Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants

Kathrin Reinmuth-Selzle,* Kathrin Reinmuth-Selzle†, Christopher J. Kampf,* Kathrin Reinmuth-Selzle‡, Kurt Lucas,† Naama Lang-Yona,† Janine Fröhlich-Nowosky,† Manabu Shiraiwa §, Pascale S. J. Lakey,† Senchao Lai,† Fobang Liu,† Anna T. Kunert,† Kira Ziegler,† Fangxia Shen,† Rossella Sgarbanti,† Bettina Weber,† Iris Bellinghausen,† Joachim Saloga,⊥ Michael G. Weller,§ Albert Duschl,¶ Detlef Schuppan,■ and Ulrich Pöschl*†

*Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, 55128, Germany
†Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University, Mainz, 55128, Germany
§Department of Chemistry, University of California, Irvine, California 92697-2025, United States
¶Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
■Institute of Translational Immunology and Research Center for Immunotherapy, Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University, Mainz, 55131 Germany
⊥Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
△Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States

Supporting Information

ABSTRACT: Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunoochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.

1. INTRODUCTION AND MOTIVATION

Allergies are hypersensitivities initiated by specific immunologic mechanisms (abnormal adaptive immune responses).1−3 They constitute a major health issue in most modern societies, and related diseases, such as allergic rhinitis, atopic asthma, eczema (atopic dermatitis), and food allergies, have strongly increased during the past decades.4−12 While some of the perceived rise in allergies may be due to improved diagnosis, the prevalence of allergic diseases has genuinely increased with industrialization.
and with the adoption of a “Western” lifestyle. The development of allergies is a complex multifactorial process that involves various factors influencing the body’s predisposition and immune response, and the manifestation of allergic diseases depends on exposure to allergens, adjuvants and other environmental and lifestyle factors (Figure S1 and section S1). Among the risk factors for allergic diseases are the genetic predisposition of the individual (referred to as atopy), reduced childhood exposure to pathogens and parasites (“hygiene hypothesis”), diet/nutrition, psychological/social stress, and environmental pollution, including outdoor and indoor air pollutants (ozone, nitrogen oxides, diesel exhaust particles, tobacco smoke, etc.). As outlined in Figure 1, climate change and air pollution can influence the bioavailability and potency of allergens and adjuvants in multiple ways, including changes in vegetation cover, pollination and sporulation periods, and chemical modifications. Moreover, climatic conditions and air pollutants may skew physiological processes and the immune system toward the development of allergies, for example, by oxidative stress and inflammation, disruption of protective epithelial barriers, and disturbance of related microbial communities (microbiomes).

The term Anthropocene describes the present era of globally pervasive and steeply increasing anthropogenic/human influence on planet Earth, including the land surface, biosphere and atmosphere. Human activities have become a driving force that changes many characteristics of our environment such as biodiversity and air quality on local, regional, and global scales, for example, through land use change, agriculture, fossil fuel burning, traffic emissions, and the release of industrial products. While the basic concept of the Anthropocene, as introduced by Nobel laureate Paul J. Crutzen and colleagues, is widely accepted and increasingly used across the sciences and humanities, the actual beginning of the Anthropocene as a new geological epoch is still under investigation and discussion. The proposed dates range from early human history via the 19th century (industrialization) to the 1960s (nuclear weapon testing and “Great Acceleration”). Since the industrialization of the 19th century and especially during the “Great Acceleration” of the 20th century, the primary emission, secondary formation, and concentration of air pollutants like ozone, nitrogen, and sulfur oxides, soot, and a wide range of other reactive trace gases and aerosols have greatly increased relative to preindustrial times, especially in densely populated and industrialized areas but also in agricultural environments and around the globe. For example, the average mixing ratios of ozone in continental background air have increased by factors of 2–4 from around 10–20 ppb from the beginning of the 19th century to 30–40 ppb in the 21st century, and the number and mass concentrations of aerosol particles in polluted urban air are typically by 1–2 orders of magnitude higher than in pristine air of remote continental regions (∼10⁻²⁻¹⁰⁻⁵ cm⁻³ and ∼1–10 µg m⁻³ vs ∼10⁻³⁻¹⁰⁻⁵ cm⁻³ and ∼10⁻¹⁻¹⁰⁻² µg m⁻³). Numerous studies indicate that ozone and air particulate matter have strong effects on human health and mortality as well as on agricultural crop yields. In view of these findings, it appears unlikely that the strong environmental changes of the Anthropocene would have no effect on the interaction of the human immune system with environmental stimuli, including allergens and adjuvants. Indeed, it seems necessary to address the question whether human activities are creating a hazardous atmosphere that may severely affect public health.

Figure 1 illustrates how climate parameters and air pollutants can exert proinflammatory and immunomodulatory effects. As detailed in the following sections, both air pollutants and climate parameters can influence the environmental abundance of allergenic bioparticles and the release of allergenic proteins and biogenic adjuvants. Moreover, air pollutants can chemically modify and agglomerate allergenic proteins, and they can act as adjuvants inducing epithelial damage and inflammation.

Several reviews have addressed the general determinants of allergenicity and various environmental risk factors for allergic diseases. In this Critical Review, we attempt to summarize, update, and synthesize the different perspectives and most relevant findings reported in earlier reviews and recent research articles addressing the effects of air pollutants and climate parameters on allergies. A central aim of this article is to review and outline both proven and potential effects of the globally pervasive environmental changes that are characteristic for the Anthropocene; a holistic view of environmentally caused changes in the abundance, interaction, and modification of allergens and related substances is provided. Our target audience comprises physical, chemical, and biomedical scientists interested in environmental effects on public health. Sections 2–4 deal with specific environmental processes and air pollutants that are likely to affect the development of allergies in the Anthropocene, that is, in an environment strongly influenced by human activity. Section 5 provides an outlook identifying key questions and promising directions of future research. For orientation of readers not familiar with the basics of allergic sensitization and response, section S1 outlines key features of the immunochimical interactions involved in IgE-mediated allergies (type I hypersensitivities) on which this article is mainly focused and which usually involve Th2 cell-mediated inflammation (Figure S2).

