Process Monitoring of an Intensified Continuous Production Unit with Compact NMR Spectroscopy

Svetlana Guhl, Klas Meyer, Simon Kern, Patrick Gräßer, and Michael Maiwald

Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Wilhema-Str. 11, D-12489 Berlin, Germany

NMR Basics

NMR stands for **Nuclear Magnetic Resonance**

Radio Frequency Pulse

Fig. 1: NMR acquisition scheme

- NMR active nuclei, e.g., \(^1H \), \(^19F \), \(^31P \), \(^13C \)
- Signal intensity in the spectrum is directly proportional to the number of nuclei (Fig. 1)
- High dispersion of signals
- Calibration-free quantification is possible

Field integration of the NMR Unit

The presented NMR Unit is provided in an explosion proof housing (Fig. 2) and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit for automated data preparation (phasing, baseline correction) and data evaluation. Additionally, a programmable logic controller is implemented for sensor data acquisition (sample throughput, temperature control, triggering of NMR) and data communication.

Fig. 2: Compact NMR Unit

Experimental set-up

- 1/8" stainless steel reactor
- Temperature controlled
- Syringe pumps for feeds

Fig. 5: Tubular reactor in thermostated bath (left), Residence time distribution of low field NMR device is hyphenated in a bypass setup (right).

Results of laboratory experiments

- Reaction was investigated under various stoichiometries by adjustment of feed rates
- Automated data evaluation using spectral modeling

Fig. 6: Results of compact NMR and reference method on process runs at varying excess of Li-HMDS: (A) +20%, (B) –10 %, (C) ideal, (D) +10 %

Results of laboratory experiments

- Good agreement with reference method (high field NMR)
- Compact NMR is suitable for monitoring the reaction step
- ATEX proof housing is currently in construction

References and Acknowledgements

This document has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 636962.

www.consens-spire.eu

This document reflects only the view of the author(s) and the European Commission cannot be held responsible for any use which may be made of the information contained herein. This document is provided with no warranty whatsoever, including any warranties of merchantability, non-infringement, fitness for any particular purpose, or any other warranty which might arise from any course of dealing or the like between the European Commission and the user. The European Commission disclaims responsibility for any loss or damage caused by any inaccuracy, omission or defect in this document. This document is subject to change without notice.

Investigated Chemistry

Fig. 4: Coupling of two aromatic compounds initiated by lithiation as an example for a pharmaceutical reaction step.

- FNB
- Aniline
- Li-HMDS
- NDPA
- HMDS

This document is produced with no warranty whatsoever, including any warranties of merchantability, non-infringement, fitness for any particular purpose, or any other warranty which might arise from any course of dealing or the like between the European Commission and the user. The European Commission disclaims responsibility for any loss or damage caused by any inaccuracy, omission or defect in this document. This document is subject to change without notice.