2013) dedicated to accelerated weathering of plastic. This norm was chosen since QDs are aimed at being embedded in plastic matrices before being incorporated in optoelectronic devices (Lötvon et al., 2017). Toxicity of aged vs. pristine QDs was compared. Finally, the their transformation products of these QDs upon ageing were identified using extended X-ray absorption fine structure (EXAFS) spectroscopy.

2. Materials and methods

2.1. Chemicals and reagents

D-Penicillamine (Pen), L-glutathione reduced (GSH) > 98.0%, tetramethylammonium hydroxide (TMAOH), phosphate-buffered saline (PBS) pH 7.4, dimethyl sulfoxide. InP quantum dots were synthesized by ligand exchange reaction with either D-penicillamine (Pen) or L-glutathione (GSH) (Chibli et al., 2011). Tetramethylammonium hydroxide (TMAOH)0.1 M, phosphate buffer saline (PBS) pH 7.4, and D-penicillamine (Pen) or L-glutathione (GSH).
solution (1xPBS), tris(2-carboxyethyl) phosphine hydrochloride solution 0.5 M (TCEP), indium acetate (99.99%), myristic acid (> 99%), tris(trimethylsilyl)phosphate (95%, (TMS)₃P), 1-octadecene (90%, ODE), 1-dodecanethiol (97%, DDT), trioctylphosphine (97%, TOP), sulfur (99.99%), selenium, methanol, chlorofom and hexane were purchased from Sigma-Aldrich. Zinc stearate (90%, ZnSt₂) was acquired from Riedel de Haen and oleic acid (70%) came from Fisher Chemicals. All chemicals were used as received without any further purification, unless stated otherwise. Cell culture medium and serum were purchased from Thermo Fisher Scientific. All other chemicals were purchased from Sigma-Aldrich and were > 99% pure. CdSe/ZnS QDs were purchased from Thermofisher Scientific (Qdot ITK carboxyl quantum dots).

2.2. QD synthesis and characterization

For preparation of indium-myristate, indium acetate (6.9 mmol), myristic acid (21.4 mmol) and ODE (15 mL) were mixed in a 50 mL three neck flask. The solution was stirred and degassed under vacuum for 3 h at 120 °C. After cooling to room temperature, the precipitated indium-myristate was washed with ca. 150 mL dry hexane before drying under vacuum and storing in the glove box. For preparation of zinc oleate (0.4 M), zinc acetate (5 mmol), 10 mmol oleic acid and 9.35 mL ODE were mixed in a 50 mL three neck flask. The mixture was heated under vacuum to 120 °C and stirred for 1 h to remove water and oxygen. Then the flask was backfilled with argon (Ar) and the solution was cooled down to room temperature. At around 70 °C, the solution was transferred to vial and flushed with Ar before storing it in a glove box. For a 0.4 M TOP-selenium (TOP-Se) stock solution, 2 mmol of selenium powder was dissolved in 5 mL trioctylphosphine (TOP) for 24 h. The preparation of a 0.4 M TOP-sulfur (TOP-S) stock solution was done similarly using elemental sulfur.

Then, InZnP and InZnP QD cores were prepared as follows. For InZnP QDs, indium-myristate (0.1 mmol), ZnSt₂ (0.1 mmol) and 7.5 mL ODE were mixed in a 50 mL three neck flask and degassed for 1 h. The flask was backfilled with Ar and the reaction mixture was rapidly heated to 300 °C in a molten salt bath. At ca. 100 °C/0.1 mmol (TMS)₃P dissolved in 1 mL ODE was swiftly injected. After 20 min, the reaction was quenched by removing the salt bath and let cool down to room temperature. The QDs were purified by precipitating (1:1 v/v mixture of methanol/chlorofrom and acetone) and re-dispersing (chloroform) three times, and finally stored in hexane. The InZnP core was prepared similarly including the addition of 0.1 mmol DDT in the initial reaction mixture.

Gradient shells were then prepared on the surface of InZnP and InZnP QD cores. After the synthesis of the cores, the solution was cooled down to 220 °C to stop the growth. 2.5 mL of the 0.4 M zinc-oleate (1 mmol) stock solution was added dropwise followed by the swift injection of 0.444 mL of TOP-Se (0.2 mmol) stock solution dissolved in 0.5 mL ODE and 1.57 mL of TOP-S (0.7 mmol) stock solution. The reaction mixture was heated to 300 °C using a heating mantle with a temperature rate of 10 °C per minute. The overall shell growth time was 20 min. The reaction was quenched using the same procedure and the QDs were purified by precipitating (1:1 v/v mixture of methanol/chloroform and acetone) and re-dispersing (chloroform) three times, and finally stored in hexane. The InZnP core was prepared similarly including the addition of 0.1 mmol DDT in the initial reaction mixture.