2. ABUNDANCE AND RELEASE OF ALLERGENS AND ADJUVANTS

Environmental allergens are mostly proteins derived from plants, animals, and fungi that can trigger chemical and biological reaction cascades in the immune system leading to allergic sensitization and formation of IgE antibodies (section S1). Prominent examples are major allergens of
Birch pollen (Bet v 1), timothy grass pollen (Phl p 1), ragweed (Ambrosia, Amb a 1), molds (Alternaria alternata, Alt a 1, Cladosporium herbarum, Cla h 1, Aspergillus fumigatus, Asp f 1), and dust mites (Der p 1). Besides allergens, also adjuvants and their interaction with the immune system play a critical role in the development of allergies. Here, we use the term adjuvant generically for substances that are promoting pro-allergic immune responses. Adjuvants can trigger the immune system by inducing tissue damage and subsequent enhanced uptake of allergens, by inducing oxidative stress and activation of immune cells, by coexposure with the allergen favoring Th2 responses, or by modification of allergens enhancing their allergic potential. An overview of biogenic and anthropogenic adjuvants, including particulate matter as well as trace gases, and their effects on the immune system is given in Table 1.

Climate change is influencing vegetation patterns and plant physiology through spatial and temporal changes in temperature and humidity (Figure 1). Increasing atmospheric carbon dioxide (CO₂) affects plant biology by supplying more carbon for photosynthesis, biomass production, and growth (CO₂ fertilization). These factors can influence the spread of invasive plants, the beginning, duration, and intensity of pollination, the fruiting patterns and sporulation of fungi, as well as the allergen content and allergenicity of pollen grains, fungal spores, and other biological aerosol particles (Figure 2). Specific examples of climate change effects on allergenic plants and fungi are outlined in Table 2. Climate and land use change are also expected to influence the composition and spread of microbial surface communities (cryptogamic covers), from which allergenic cyanobacteria and other microbial allergens or adjuvants can be emitted to the atmosphere. Moreover, the frequency and intensity of dust storms are expected to increase, and dust particles are known to carry biological and organic components with pathogenic, allergenic, and adjuvant activity. So-called “thunderstorm asthma” is characterized by acute asthma exacerbations possibly caused by the dispersion of inhalable allergenic particles derived from plant pollen and fungal spores by osmotic rupture. On the other hand, climate change-related regional enhancements of outdoor humidity and indoor home dampness may also lead to an increase of respiratory symptoms and atopic asthma induced by allergenic and adjuvant substances from fungi, other microbes, and mite.

Pollen grains generally belong to the coarse fraction of air particulate matter (particle diameters >10 μm), but fungal spores and pollen fragments are also found in fine particulate matter (<2.5 μm; PM2.5), which can penetrate deep into the human respiratory tract and alveolar regions of the lung. Allergenic proteins can be released from pollen and spores after cell damage or under humid conditions. In particular, pollen rupture due to an osmotic shock during rain can lead to outbreaks of thunderstorm asthma. Furthermore, peaks of high concentrations of pollen, fungal spores, and other primary biological aerosol (PBA) particles have been observed at the onset of heavy rain.

Figure 2. Pathways through which climate parameters and air pollutants can influence the release, potency, and effects of allergens and adjuvants: temperature (T), relative humidity (RH), ultraviolet (UV) radiation, particulate matter (PM), ozone and nitrogen oxides (O₃, NOₓ), reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, pollen-associated lipid mediators (PALMs), damage-associated molecular patterns (DAMPs), pattern recognition receptors (PRR), type 2 T helper (Th2) cells, immunoglobulin E (IgE), allergenic proteins (green dots), and chemical modifications (red dots).
Table 1. Biogenic and Anthropogenic Adjuvants with Reported Pro-allergic Effects: (I) Pollen-Associated and Microbial Compounds, Such as Pollen-Associated Lipid Mediators (PALMs), Bacterial Lipopolysaccharides (LPS), and Fungal β-Glucans and (II) Anthropogenic Pollutants and Chemicals Including Air Particulate Matter, Gaseous Oxidants, and Organic Compounds

<table>
<thead>
<tr>
<th>Substances</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollen proteases</td>
<td>Disrupt intracellular adhesion; stimulate protease activated receptors (PAR) inducing inflammation and enhanced IgE production</td>
</tr>
<tr>
<td>Leukotriene-like PALMs</td>
<td>Attract and activate innate cells like neutrophils and eosinophils</td>
</tr>
<tr>
<td>Phytoprostane PALMs</td>
<td>Inhibit IL-12 production and enhance IgE production</td>
</tr>
<tr>
<td>NADPH oxidase</td>
<td>ROS production and inflammation</td>
</tr>
<tr>
<td>Adenosine</td>
<td>Th2 cytokine profile and inflammation</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Modulate immune responses as ligands of allergenic proteins, e.g., a natural ligand of Bet v 1 is a quercetin and binds to the C-terminal helix</td>
</tr>
<tr>
<td>Bacterial LPS</td>
<td>Trigger TLR4 in dose dependent manner, induce a Th2 bias and allergic inflammation</td>
</tr>
<tr>
<td>Gram-positive bacteria</td>
<td>Induce DC maturation by upregulation of CD80, CD83, and CD86</td>
</tr>
<tr>
<td>Fungal β-glucans</td>
<td>Activate C-type lectin receptor</td>
</tr>
<tr>
<td>Fungal VOC</td>
<td>Stimulate inflammatory response</td>
</tr>
</tbody>
</table>

(I) Pollen-Associated and Microbial Compounds

II. Anthropogenic Pollutants and Chemicals

Air particulate matter (PM)

- Diesel exhaust particles (DEP) increase Th2 sensitization to inhaled allergens (IgE isotype switching and production, mast cell and basophil degranulation, cytokine production (e.g., IL-4)); exaggerates allergic airway responses.
- PM and DEP induce ROS production and inflammation.
- DEP suppress alveolar macrophage function.
- DEP and cigarette smoke can increase thymic stromal lymphopoietin (TSLP) expression in epithelial cells.
- DEP induce permeability of epithelial cells; disrupt tight junctions by a ROS-mediated pathway.
- PM increase the expression of costimulatory molecules on DCs (MHC class II, CD80, CD86).
- Ultrafine particles (UFP < 100 nm) and DEP alter soluble protein levels (e.g., surfactant protein D, complement protein C3), increase levels of e.g., glycerol-aldehyde-3-phosphate-dehydrogenase (GADPH), manganese superoxide dismutase (MnSOD), or mitochondrial heat shock protein (Hsp 90).
- PM2.5 and DEP activate complement proteins (C3).
- Black carbon (BC) and DEP induce epigenetic effects: DNA methylation in genes associated with Th2 polarization.
- DEP and cigarette smoke induce epithelial oxidative stress, and inflammation.
- Prenatal and postnatal exposure to environmental tobacco smoke (EST) is associated with asthma and wheezing.
- Transition metals and other redox-active compounds (organic peroxides, quinones) induce ROS production and inflammation via Fenton-like reactions.
- Colocalization of allergens on gold nanoparticles can facilitate IgE-receptor cross-linking.
- Cause oxidative stress, airway inflammation, increased airway permeability.
- Formation of protein ROI (reactive oxygen intermediates) and protein dimers.
- Elevated levels of complement protein C3a.
- Degradation of high molecular weight to low molecular weight hyaluronan, which is a DAMP that activates the TLR4 pathway.
- Nitration of allergens.
- Skew towards Th2 response, increase eosinophilic inflammation, enhance airway permeability.
- Significant positive association between formaldehyde exposure and childhood asthma.
- Antimicrobial endocrine disrupting compounds such as parabens and triclosan are associated with allergic sensitization.
- Bisphenol A can increase IL-4 and IgE levels.
- Dermal and pulmonary exposure to indoor VOC elicit irritant and allergic responses.

and immunomodulatory effects can trigger and enhance allergies. For example, skin prick tests of pollen allergens elicited larger wheals when tested together with low molecular weight compounds extracted from pollen. The release of these substances can be influenced by climatic conditions and air pollution, and significantly higher levels were found for pollen collected near roads with heavy traffic. Leukotriene-like PALMs (oxylipins) have the potential to attract and activate innate immune cells like neutrophils and eosinophils. Other PALMs such as phytoprostanes (lipophilic counterparts of prostaglandins) are water-soluble and can inhibit the production of interleukin 12 by dendritic cells in the lower respiratory tract, thus favoring an allergenic Th2 T cell response. A recent study showed that the low-molecular-weight fraction of phytopros-
Table 2. Climate Change Effects on the Abundance and Properties of Selected Plants and Fungi Emitting Aeroallergens

<table>
<thead>
<tr>
<th>allergenic species</th>
<th>effect of increasing temperature and CO2 concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambrosia artemisiifolia (ragweed)</td>
<td>increased pollen and allergen production, plant migration and spreading, changes in pollen transcriptome, increased allergenic potential, increase in flavonoid metabolites 158</td>
</tr>
<tr>
<td>Betula spp. (birch)</td>
<td>earlier pollination start, increased pollen production 162,267,496</td>
</tr>
<tr>
<td>Phleum pratense L. (timothy grass)</td>
<td>increased pollen production 169</td>
</tr>
<tr>
<td>Alternaria spp. (mold)</td>
<td>increased spore numbers, decreased allergen per spore 161,267,496</td>
</tr>
<tr>
<td>Aspergillus fumigatus (mold)</td>
<td>modified allergenicity and Asp f 1 content, increased spore numbers 146,153,497</td>
</tr>
<tr>
<td>Cladosporium spp. (mold)</td>
<td>increased spore numbers 166</td>
</tr>
<tr>
<td>Penicillium spp. (mold)</td>
<td>increased spore numbers 166</td>
</tr>
</tbody>
</table>

Figure 3. Upon interaction with reactive oxygen and nitrogen species (ROS/RNS), proteins can undergo a wide range of reversible and irreversible chemical modifications. Among the most commonly formed functional groups and products are S-nitrosothiol (SNO), sulfenic acid (SOH), disulfides with protein thiols or low molecular mass thiols (e.g., glutathione, SSG), sulfenic acid (SOH), sulfonic acid (SO3H), nitrotryptophan, nitrotyrosine, and dityrosine. Adapted from ref 317. Copyright 2013 American Chemical Society.
hydrocarbons (PAH), and nitrogen oxides (NO\textsubscript{x}); among the secondary pollutants are ozone, nitrates, and secondary organic aerosols (SOA).38,70,273,283 A recent review concluded that epidemiological studies were restricted by imprecise methods of assessing both TRAP exposure and related health effects.283 Accordingly, several studies called for more comprehensive investigations of TRAP markers, personal exposure, and lifetime outcomes.281,294,295 The application of improved measurement and modeling techniques as outlined above should enable refined epidemiological studies and more targeted testing of hypotheses by resolving different types of TRAP (e.g., freshly emitted DEP vs resuspended road dust; soot and polycyclic hydrocarbons vs trace metals; ozone vs nitrogen oxides; etc.).