2.3. Phase transfer

Both InP and CdSe (Qdot ITK carboxyl, Thermofisher) QDs were then transferred in aqueous solution, via phase transfer using either Pen or GSH. A 0.2 M solution of Pen was prepared by dissolving 30 mg of Pen in 1 mL of degassed MilliQ water. After addition of 200 μL of TCEP, the pH was adjusted to 9 with TMAOH (25 wt% in methanol) solution. The solution was degassed again, and 500 μL added to 1 mL of degassed colloidal solution of InP core or InP core/shell in chloroform with an approximate concentration of 3–5 μM. The biphasic mixture was stirred vigorously for 45 min at room temperature. The mixture was quickly centrifuged to obtain a clear phase separation. The upper layer containing the QDs in the aqueous phase was separated from the organic phase and purified from excess ligands using a NAP™10 size exclusion column (Sephadex™ G-25 DNA Grade from GE Healthcare). The column was equilibrated with PBS buffer, which was further used as eluent and storage buffer. The transferred QD samples were stored at 4 °C. For the phase transfer using GSH, 0.26 mM GSH was dissolved in 300 μL TMAOH and added to a 1 μM QD solution in chloroform. The solution was stirred overnight at room temperature. The phase-transferred QDs were extracted from the organic solution using 200 μL PBS buffer with 250 mM NaCl. After centrifugation at 4300 × g for 1 min, the organic layer was separated from the aqueous phase. In order to purify the QDs from the excess of ligands, they were precipitated with 300 mL ethanol and centrifugation for 1 min at 4300 × g. The clear supernatant was discarded and the QDs redispersed with 200 μL 1 × PBS buffer with 250 mM NaCl. This cycle was repeated three times before the final precipitate was redispersed in 1 × PBS. The QDs were stored at 4 °C in the dark; they were used for at least one year.

2.4. Photophysical and structural characterization of InP QDs

Absorbance measurements were performed using a Hewlett Packard 8452A spectrophotometer whereas the emission spectra were recorded using a Fluorolog FL3-22 spectrometer from Horiba-Jobin Yvon equipped with a 150 W xenon lamp for steady-state measurements and a NanoLED laser diode from Horiba with a wavelength of 350 nm and 1 MHz repetition for time-resolved measurements. Decay curves were fitted using Decay Analysis software from Horiba Scientist. Photoluminescence quantum yield measurements were performed at room temperature using an integration sphere, Hamamatsu Quantaurus Absolute PL quantum yield spectrometer or by relative fluorescence measurements using Fluorescein 27 in 0.1 M sodium hydroxide (NaOH) (QY = 93%) as standard. The hydrodynamic diameter of the water-dispersible InZnP and InZnP QDs was measured by dynamic light scattering (Malvern Zeta Sizer NanoZS).

2.5. Electron microscopy

For pristine QD structural characterization, the elemental composition was analyzed using a Zeiss Ultra 55+ scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectroscopy probe (EDS). Samples for EDS were prepared by drop-casting a concentrated dispersion of QDs on a cleaned silicon substrate.

For imaging and EDS analysis of QDs and aged QDs, a drop of QD suspension was deposited on copper grids coated with lacey carbon films, allowed to dry at room temperature, then by scanning-transmission electron microscope (STEM) using a high angle annular dark field (HAADF) detector, on a FEI/Tecnai OSIRIS microscope operating at 120 kV. The chemical composition of regions of interest was then analyzed by EDS using the same microscope and configuration. For imaging of cells via transmission electron microscopy (TEM), after exposure to QDs, cells were rinsed with 0.1 M PHEM buffer (30 mM PIPES, 12.5 mM HEPES, 5 mM MgCl₂, 1 mM EGTA, pH 7), then fixed for 30 min at room temperature in 4% paraformaldehyde, 0.2% glutaraldehyde in 0.1 M sodium hydroxide (NaOH) (QY = 93%) as standard. The hydrodynamic diameter of the water-dispersible InZnP and InZnP QDs was measured by dynamic light scattering (Malvern Zeta Sizer NanoZS).
ORIUS SCI1000 CCD camera (Gatan). For EDS analysis, samples were carbon-coated, then imaged by STEM (HAADF) detector, on a FEI/ Tecnai OSIRIS microscope operating at 200 kV. The chemical composition of regions of interest was then analyzed by EDS using the same microscope and configuration.

2.6. Weathering in the QSUN climatic chamber

Samples were exposed to UV lamps in a Q-SUN Xe-1 xenon arc test chamber (Q-LAB), providing full sunlight spectrum. Weathering conditions were adapted from the ISO norms 4892-1 (2000) and 4892-2 (2013), developed for studying the ageing of plastics. The irradiation and temperature were fixed at 1.44 W/m² (measured at 420 nm) and 40 °C, respectively, with no humidity control. QD suspensions were diluted in PBS at the final concentration of 1 μM (in 1 mL), deposited in rectangular standard quartz cuvettes (48 mm × 12.5 mm × 12.5 mm, pathlength 10 mm) closed with polytetrafluoroethylene (PTFE) stopper, then irradiated for 64 h under agitation.

2.7. Cell culture and exposure

Human skin samples were obtained following breast surgery from healthy female donors with their informed consent (Centre Hospitalier Universitaire de Grenoble, Grenoble, France). All experiments were performed in accordance with relevant guidelines and regulations. In particular, work was performed in agreement with article L1245-2 of the French Public Health Code on the use of surgical wastes for research purposes (https://www.legifrance.gouv.fr). All donors were Caucasian (20–40 years old), and their skin phenotype was between I and II according to the Fitzpatrick classification scale (Fitzpatrick, 1988). Keratinocytes were isolated from these whole skin samples, as previously described (Mouret et al., 2006). They were grown in keratinocyte serum-free medium (KSF-M) supplemented with 1.5 ng/mL epidermal growth factor (EGF), 25 μg/mL bovine pituitary extract, 75 μg/mL prilinom and then cultured at 37 °C in a humidified atmosphere containing 5% CO₂. For all experiments, cells were used at passages 1 according to the Fitzpatrick classification scale (Fitzpatrick, 2013), developed for studying the ageing of plastics. The irradiance of the BrdU solution, diluted to the tenth in cell culture medium, was 1.44 W/m² (measured at 420 nm) and fixed at 1.44 W/m² (measured at 420 nm) and 40 °C, respectively, with no humidity control. QD suspensions were diluted in PBS at the final concentration of 1 μM (in 1 mL), deposited in rectangular standard quartz cuvettes (48 mm × 12.5 mm × 12.5 mm, pathlength 10 mm) closed with polytetrafluoroethylene (PTFE) stopper, then irradiated for 64 h under agitation.

2.9. Toxicity assessment

Cytotoxicity and cell proliferation were assessed on the same 96-well plate seeded with keratinocytes, exposed to QDs for 24 h. Exposure medium was sampled for lactate dehydrogenase (LDH) quantification, and bromodeoxyuridine (BrdU) assay was performed on cells. In these assays, triton X100 (1%) was used as positive control. Released LDH was quantified using LDH assay (Sigma-Aldrich), following the manufacturer’s instructions. Briefly, 50 μL of each exposure medium was deposited on a clean 96-well plate, then 100 μL of LDH assay solution (LDH assay substrate/cofactor/dye, V-V:V) was added to each well, and incubated for 30 min at room temperature, in the dark. Assay reaction was stopped by adding 10 μL of hydrochloric acid (HCl) 1 N to each well, then absorbance at 490 nm was measured using a Spectrmax M2 spectrofluorimeter (Molecular Device) and corrected by subtraction of absorbance at 690 nm. Cell proliferation was quantified using 5-Bromo-2’-deoxy-uridine (BrdU) assay (Roche), using manufacturer’s instructions. After exposure to QDs and removal of exposure medium, 100 μL of the BrdU solution, diluted to the tenth in cell culture medium, was added in each well and incubated for 2 h at 37 °C. This labeling medium was then removed, and cells were rinsed and incubated with Fix/denat solution for 30 min, then with an anti-BrdU-peroxidase antibody diluted to the hundredth in antibody dilution solution. After incubation for 45 min at room temperature, cells were rinsed three times with PBS, 100 μL of substrate solution was added to each well and incubated for 30 min at room temperature, in the dark. Absorbance at 370 nm was then measured using a Spectrmax M2 spectrofluorimeter (Molecular Device) and corrected by subtraction of absorbance at 492 nm. The whole experiment was repeated three to five times independently, on keratinocytes from different donors, with n = 3 in each independent experiment. Independently of these two experiments, cytotoxicity was evaluated by measuring cell metabolic activity, using WST-1 assay (Roche). Cells were exposed for 24 h to 100 μL of QDs, then QDs were removed and 100 μL of WST-1 as added to each well. After 45 min of incubation at 37 °C, absorbance at 450 nm was measured using a Spectrmax M2 spectrofluorimeter (Molecular Device) and corrected by subtraction of absorbance at 650 nm.

Reactive oxygen species were quantified using H2DCF-DA and dihydrodorohamine 123 (DHR123) reagents (Thermo-Fisher Scientific).
Cell culture medium was removed and 100 μL of a 25 μM H2-DCF-DA or of a 1 μM DHR123 solution was added to each well. After 40 min of incubation at 37 °C in the CO2 incubator, the H2-DCF-DA (or DHR123) solution was replaced by QD suspensions. Fluorescence (λ_{exc}/λ_{em} 480/530 nm) was recorded immediately after exposing cells to QDs, then after 2 h, 4 h and 24 h of exposure. Tert-butyl-hydroperoxide (100 μM) was used as positive control for H2-DCF-DA assay, and H2O2 (500 μM) or KBrO3 (1 mM) were used as positive control for DHR123 assay. The whole H2-DCF-DA experiment was repeated twice independently, on keratinocytes from different donors, with n = 3 in each independent experiment. For DHR123, the experiment was repeated twice on keratinocytes from the same donor, with n = 3.

Oxidative damage to DNA was assessed using comet and comet-Fpg assays, which probe strand breaks and alkali-labile sites, and Fpg-sensitive sites including oxidized purines such as 8-oxo-dGuo, respectively, as previously described (Armand et al., 2016). As positive control for alkaline comet assay, cells were exposed to 100 μM of methane methyl sulfonate (MMS) for 24 h. As positive control for Fpg-modified comet assays cells were exposed to 1 μM of riboflavin for 20 min, followed by irradiation with UVA (10 J/cm²). Comets were scored using image analysis Comet IV software (Perceptive Instruments, Suffolk, UK), and median % DNA in tail was calculated for at least 50 comets per slide. Net Fpg sensitive sites (Net Fpg) were calculated as the difference in % DNA in tail between samples with Fpg incubation and samples with buffer incubation (%DNA in tail from alkaline assay) – (%DNA in tail from Fpg-modified assay). The whole experiment was repeated three to five times independently, on keratinocytes from different donors (n = 3–5).