3. CHEMICAL MODIFICATION OF PROTEINS AND AMINO ACIDS

Chemical modification by air pollutants can lead to changes in the structure of protein macromolecules (amino acid oxidation, peptide backbone cleavage, conformational changes, cross-linking, and oligomerization), and affect protein stability and other properties, such as hydrophobicity and acidity of binding sites.296–303 These and other posttranslational protein modifications may induce multiple effects in the molecular interaction of allergens with the immune system: (1) stability effects influencing the accumulation and degradation of allergenic proteins, the duration of exposure times to cellular receptors, and the process of antigen presentation via major histocompatibility complex (MHC) class II304,305 (2) epitope effects, that is, generation of new epitopes or modification of existing epitopes, changing the binding properties of antibodies and receptors, by direct chemical modification or as a result of conformational changes; (3) adjuvant effects, that is, generation of new adjuvant functions or modification of existing adjuvant functions such as lipid-binding capacities due to modified lipid binding sites; and (4) agglomeration effects, that is, multiplication or shielding of epitopes or adjuvant functions by cross-linking (oligomerization) of allergenic proteins, which may enhance the cross-linking of effector cell receptors (FcεRI) or sterically hinder molecular and cellular interactions.307,308,309,229

In the atmosphere, reactive oxygen and nitrogen species (ROS/RNS) are generated via photochemistry and gas-phase, heterogeneous, and multiphase reactions involving atmospheric oxidants and aerosol particles. In the human body, ROS/RNS can be formed upon exposure to air pollutants38,309–312 or radiation (UV, X-rays, γ-rays),313 and by regular physiological reactions.314 For example, ROS/RNS are generated during oxidative metabolism as well as in cellular responses to foreign or danger signals (cytokines, xenobiotics, bacterial invasion).315 Low amounts of ROS/RNS are involved in intra- and intercellular redox signaling processes, for example, oxidizing low molecular mass thiols and protein thiols (Figure 3).316,317 An imbalance between oxidants and antioxidants in favor of oxidants (e.g., induced by air pollutants) can lead to irreversible damage of cellular lipids, proteins, nucleic acids, and carbohydrates, eventually resulting in cell death.38,317,318 Rising levels of atmospheric oxidants and air particulate matter may lead to protein modifications in the atmosphere, as well as in the human body because of elevated oxidative stress levels, especially in the epithelial lining fluid (section 4).38 Moreover, air pollutants and climatic stress factors, such as UV radiation, drought, salinity, and temperature extremes, can also induce higher ROS/RNS levels inside plants, which may lead to chemical modification of plant proteins, including allergens.38,142,143 In the course of the Anthropocene, the ambient concentrations of many ROS/RNS have strongly increased because of emissions from traffic and combustion sources, as well as other industrial and agricultural activities like nitrogen fertilization of soils.37,38,82,319,520

In the following, we focus on irreversible modifications of allergenic proteins, such as oxidation, nitration, and cross-linking (Figure 3) by endogenous and exogenous ROS and RNS, like ozone (O\textsubscript{3}), hydroxyl radicals (OH), hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}), superoxide anion (O\textsubscript{2}−), nitric oxide (NO), nitrogen dioxide (NO\textsubscript{2}), nitrous acid (HONO), nitric acid (HNO\textsubscript{3}), peroxynitrite (PAN), peroxynitrite (ONO\textsubscript{2}−), and nitrate radicals (NO\textsubscript{3}). ROS and RNS can react with oxidation-sensitive amino acids, such as cysteine (Cys), methionine (Met), tryptophan (Trp), tyrosine (Tyr), phenylalanine (Phe), and histidine (His), as well as with aliphatic side chains and the peptide backbone.317,321–324 For example, OH radicals can cause backbone cleavage by abstracting hydrogen atoms from the α-carbon of any amino acid in the polypeptide backbone. Subsequent reactions lead to oxidative degradation of the protein and the formation of amide and carboxyl groups.311,325,326 Oxidation reactions can result in aggregation, fragmentation, and denaturation of proteins.327–329 While oxidative degradation appears likely to reduce the recognition of allergenic proteins, other chemical modifications, such as nitration or cross-linking may enhance the potency of allergens.8,229,306–308,328,330–332

The reaction of proteins with nitrating agents leads mainly to the nitration of the aromatic amino acid tyrosine forming 3-nitrotyrosine (NTyr).330 The addition of the rather bulky NO\textsubscript{2} group at the ortho position of the aromatic ring induces a significant shift in the pK\textsubscript{a} value of the tyrosine residue (Tyr) from ~10 to ~7, thus increasing the acidity of the hydroxyl group. These structural and chemical changes of the amino acid can affect the conformation and function of proteins.334,335 For example, the modification of tyrosine residues can influence cell signaling through the important role of receptor tyrosine kinases, which are key regulators of cellular processes.336 Moreover, nitrotyrosine has been reported as a biomarker for oxidative stress, inflammation, and a wide range of diseases.396,501,537,538

Early immunological studies already suggested that dinitrophenyl derivatives of proteins and peptides evade immune tolerance and boost immune responses.339,340 As early as 1934, the allergic reaction to dinitrophenol was described,341 and dinitrophenyl haptenes became very popular reagents for the experimental induction of allergies.342–344 Thus, nitrated aromatics and especially nitrated phenols can be considered corner stones in the field of allergy research, suggesting that protein nitration by air pollutants might play a role in the development of allergies.330