3. Results

3.1. Synthesis and characterization of the Cd-free quantum dots

In the present study, the long-term stability and toxicity of two types of alloyed InP-based QDs were investigated. Thereby, InP QDs with a core composition of InZnP and InZnPS, passivated by the popular gradient shell composed of Zn(Se,S), was the center of the investigation (Lim et al., 2011). Similarly to CdSe and CdTe QDs (Bottrill and Green, 2011), capping InP cores with a shell of zinc sulfide (ZnS) improves their photophysical properties and reduces their degradation (Lim et al., 2011). Using similar one-pot synthesis method, it was previously shown that addition of sulfur during the core reaction results in InP QDs coated with a thin layer of ZnS. The presence of this layer of ZnS further enhances the photophysical properties and potentially facilitates the phase transfer (Li and Reiss, 2008). But the consequences of this thin ZnS layer on the growth of the gradient shell and for the structural and photophysical properties -and eventually for the cytotoxic potential- of the QDs is currently unknown. Therefore, core only and core/shell systems were prepared and studied.

The photophysical characterization of the two types of InP QD cores (InZnP and InZnPS) are shown in Fig. 1A. The presence of the sulfur precursor during the core synthesis is leading to blue shift of the absorbance and photoluminescence (PL) maximum as well as a linewidth narrowing from 79 nm to 61 nm for the PL of the InZnP and InZnPS

![Fig. 1. Photophysical properties of InZnP and InZnPS QDs. Absorbance and normalized PL spectra of InZnP and InZnPS core QDs (A). Comparison of the normalized absorbance and PL spectra of InZnP core and InZnPS QDs with a gradient shell of Zn(Se,S) (B). Comparison of the normalized absorbance and PL spectra of the InZnPS core (C) and InZnPS core/shell QDs (D) before the aqueous phase transfer (organic solution, black) and after using the ligands l-glutathione (GSH, red) and d-Penicillamine (Pen, blue).]
core, respectively (Table S1). However, the InZnP core shows, with 15%, a nearly twice as high QY in comparison to the core prepared in presence of the sulfur precursor. After the epitaxial growth of the gradient Zn(Se,S) shell on the InZnPS core, the absorbance of the 1st excitonic peak shows a redshift of 12 nm whereas the PL maximum did not change (see Fig. 1B and Table S2). The shell growth has a stronger influence on the photophysical properties for the InZnP core as the 1st excitonic peak shows a redshift of 40 nm and the PL maximum is shifted by 17 nm (Fig. S2 and Table S3). These photophysical differences between both cores indicates that the Zn(Se,S) shell thickness is lower in the case of InZnPS (Tamang et al., 2016).

To use either the core or the core/shell QDs for the envisaged toxicological evaluations, they needed to be made water-dispersible. Strong differences between those two core materials could be observed during the phase transfer from the organic solution to aqueous solution using either D-penicillamine (Pen) or L-glutathione (GSH) as hydrophilic surface ligands. Whereas the InZnPS core material can be transferred using both ligands, InZnP core could not be transferred using Pen, because the core disintegrated during the process. As shown in Fig. 1C, the phase transfer led to a slight blue shift of the InZnPS core for the absorbance and PL maxima, which could in principle indicate a slight size reduction due to the removal of surface atoms. Interestingly, using GSH for the phase transfer of InZnP cores led to a PL redshift of around 42 nm with no change in the 1st excitonic maxima (Fig. S3 and Table S4). Spectral shifts are also observed for the core/shell systems as a function of their composition and phase transfer ligand used (see below). We attribute these shifts to contributions from the quantum confined Stark effect and solvatochromatic effects experienced by the QDs when changing their dielectric surrounding composed of the surface ligands and the solvent (Thuy et al., 2007). For both core materials, the PL QY dropped dramatically below 1% after the transfer. After the shell growth both core types could be transferred to aqueous solution either using Pen or GSH. The InZnPS core with the gradient Zn(Se,S) shell showed only small changes in the absorbance and PL maxima when transferred using GSH or Pen (Fig. 1D and Table S5) whereas the InZnP-based core/shell QDs exhibited a 22 nm blue shift of the excitonic peak when using Pen, a 6 nm shift with GSH (see Fig. S4 and Table S6).

The samples were further analyzed regarding their structural properties. After the phase transfer using different surface ligands, we investigated the influence on their hydrodynamic radius. As shown in Fig. S5 and in Table S7 and S8, a marked size difference of around 2 nm is observed between the alloyed InZnP core and core/shell QDs corresponding to a gradient shell thickness of approximately 3 monolayers. The size difference between the core and core/shell QDs is smaller in the case of InZnPS (around 0.7 nm), in accordance with a shell thickness of one monolayer.