Indeed, several studies showed enhanced allergenic potentials for nitrated pollen allergens,332,309,305,306 nitrated fungal allergens,337 and nitrated food allergens.304,345 For example, the most efficiently nitrated tyrosine residue in the food allergen ovalbumin (OVA) is part of human and murine IgE epitopes and also belongs to a human T cell epitope.304 Recent studies suggest that nitration may also affect the allergenic potential and adjuvant activity of α-amylase/trypsin inhibitors (ATIs) from wheat and other gluten-containing grains, which act as aeroallergens in baker’s asthma and are involved in hyper-
sensitivities and chronic inflammation of the gastrointestinal tract.\cite{346,351} Nitrated variants of the major birch pollen allergen Bet v 1 induced enhanced levels of specific IgE in murine models, possibly because of the formation of neo-epitopes.\cite{229} Nitration of Bet v 1 also increased the presentation of allergen-derived peptides by antigen presenting cells (APC).\cite{305} Moreover, increased proteolytic stability, up-regulation of CCL17 (Th2-associated chemokine secreted by dendritic cells, DC), and alterations of T cell proliferation and stimulatory capacities have been observed for nitrated Bet v 1.\cite{306} Nitrated proteins also have been observed to modulate the antioxidant levels in murine pneumocytes.\cite{352} In a recent study, in vivo fumigation of ragweed pollen with NO\textsubscript{2} resulted in an altered proteomic pattern including nitrosylation products and the treated pollen showed higher IgE recognition in immunoblots.\cite{239} Enhanced allergenic potential was also observed for Betula pendula, Ostrya carpinifolia, and Carpinus betulus pollen after NO\textsubscript{2} exposure (Table S1).\cite{236}

Reaction product studies and kinetic experiments have shown that environmentally relevant O\textsubscript{3} and NO\textsubscript{2} concentrations can induce protein nitration on tyrosine residues.\cite{237,328,330,333,353}351 This is in line with earlier observations that atmospheric oxidation and nitration processes leads to the formation of nitrophenols and dinitrophenols,\cite{352} and that nitration is an important reaction pathway particularly in the atmospheric aqueous phase.\cite{357,358} Especially, aromatic amino acids like tyrosine and tryptophan can react with atmospheric nitrating agents, such as ozone/NO\textsubscript{2} mixtures or peroxycetyl-nitrate (PAN).\cite{330,359} Under photochemical smog conditions in polluted urban environments (high O\textsubscript{3} and NO\textsubscript{2} concentrations), proteins on the surface of aerosol particles can be efficiently nitrated within minutes to hours.\cite{328,330} The reaction kinetics also depends strongly on ambient relative humidity: At high relative humidity and especially during aqueous phase processing (when aerosol particles are activated as cloud or fog droplets), nitration may proceed efficiently also within the particle bulk.\cite{328,330,333}

Mechanistically, the reaction between O\textsubscript{3}/NO\textsubscript{2} and tyrosine involves the formation of long-lived reactive oxygen intermediates (ROI), likely via hydrogen abstraction from the phenolic OH group, yielding tyrosyl radicals (phenoxy radical derivatives of tyrosine) that can further react with NO\textsubscript{2} to form nitrotyrosine residues as shown in Figure 4.\cite{329,362,365} The two-step protein nitration by air pollutants is similar to the endogenous nitration of proteins by peroxynitrite (ONOO−)\cite{298,328,364} formed from nitrous oxide (NO) and superoxide anions (O2−).\cite{301,365,366} For endogenous protein nitration by ONOO−, both radical and electron transfer reaction pathways have been proposed.\cite{367} Besides nitration, tyrosyl radicals can also undergo hydroxylation or self-reaction (cross-linking) to form dityrosine derivatives (Figure 4).\cite{368}

The site selectivity of protein nitration is influenced by the molecular structure of the protein, the nitrating agent, and the reaction conditions. For example, different preferred reaction sites were observed for the birch pollen allergen Bet v 1, the egg allergen ovalbumin, and bovine serum albumin.\cite{304,328,333,354} Upon exposure of Bet v 1 to atmospherically relevant concentrations of O\textsubscript{3}/NO\textsubscript{2} and physiologically relevant concentrations of ONOO−, the preferred sites of nitration were tyrosine residues with high solvent accessibility and within a hydrophobic environment. Accordingly, nitrated tyrosine residues occurred mainly in the C-terminal helix and in the hydrophobic cavity (Figure S4).\cite{328} Both are key positions for the binding of specific IgE,\cite{369} as well as ligands like fatty acids, cytokines, and flavonoids.\cite{370,371} The binding of such ligands may be involved in allergic and inflammatory immune responses by stabilizing Bet v 1 against endo/lysosomal degradation.\cite{372} Moreover, nitration-related changes in ligand-binding capacity might influence the interaction of allergenic proteins like Bet v 1 with adjuvant substances like lipopolysaccharide (LPS) and induce a shift from Th1 to Th2 responses, thus resulting in increased allergenicity.\cite{306}

Dimerization and oligomerization are supposed to have a strong influence on the immunogenicity of allergenic proteins and are common features of major allergens like Bet v 1.\cite{2017,51,4119} The cross-linking of IgE receptors (FcεRI) on effector cells is a key element of allergic reactions and requires IgE antibody clustering on the cell surface,\cite{374,375} which may be facilitated by multivalent allergens, such as oligomers of allergenic proteins providing multiple epitopes of the same kind.\cite{322,376} Moreover, cross-linking can make proteins less susceptible to enzymatic proteolysis and influence immune responses.\cite{313,373,377} Indeed, immune responses to oligomers and aggregates of certain allergenic proteins were found to be enhanced compared to the monomeric form of the allergenic protein.\cite{380} The clustering of allergenic proteins on nanoparticle surfaces (protein coronas) can also modulate allergic responses depending on protein and particle properties.\cite{244} Accordingly, the investigation and effects of allergen colocalization on the surface of inhalable ambient particles, such as pollen fragments or soot (DEP), are potentially important research perspectives.