3.2. Toxicity of alloyed InP QDs

Due to their photophysical properties, InP QDs would possibly interfere with classically-used toxicity assays. Therefore, optical interference was assessed by measuring absorbance emission at the wavelengths that are typically used in toxicity assays (Fig. S6). The lowest interference was found at the wavelength used in LDH assay. Chemical interference of QDs with the chemical reactions taking place in LDH assay was then assessed; it was shown to be minor (Table S9). Therefore, LDH assay was chosen for cytotoxicity assessment. Following our initial hypotheses, we compared the toxicity of core-only vs. core-shell QDs, with a core composed of InZnPS vs. a core composed of InZnP.

Fig. 2. Cytotoxicity of InZnP and InZnPS QDs, assessed via the lactate dehydrogenase assay. Cells were exposed to pristine QDs (A-B) or QDs exposed to simulated sunlight (aged, C-D), with a core of InZnP (A, C) or InZnPS (B, D). C: core only, CS: core-shell structure; Pen, GSH: penicillamine or glutathione, respectively, was used as surface ligand. Triton X-100 (1%) was used as positive control. Results are expressed as % relative to the control (unexposed cells). Graphs represent mean ± standard deviation of 3 to 6 independent experiments, performed on keratinocytes from different donors, with 3 replicates per experiment, statistical significance: $p < 0.05$, *: exposed vs. control, $\$: InZnP vs. InZnPS.
InZnP, and coated with Pen vs. coated with GSH (Fig. 2A-B). Among the core-only QDs, since InZnP QD could not be transferred to aqueous phase in Pen, we compared the toxicity of InZnP with GSH as surface ligand to that of InZnPS with either Pen or GSH as surface ligand. Only the core-only QD with a core composed of InZnP and with Pen as surface ligand significantly altered cell viability. None of the other core-only QDs, and none of the tested core-shell QDs showed significant cytotoxicity in their pristine state. WST-1 assay, which measures cell metabolic activity and is also classically used to assess cytotoxicity confirmed these results (Fig. 3). For comparison, exposure to 100 nM or 200 nM of pristine CdSe/ZnS QDs caused the mortality of 27% and 41% of the cells, respectively (Fig. S7).

Then, toxicity of these QDs was assessed after ageing for 64 h in a climatic chamber. After exposure to simulated sunlight, all core-shell QDs showed significant cytotoxicity (Fig. 2C-D). Comparing the core-shell QDs with respect to their core composition, cells exposed to aged InZnPS-based QDs showed a lower mortality rate than cells exposed to QDs with InZnP core. No significant differences was observed between QDs coated with either Pen or GSH (Fig. 2C-D). The toxicity of aged CdSe QDs was similar, with 36 to 66% of mortality in cells exposed to 12.5 to 200 nM of aged CdSe QDs (Fig. S7).

Although they did not induce any cytotoxicity, all pristine QDs significantly decreased cell proliferation, with no significant difference between pristine QDs with a core of InZnP or InZnPS, or with Pen or GSH as surface ligand (Fig. 4A-B). Decreased cell proliferation results from cell cycle arrest. Since one of the causes of cell cycle arrest is DNA alteration, the impact of pristine QDs on DNA integrity was evaluated. The occurrence of DNA strand breaks, alkali-labile sites and Fpg-sensitive sites such as 8-oxo-dGuo was explored using the Comet assay, in its alkaline and Fpg-modified versions. The investigation using core-only and core-shell InZnPS QDs coated with Pen revealed no DNA strand-breaks and/or alkali-labile sites (Fig. 4C). Neither did they increase the level of oxidized purines (Fig. 4D) and the intracellular level of reactive oxygen species, as assessed via 2',7'-dichlorodihydrofluorescein diacetate (H2-DCF-DA) (Fig. 4E-F for times 0 to 24 h and Fig. S8 for times 0 to 4 h of exposure) and via dihydrorhodamine 123 (DHR123) (Fig. S9) assays. Interference of QDs with these two assays was assessed, it was significant for some QDs in DHR123 assay, but only minor interference was found with H2-DCF-DA (Table S10).

3.3. Physicochemical transformation of In-based QDs after accelerated weathering in a climatic chamber

Since QDs exposed to simulated sunlight were much more toxic than pristine QDs, their physical and chemical transformation upon irradiation was characterized. Visual observation showed a gradual precipitation of the QD suspension, which was still fluorescent, followed by a progressive loss of the fluorescence leading finally to a red-purple transformation product. When imaged by TEM, pristine QDs appeared as nanoparticles with 3-5 nm diameter (Fig. 5A), while aged QDs appeared as large precipitates with heterogeneous structure (Fig. 5B-C). Some areas in these precipitates were composed of In, P, Zn, O and S, while Se and S precipitated separately, as probed by EDS analysis (Fig. 5D-I).

Irradiation with simulated sunlight resulted in a marked change in In speciation, as assessed by EXAFS at the In K-edge. In pristine QDs, In was mainly bound to P atoms, with a main peak of the Fourier transformed spectra at R + ΔR = 2 Å (Fig. 6A-B). The local structure differed slightly from the structure of bulk indium phosphide, in which In is bound to 4 atoms of P at 2.54 Å (Wyckoff, 1963). A minor contribution of O and S was found for the InZnP and InZnPS core-shell QDs, respectively (Table 1). The presence of S in the In coordination shell is consistent with previous observations on InZnPS QDs, and is due to the presence of a mixed layer at the core-shell boundary (Cho et al., 2016). The presence of O may arise from the persistence of a minor amount of In precursor after purification in this particular sample. When analyzing aged QDs, whatever their initial composition, the first peak of the Fourier-transformed spectra was at R + ΔR = 1.65 Å. This is consistent with coordination of In with O-containing ligands (Fig. 6C-D). Regarding Zn, a drastic change in speciation was also observed. For pristine QDs, the main peak of the Fourier transformed spectrum was at R + ΔR = 1.95 Å (Fig. 7), suggesting that Zn was bound to S and possibly Se and P atoms. For aged QDs, the position of the main peak was characteristic of O ligands, and spectra were reproduced by 100% Zn phosphate compounds (the proportions of each species are given in the legend of Fig. 7). The In and Zn EXAFS data suggest complete dissolution of QDs during aging, the binding of In to COOH and phosphate moieties, and of Zn to phosphate moieties. Pen and CO2 from air were the only conveyer of –COOH moieties, while phosphate was present in the buffer (PBS) in which QDs were initially dispersed.

3.4. Intracellular distribution

Intracellular accumulation of pristine QDs could not be identified via TEM, because these QDs were too small to be distinguished from cytoplasmic components. Therefore, cells exposed to pristine QDs looked like control cells, with a typical morphology of human primary keratinocytes (Fig. 8A). Conversely, electron-dense precipitates were...
observed in the cytoplasm of cells exposed to aged QDs, sometimes as large as 5 μm (Fig. 8B, stars). No clear confinement in cytoplasmic vesicles surrounded by a membrane could be identified. These precipitates were not observed in the cell nucleus nor in mitochondria or any other organelles, but they were often observed close to the nuclear membrane. STEM observation (Fig. 8C), coupled to EDS analysis (Fig. 8D-E) of one of these electron-dense regions revealed that it contained In, P, Zn, Se and S, and that In co-precipitated with P, Zn and O while Se and S co-precipitated independently.

In cells exposed to pristine QDs, In speciation did not change further, except in cells exposed to the core-only InZnP QD coated with GSH. Under this condition, a partial dissolution was observed with the formation of In-COOH and In-phosphate species (Fig. 6C-D, Table 2). In cells exposed to aged QDs, In speciation was unchanged, considering an uncertainty of ± 10% on the percentages.

4. Discussion

We explored the potential of alloyed InP QDs as safer alternatives to Cd-based QDs, using a safer-by-design strategy which combined: i) replacement of Cd by In, ii) covering of InP core with a gradient shell composed of Zn(Se,S), iii) alloying of the InP core with either Zn or Zn and S, in order to improve their optical properties and their chemical stability. The main result of this work is that the cytotoxicity of pristine
QDs used in this study, regardless of their composition and structure, is lower than the cytotoxicity of CdSe/ZnS QDs. It is also lower than the cytotoxicity reported by others for InP/ZnS QDs, in vivo and in vitro (Lin et al., 2015; Yaghini et al., 2018; Yaghini et al., 2016; Chibli et al., 2011; Soenen et al., 2014; Brunetti et al., 2013). Conversely all aged QDs show some cytotoxicity. It is important to note that, in their pristine form, both core-only and core-shell QDs are very stable in exposure medium when coated with Pen or GSH. They show no significant agglomeration, whereas aged QDs agglomerate and would consequently immediately settle and interact with cell monolayers for longer periods of time. This would drastically change the effective exposure concentration, which is certainly much higher for cells exposed to aged QDs than for pristine QDs. Consequently, toxicity of pristine vs. aged QDs cannot be directly compared and are discussed separately.

Among pristine QDs, only InZnPS-C-Pen shows cytotoxicity. Conversely, InZnPS-C-GSH (i.e., the QD with the same core composition but different surface coating) and InZnPS-CS-Pen (its core-shell counterpart) are not cytotoxic. This suggests that the presence of a shell reduces the toxicity of this QD, and that surface functionalization does not appreciably influence the cytotoxicity. Noteworthy, ligand exchange of core-only InZnP QDs using Pen is not possible, because these QDs readily degrade during this process. Conversely, core-only InZnPS QDs, in which alloying the core with S results in the formation of a thin, protective layer of ZnS on top of the core (Li and Reiss, 2008), can be transferred with Pen without degrading, i.e. are more chemically stable. Both core-only InZnP and InZnPS can be transferred using GSH, which result in stable and non-cytotoxic suspensions. This suggests that using GSH for ligand exchange leads to a better stabilization of the QD core than Pen, at least in the case of core-only QDs. This behavior can be explained by the chemical nature of GSH, which is, compared to Pen, a more complex molecule containing one amino and two carboxy-groups. The bigger size and different structure with a potential better binding towards the QD surface will support QD integrity during the ligand exchange and afterwards. Regarding core-shell QDs, they can be transferred using both Pen and GSH, and are all stable and non-cytotoxic. Therefore, coating InZnP and InZnPS core with a layer of Zn(Se,S) prevents their degradation, similar to coating CdSe and InP QDs with a shell of ZnS, which protects them from degradation (Chibli et al., 2011; Lim et al., 2011).