Oxidative protein cross-linking can occur upon (a) tyrosyl radical coupling through dityrosine cross-links, (b) Schiff-base coupling of oxidation-derived protein carbonyl groups with the ε-amino groups of lysine residues, and (c) intermolecular
Recently, protein cross-linking and oligomerization upon exposure to atmospherically relevant concentrations of O₃ have been shown to proceed via the formation dityrosine cross-links as outlined in Figure 4, yielding up to ∼10% of dimers, trimers, and higher oligomers of a model protein within minutes to hours of exposure under summer smog conditions. Similar reaction mechanisms involving reactive oxygen intermediates may also be responsible for the protein cross-linking observed upon reaction with physiological and synthetic nitrating agents like ONOO⁻ and tetranitromethane, respectively. Cross-linking upon reaction with tetranitromethane was suggested to alter the immunogenicity and enhance the allergenicity of Bet v 1 through decreased endolysosomal degradation leading to extended MHC class II antigen presentation. On the other hand, oligomerization of allergens induced by modification with glutaraldehyde, that is, formation of glutaraldehyde bridges between nucleophilic amino acid residues (in particular lysine), was suggested to reduce immunogenicity and allergenicity due to delayed allergen uptake and presentation by dendritic cells.

As illustrated in Figure S2, the processes of allergic sensitization and response involve a wide range of interactions between protein molecules dissolved in liquids (blood, lymph, etc.) and embedded in semisolid structures (membranes, cells, tissues), which can be regarded as protein multiphase chemistry. Protein reactions with ROS/RNS are generally pH-dependent and yield a mixture of hydroxylated, nitrated, cross-linked, aggregated or degraded products. To assess immune responses to specific posttranslational modifications of proteins, it is necessary to carefully characterize the investigated samples and avoid artifacts or misinterpretations that might arise from interferences between different reaction products and pathways, for example, nitration vs dimerization or oligomerization of proteins exposed to oxidizing and nitrating agents (Figure 4).

4. EPITHELIAL SURFACE INTERACTIONS

The deposition of particles in the respiratory tract is size-dependent and deposited particles are removed by a number of physical, chemical, and biological clearance processes, including...
mucociliary movement, endo- and phagocytosis, dissolution, leaching, and protein binding.201 Thus, the first step of an inhaled allergen-carrying particle is evading the mechanical defenses of the respiratory tract and passing, for example, alveolar macrophages, which prevent inappropriate immune activation by removing inhaled allergens via phagocytosis.392–394 The epithelial surface is a protective barrier, which protects the underlying tissue from many inhaled substances. The epithelial cells are covered by a viscous mucus lining rich in immune cells and soluble components, such as antioxidants, complement proteins, and surfactant proteins.201,395,396 As the epithelium is more than a passive protective barrier, it recruits and activates more specialized immune cells and promotes inflammatory responses,397 allergy is also discussed to be an epithelial barrier disease.15,131,398 In particular, air particulate matter can trigger ROS production through Fenton-like reactions and the activation of macrophages, mitochondria and enzymes related to the oxidant/antioxidant balance (e.g., NADPH oxidase, glutathione peroxidase).309,310,402 Additionally, pollution-derived ROS can induce proinflammatory responses by the production of damage associated molecular patterns (DAMPs oxidized phospholipids, hyaluronic acid, etc.) and trigger immune reactions leading to acute or chronic inflammation,29,406 for example, through feedback cycles involving Toll-like receptors (TLR) and other pattern recognition receptors (PRR) (Figure S5).407 Ozone and particulate matter can prime the airways for pro-allergic responses, and TLR signaling plays an important role in pollutant-induced inflammation.408,409 During inflammation, inducible nitric oxide synthase (iNOS) that is mainly expressed in innate immune cells (monocytes, macrophages, dendritic cells) provides high amounts of nitrogen oxide (NO), which can react with superoxide radicals to form peroxynitrite (ONOO−), a central endogenous nitrating agent for proteins.311 In addition, particulate and gaseous pollutants may also drive pro-allergic inflammation through the generation of oxidative stress involving elevated levels of ONOO−.410

As illustrated in Figure 5A, epithelial surfaces are interfaces coupling the atmospheric and the physiological production, cycling, and effects of ROS/RNS.38 Specific interactions of atmospheric ROS/RNS with antioxidants in the epithelial lining fluid are shown in Figure 5B. An increase of ozone from typical background concentration levels (~30 ppb) to summer smog conditions (>100 ppb) reduces the chemical half-life of ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants.309 Ozone also reacts with skin lipids (e.g., squalene) and generates organic compounds (e.g., mono- and dicarbonyls) that can act as irritants.412 These and related organic compounds were found to act as adjuvants in the development of respiratory allergies as well as atopic dermatitis.413,414

Changes of pH can alter reaction pathways of antioxidants418 and also decrease the activities of antioxidant-related enzymes in the ELF, which are also reduced in smokers and people suffering from lung diseases.419–421

Recent studies yielded chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of ROS in the ELF of the human respiratory tract.309 As illustrated in Figure 6, the total concentration of ROS generated by redox-active substances contained in fine particulate matter (PM2.5) and the concentration of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. The green-striped horizontal bar indicates the ROS level characteristic for healthy humans (~100 nmol L−1). The gray envelope represents the range of aerosol-induced ROS concentrations obtained with approximate upper and lower limit mass fractions of redox-active components observed in ambient PM2.5. The data points represent various geographic locations for which measured or estimated mass fractions are available, including (1) Amazon, Brazil (pristine rainforest air); (2) Edinburgh, UK; (3) Tokyo, Japan; (4) Budapest, Hungary; (5) Hong Kong, China; (6) Milan, Italy; (7) Guangzhou, China; (8) Pune, India; (9) Beijing, China; (10) New Delhi, India; (11) Sumatra, Indonesia (biomass burning/peat fire smoke). Adapted from Lakey, S. J. P.; Berkemeier, T.; Tong, H.; Arangio, A. M.; Lucas, K.; Pöschl, U.; Shiraiwa, M. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci. Rep. 2016, 6, 32916. DOI: 10.1038/srep32916.309 Copyright 2016 Lakey et al.
chemical reaction products formed at epithelial interfaces are sufficiently long-lived and mobile to diffuse through membranes and interact with the neural, cardiovascular, and immune system networks of the human body.414,425−429 Through these and related physiological interactions involving DAMPs, inflammatory mediators, cytokines, leukocytes etc., oxidative stress and inflammation caused by air pollutants may propagate from the respiratory tract and skin to other parts of the human organism and exert systemic influence on the development of allergies, reaching also the gastrointestinal tract.38,429