Conversely, ageing leads to a drastic chemical transformation of these QDs, including loss of the structure of QD core and Zn(Se,S) gradient shell. This leads to the precipitation of In(III) and Zn(II) with phosphate and carboxylate moieties which are provided, respectively, by the PBS buffer and by Pen and dissolution of CO2 from air in the aged QD suspension. Although the speciation of Se has not been studied here, EDS analysis shows that Se and S co-precipitate, and the red-purple color of QD precipitate which is observed after 64 h of ageing certainly originates from this co-precipitation. Oxidative degradation of CdSe/ZnS core/shell QDs has been largely documented. It relies on chemical oxidation of Se and S from the surface of QDs, which first produces lattice structural defects, then leads to the release of soluble and toxic Cd, Se, Zn and S ions (Mancini et al., 2008). Our hypothesis is that the degradation of InP QDs follows the same stages. The gradual degradation of the InZnP and InZnPS structures based on the oxidation of core and shell elements can be monitored by the fluorescence quenching and the subsequent release of In(III) and Zn(II) ions, complexing quickly with available oxygen-rich ligands, i.e. phosphates and carboxylates.

All aged QDs significantly affect cell viability. The degradation products of these QDs (such as In-phosphate and/or –carboxylate, Zn-phosphate and selenium sulfur co-precipitates for core-shell QDs) accumulate in cells and may explain their toxicity. The toxicity of indium, either as In ions or as In-containing particles, has been rarely reported. It has been shown to depend on the cell type (Huaux et al., 2018). Moreover, several studies suggest that it may depend on In speciation, particularly on the potential of In-containing particles to dissolve and
release In ions. For instance, InCl₃ is not cytotoxic, but it has been shown to be genotoxic via the generation of ROS (Lin et al., 2013). Indium-tin-oxide NPs (ITO), consisting of 90% In₂O₃ and 10% SnO, are cytotoxic and genotoxic at high concentration, and these effects are correlated with oxidative stress and release of In ions from particles (Bomhard, 2016). Accordingly, InP was shown to be significantly more toxic than ITO, due to the higher solubilization and release of In ions from InP, compared to ITO (Bomhard, 2016; Gwinn et al., 2015). The cellular impacts of zinc are well documented. Zn is an essential trace element, which is crucial for the structure and function of many proteins, and thereby is necessary for a plethora of cellular functions (Jarosz et al., 2017; Sharif et al., 2012). It has been shown to alleviate the cellular toxicity of a number of toxicants, including non-essential metals, mainly because it activates the expression of metallothioneins and acts as an antioxidant (Rahman et al., 2019). Its antioxidant potency relies primarily on activation of some antioxidant proteins such as superoxide dismutase and catalase, on replacement of oxidant metals such as iron and copper in some metal-binding sites in cells and on antagonizing transition-metal catalyzed reactions (Jarosz et al., 2017). Nevertheless, at higher doses Zn provided as Zn(II) ion or as Zn-containing NPs such as ZnO-NPs, is cytotoxic (Beyersmann and Haase, 2001; Vandebriel and De Jong, 2012). In skin cells, ZnO-NPs cause mitochondrial dysfunction and ROS production, p53 pathway activation, cell cycle perturbation and eventually apoptosis (Vandebriel and De Jong, 2012). Therefore, the release of In(III) and Zn(II) during the degradation of QDs may explain the cytotoxicity of aged QDs. It may also explain why pristine QDs, which are chemically more stable, show essentially no cytotoxicity. However, the behavior of two pristine QDs does not conform to this hypothesis. InZnP core QD coated with Pen shows significant cytotoxicity, while EXAFS analysis shows no major change in In speciation, i.e. no major degradation of this QD. One hypothesis could be that low-grade degradation occurs, via interaction of QDs or their surface ligand with intracellular components, which would

Table 1
First shell structural parameters for the pristine QDs obtained by shell fittings of the EXAFS spectra, at the In K-edge.

<table>
<thead>
<tr>
<th>Atom</th>
<th>R (Å)</th>
<th>N</th>
<th>σ²(Å²)</th>
<th>R factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>InZnP-CS-Pen O</td>
<td>2.15</td>
<td>0.6</td>
<td>0.0022</td>
<td>0.016</td>
</tr>
<tr>
<td>P</td>
<td>2.49</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>InZnPS-CS-Pen P</td>
<td>2.47</td>
<td>3.1</td>
<td>0.0010</td>
<td>0.011</td>
</tr>
<tr>
<td>S</td>
<td>2.74</td>
<td>0.9</td>
<td>0.0010</td>
<td></td>
</tr>
</tbody>
</table>

* N: number of atoms, R: interatomic distance, σ²: Debye-Waller factor, R factor: residual between fit and experiment. Fits performed in the k range [2.3–13.5 Å⁻¹], and R range [0.8–2.7 Å].

Fig. 6. EXAFS analysis of QDs and keratinocytes exposed to QDs, at the In K-edge. Analysis by shell fitting of pristine QDs with InZnP and InZnPS core and Zn(Se,S) shell, coated with Pen (structural parameters are presented in Table 1), and comparison of the spectra with two reference compounds having O as first neighboring atom (A-B). Analysis by linear combination fitting of aged QDs and keratinocytes exposed to pristine and aged QDs (LCF results are presented in Table 2) (C-D). Data are presented as k²-weighted EXAFS spectra (A, C) and Fourier transforms (B, D).
lead to the release of a small amount of toxic ions from QDs, as already suggested by Soenen et al. (Soenen et al., 2014). This small amount would be sufficient to cause cell death but would not be detected by EXAFS (the limit of detection of a specific chemical species using this technique is 10%). Low-grade degradation, not-observed via EXAFS, would also explain the cell cycle disturbance, leading to decreased proliferation of cells exposed to pristine QDs. Moreover, InZnP core-only QD coated with GSH are not stable, i.e. EXAFS analysis shows that it degrades inside cells, while it is not cytotoxic. This could suggest that In(III) and Zn(II) are scavenged by GSH, due to the high affinity for metals of its thiol group.

Finally, although InP/ZnS QDs have been shown to generate ROS ex cellulo (Chibli et al., 2011) and their toxicity has been related to oxidative stress (Soenen et al., 2014), InZnPQDs, both core-only and core-shell and coated with Pen do not induce any oxidative stress. This divergence could be explained by the different QDs used in those experiments.

Fig. 7. EXAFS analysis of QDs at the Zn K-edge. EXAFS spectra (A) and Fourier transforms (B) for Zn reference compounds, pristine and aged QDs. Peak positions characteristic of O and S neighboring atoms are indicated by grey lines in B. Spectra for aged InZnP and InZnPQDs were both reproduced by a combination of 50% Zn phosphate dihydrate and 50% Zn-hydroxyapatite (dashed lines in A and B, with R-factors, residual between fit and experiment of 0.07 and 0.04, respectively).

Fig. 8. TEM observation of keratinocytes exposed to InZnPQDs. Control cells (A) and cells exposed to aged InZnPQDs Pen (B, *: In-rich agglomerates). A region containing In-rich agglomerates was imaged using STEM, in HAADF mode (C), and analyzed via EDS. Reconstruction of In (red) and Se (green) chemical element distribution in the square highlighted in C (D). EDS spectra of the areas 1, 2 and 3 depicted in D (E).
Acknowledgements

The authors thank ESRF and CRG committees for the provision of beamtime on FAME beamline (BM30B), and R, Soulas for imaging on TEM OSIRIS, supported and managed by Agence National de la Recherche (ANR), program ’Investissements d’Avenir’, reference ANR-10-EQPX-39.

Funding

This work is a contribution to the Labex Serenade (ANR-11-LABX-0064) funded by the French Government’s ”Investissements d’Avenir” ANR program, through the A*MIDEX project (ANR-11-IDEX-0001-02). It was supported by the French National Research agency ANR (grant NEUTRINOS, ANR-16-C009-0015-03), CNRS and Communauté Université Grenoble Alpes (ComUE, PEPS project SABYDE), and the French Environment and Energy Management Agency (ADEME). This work used the platforms of the Grenoble Instruct-ERIC Center (ISBG: UMS 3518 CNRS-CEA-UGA-EMBL) with support from FRISBI (ANR-10-INSB-05-02) and GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB). The electron microscope facility is supported by the Auvergne Rhône-Alpes Region, the Fondation Recherche Medicales (FRM), the fonds FEDER and the GIS-Infrastructures en Biologie Sante et Agronomie (IBISA).

Declaration of competing interest

The authors declare no conflict of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.impact.2019.100168.

References

Acknowledgements

The authors thank ESRF and CRG committees for the provision of beamtime on FAME beamline (BM30B), and R, Soulas for imaging on TEM OSIRIS, supported and managed by Agence National de la Recherche (ANR), program ’Investissements d’Avenir’, reference ANR-10-EQPX-39.

Funding

This work is a contribution to the Labex Serenade (ANR-11-LABX-0064) funded by the French Government’s ”Investissements d’Avenir” ANR program, through the A*MIDEX project (ANR-11-IDEX-0001-02). It was supported by the French National Research agency ANR (grant NEUTRINOS, ANR-16-C009-0015-03), CNRS and Communauté Université Grenoble Alpes (ComUE, PEPS project SABYDE), and the French Environment and Energy Management Agency (ADEME). This work used the platforms of the Grenoble Instruct-ERIC Center (ISBG: UMS 3518 CNRS-CEA-UGA-EMBL) with support from FRISBI (ANR-10-INSB-05-02) and GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB). The electron microscope facility is supported by the Auvergne Rhône-Alpes Region, the Fondation Recherche Medicales (FRM), the fonds FEDER and the GIS-Infrastructures en Biologie Sante et Agronomie (IBISA).

Declaration of competing interest

The authors declare no conflict of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.impact.2019.100168.

References

Bharali, D.J., Lucey, D.W., Jayakumar, H., Pudavar, H.E., Prasad, P.N., 2005. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-