A wide variety of commensal, symbiotic, and pathogenic microorganisms are found on the epithelial surfaces of the human body, such as the skin, lungs, and the gastrointestinal tract. Recent research suggests that the human microbiome is important to maintain physiological functions and to induce immune regulation by balancing the activities of Th1 and Th2 cells.430−433 Normal microbial colonization in early life can promote tolerance to aeroallergens via induced regulatory T cells.434 The development and composition of the human microbiome are influenced by many factors such as diet, infections, medical treatment, and also environmental factors.335 For example, air pollutants and climatic stress factors may disturb microbial communities through oxidative stress, inflammation, and changes in environmental biodiversity.436 Modifications in the composition of the gastrointestinal and lung microbiome can in turn affect the development of allergies in accordance with the "hygiene hypothesis"437−439 and may also promote pathogenic species that can contribute to these diseases.440 Recent studies revealed differences in the structure and composition of microbiota in the lower airways of healthy and asthmatic people: Bacteroidetes, Firmicutes, and Proteobacteria are the most common phyla found in airways of healthy subjects, whereas increased concentrations of pathogenic Proteobacteria, such as Haemophilus, Moraxella, and Neisseria spp., were found in asthma patients.442,443 Moreover, viral infections can exacerbate allergies.53 It is still unclear, however, if these changes are a cause or a consequence of the disease. Moreover, it has been suggested that air pollutants, especially air particulate matter, ingested together with food can trigger and accelerate the development of gastrointestinal inflammatory diseases by altering the gastrointestinal microbiome and immune functions.444 Besides the human microbiome, also microbes associated with allergenic pollen (pollen microbiome) and other aeroallergens may act as adjuvants when deposited on epithelial surfaces.445

5. CONCLUSIONS AND OUTLOOK

As the globally pervasive anthropogenic influence continues to shape planet Earth and the human environment in the Anthropocene, it becomes increasingly important to understand and assess the potential effects of environmental change on human health. The widespread increase of allergies and their complex dependence on multiple influencing factors, including environmental pollution, indicate that allergic diseases are a major challenge with regard to maintaining and improving public health.

Anthropogenic emissions of atmospheric trace substances are affecting air quality and climate on local, regional, and global scales. Changes in atmospheric aerosol composition, oxidant concentrations, and climate parameters can induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergic proteins, while climate change affects the abundance and properties of bioaerosols as carriers of aeroallergens. The production, release and properties of allergens and adjuvants are subject to various human interferences with the biosphere and climate system, including air pollutant interactions with natural and agricultural vegetation, fertilization and land-use change, as well as plant breeding and genetic engineering.

The following key questions remain to be resolved to understand and mitigate potential effects of air pollution and climate change on the observed increase and future development of allergies:

1. Which air pollutant and climate change effects have the largest potential to influence on the abundance and potency of allergens and adjuvants in the human environment (indoor and outdoor)?

2. Which elements and reaction pathways of the immune system are particularly susceptible to disturbance by air pollutants, and what are the most relevant chemical and physiological mechanisms (adjuvant activity vs allergen modification)?

3. Which environmental and physiological parameters are needed and best suited to account for and assess air pollutant and climate change effects in epidemiological studies of allergic diseases (attribution and prediction of environmental risk factors)?

4. How important are air pollutant and climate change effects relative to other environmental, lifestyle, genetic and epigenetic risk factors for allergic diseases?

Recommendations on how to address these key questions in future research are listed in Table S2, building on and extending suggestions given in related review and perspective articles (e.g., refs 8, 12, 93, and 280). Beyond addressing the above questions, it appears worthwhile to explore which components of the immune system could be modulated to prevent adverse effects of air pollution, for example, whether therapeutic monoclonal antibodies against relevant cytokines (e.g., IL-4, IL-5, IL-13) or IgE antibodies could make a difference. Further information about ongoing efforts and future perspectives of mitigating the health effects of climate change and air pollution is available from various national and international government agencies, medical institutions and related organizations (e.g., refs 4, 37, and 446). For efficient scientific progress, it will be important to combine and optimize state-of-the-art methods and results of environmental, immunological and epidemiological studies, tightly coupling physical, chemical, biological, and medical techniques and knowledge. One of the challenges consists in identifying and quantifying the mechanisms and feedback loops of immunochemical reactions in response to environmental influencing factors, including chemical modifications and interactions of allergens and adjuvants under realistic environmental and physiological conditions. For this purpose, the results of laboratory experiments and monitoring networks with improved detection methods for allergens, adjuvants and reactive intermediates should be used to design and inform epidemiological studies targeting the effects of different types and combinations of air pollutants and climate parameters.
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.6b04908.

Allergic sensitization and response, air pollution effects on the allergic potential of plant pollen and fungal spores, research activities proposed to address the key questions, essential steps and influencing factors in the development of IgE-mediated allergies, simplified scheme of major processes involved in allergic sensitization and response, scanning electron micrographs of oak and birch pollen, 3D-structure of the major birch pollen allergen Bet v 1.0101, and TLR4-radical cycle of inflammation (PDF).

Corresponding Authors
Tel: +49 6131 305 7007. E-mail: k.selzle@mpic.de.
Tel: +49 6131 392 2417. E-mail: kampfc@uni-mainz.de.
Tel: +49 6131 305 7001. E-mail: u.poschl@mpic.de.

Kathrin Reinmuth-Selzle: 0000-0001-7274-3848
Senchao Lai: 0000-0002-4990-3679
Albert Duschl: 0000-0002-7034-9860

The authors declare no competing financial interest.

K.R.-S. acknowledges financial support by the Max Planck Graduate Center with the Johannes Gutenberg University of Mainz (MPGC); C.J.K. acknowledges support by the MPG C and financial support by the German Research Foundation (DFG, grant number KA 4008-1/2); J.F.-N., U.P., and B.W. acknowledge support from the Chinese Scholarship Council (CSC). A.D. acknowledges funding from the FWF (W-1213) and from the University of Salzburg via the ACNB program. Thanks to M. Trainic, M. Riekert, and S. Benner for support with graphical illustrations. The authors acknowledge stimulating exchange and discussions with Paul J. Crutzen, the members of the Mainz Program for Chemical Allergology (MPCA), the Allergie-Zentrum Rheinland-Pfalz (AZ-RP), and the Mainz Bioaerosol Laboratory (MBAL), as well as numerous colleagues in the scientific communities of the Earth, Environmental, and Life Sciences.

(11) Langen, U.; Schmitz, R.; Steppuhn, H. Prevalence of allergic diseases in Germany. Results of the German Health Interview and Examination Survey for Adults (DEGS1). Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 2013, 56 (5–6), 698–706.

Holocene.

[60x169]Critical Review

[60x179]Anthropocene is functionally and stratigraphically distinct from the

[60x138]196.

[60x118]Quality and Climate.

[60x562]trends and the impact of sulphur dioxide and total suspended particles.

[60x582]Willer, H.; Schlipkoter, H. W. Airway diseases and allergies in East and

[60x522]What Is the Evidence?

[60x511]1111

[60x219]Anthropocene

[60x219]change.

[60x300]Mark Schmitz, M., Ogg, G., Eds.; Elsevier, 2012; 1033

[60x310]Geologic Time Scale 2012, Vols 1

[60x360]−

[60x350]−

[60x330]2231.

[60x280]Anthropocene: conceptual and historical perspectives.

[60x290]−

[60x259]2011

[60x249]S10.

[60x280]Anthropocene man.

[60x290]−

[60x259]2011

[60x249]S10.

[60x280]Anthropocene begin? A mid-twentieth century boundary level is

[60x290]−

[60x259]2011

[60x249]S10.

[60x280]Anthropocene: conceptual and historical perspectives.

[60x290]−

[60x259]2011

[60x249]S10.

[60x280]Anthropocene begin? A mid-twentieth century boundary level is

[60x290]−

[60x259]2011

[60x249]S10.

[60x280]Anthropocene begin? A mid-twentieth century boundary level is

[60x290]−

[60x259]2011

[60x249]S10.

[60x280]Anthropocene begin? A mid-twentieth century boundary level is

[60x290]−

[60x259]2011

[60x249]S10.

[60x280]Anthropocene begin? A mid-twentieth century boundary level is

(159) Albertine, J. M.; Manning, W. J.; DaCosta, M.; Stinson, K. A.; Muenenberg, M. L.; Rogers, C. A. Projected Carbon Dioxide to

(200) Müller-Germann, I; Vogel, B; Vogel, H; Pauling, A; Fröhlich-Nowosky, J; Pöschl, U; Despres, V. R. Quantitative DNA Analyses for Airborne Birch Pollen. PLoS ONE 2015, 10 (10), e0140949.
(208) Huffman, J. A; Prenni, A. J; DeMott, P. J; et al. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys. 2013, 13 (13), 6151−6164.
(210) Green, B. J; Zinoviev Mitakakis, T. Z; Tovey, E. R. Allergen detection from 11 fungal species before and after germination. J. Allergy Clin. Immunol. 2003, 112 (1), 285−289.
(214) Pasqualini, S; Tedeschini, E; Frenguelli, G; Wopfner, N; Burlando, B; del Moral, A; Lopez, E; Lombardero, M; del Pozo, V; Abarca, M. Cloning and expression of a major allergen from Cupressus arizonica pollen, Cup a 3, a PR-S protein expressed under polluted environment. Allergy 2004, 59 (5), 485−490.
(218) Oeder, S; Alessandrini, F; Wirz, O. F; et al. Pollen-derived nonallergenic substances enhance Th2-induced IgE production in B cells. Allergy 2015, 70 (11), 1450−1460.
(219) Degrabari, C; Emedolu, R; Munoz, J; et al. Correlation of fungi and endotoxin with PM2.5 and meteorological parameters in atmosphere of Sao Paulo, Brazil. Atmos. Environ. 2011, 45 (13), 2277−2283.
(220) Majde, A; Chchehregani, A; Moin, M; Ghommand, M; Koorno, S; Nabe, T; Shariatzadeh, M A. The effects of air pollution on structures, proteins and allergenicity of pollen grains. Aerobiologia 2004, 20 (2), 111−118.

(243) Namok, E.; Johansen, B. V.; Lovik, M. Detection of allergens adsorbed to ambient air particles collected in four European cities. Toxiconology 2000, 152 (1—3), 71—78.

(256) Marecal, V.; Peuch, V. H.; Andersson, C.; et al. A regional air quality forecasting system over Europe: the MACC-II daily ensemble production. Geosci. Model Dev. 2015, 8 (9), 2777—2813.

Critical Review

Care Med.

Schöll, I.; Kalkura, N.; Shedziankova, Y.; et al. Dimerization of the major birch pollen allergen Bet v 1 is important for its in vivo IgE-cross-linking potential in mice. J. Immunol. 2005, 175 (10), 6645–6650.

Critical Review

(369) Hecker, J.; Diethers, A.; Schulz, D.; et al. An IgE epitope of Bet v 1 and fagales PR10 proteins as defined by a human monoclonal IgE. Allergy 2012, 67 (12), 1530–1537.

(376) Vrtala, S.; Fohr, M.; Campana, R.; Baumgartner, C.; Valient, P.; Valenta, R. Genetic engineering of trimers of hypoallergenic fragments of the major birch pollen allergen, Bet v 1, for allergy vaccination. Vaccine 2011, 29 (11), 2140–2148.

Critical Review

