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ABSTRACT

Time averaged mass burning rate (ṁ′′
f ), flame length (H), temperature (T ), irradi-

ance (E) and surface emissive power (SEP ) of TBPB (tert -butyl peroxybenzoate) and

TBPEH (tert-butyl peroxy-2-ethylhexanoate) pool fires are measured for six pool di-

ameters (d = 0.059 m, 0.107 m, 0.18 m, 0.5 m, 1 m and 3.4 m) at BAM in house and

outside test facility.

The measured heats of combustion (–Δhc) of TBPB and TBPEH are 30113 kJ/kg and

34455 kJ/kg and the specific heat capacities at constant pressure (cp) are 1.8 kJ/(kg K)

and 2.1 kJ/(kg K) respectively.

The measured ṁ
′′
f of TBPB and TBPEH pool fires are in the range of 0.37 kg/(m2 s)≤

ṁ
′′
f ≤ 0.83 kg/(m2 s) and show little dependence on the pool diameter d, and are four

to sixty times higher (for d = 1 m) than that of hydrocarbon pool fires. It is shown

that the mass burning rates of the investigated organic peroxides can be represented

as an exponential function of the self-accelerating decomposition temperature (SADT).

Low SADT implies that the organic peroxide pool fires burn at a much higher ṁ
′′
f than

hydrocarbon pool fires.

Fuel Froude numbers (Frf) of TBPB and TBPEH are 5 to 100 times (depending on d)

higher than for hydrocarbon pool fires. Due to higher Frf the H of TBPB and TBPEH

(measured with a S-VHS Videocamera) are found to be two times larger (d = 1 m) than

corresponding pool fires of hydrocarbons. Heskestads flame length correlation predicts

the H
d (d = 3.4 m) of TBPB and TBPEH pool fires much better than Thomas and Fay

correlations.

The measured time averaged flame temperatures T (d = 3.4 m) for TBPB and TBPEH

pool fires are in the range of 1400 K ≤ T ≤ 1500 K and are 200 K to 300 K higher than

for JP-4, kerosene and gasoline.

The irradiances of the TBPB and TBPEH pool fires measured by radiometers are E

(Δy/d = 0.3) = 45 kW/m2 and E = 98 kW/m2 which are two to ten times higher in

comparison to the corresponding n-pentane, super gasoline and diesel pool fires. So the

thermal safety distances for organic peroxide pool fires are larger by a factor four in

comparison to the hydrocarbon pool fires.

An infrared thermography system is used for the determination of SEP of TBPB and

TBPEH pool fires. The values of surface emissive power for TBPB and TBPEH are

SEP (d = 3.4 m) = 196 kW/m2 and SEP = 258 kW/m2 and thus the SEP are by a

factor of approximately two higher than for hydrocarbon pool fires.

A self-sustained pulsating H
d (’W’-Effect) is found in TBPB pool flames and is further

analysed to explain the reason of occurance on the basis of chemical structure of the fuel

and discontinuous heat flux back from flame to the liquid pool.



CFD simulations of TBPB and TBPEH pool fires at d = 0.18 m, 0.5 m, 1 m, 3.4 m and 8

m are carried out using the Unsteady Reynolds Averaged Navier Stokes (URANS) equa-

tions. The three-dimensional geometries have been discritized with unstructured hybrid

grids, with the number of cells in the range of 1 million. Depending on the grid resolu-

tion and the pool diameter time steps of 0.0001 s ≤ Δt ≤ 0.01 s for the CFD simulations

are used. For solving the discritized equations a finite volume based implicit solver AN-

SYS CFX has been used. For modelling the combustion, stoichiometric combustion for

both peroxides are assumed. The temperature dependence of the reaction rate has been

determined by the Arrhenius approach. For modelling the combustion eddy dissipation

concept (EDC) model has been used. For turbulence buoyancy modified k- ε and SAS

(Scale Adaptive Simulation) turbulence models are used. For the thermal radiation and

soot mass fraction discrete transfer radiation model and Magnusson soot model have

been used.

A new method is suggested for the prediction of mass burning rate (ṁ′′
f ) by CFD simula-

tion. Both peroxide pool fires show approximately constant mass burning rate indepen-

dent of d whereas ṁ
′′
f of TBPEH are under predicted at the beginning but show relatively

good agreement with measurements for large pool diameters (d = 1 m). In case of TBPB

the CFD simulation over predicts the mass burning rate ṁ
′′
f of small TBPB pool fires

and shows a continuous decrease with d. CFD predicts the flame length H close to the

measured data provided that the constants in Thomas equation are modified.

The CFD predicted time averaged surface emission flame temperatures of TBPB and

TBPEH pool fires (d = 3.4 m, 1437 K and 1542 K) are in good agreement with the

measured time averaged flame temperatures.

The CFD predicted SEP for TBPB and TBPEH pool fires (d = 3.4 m, 217 kW/m2 and

288 kW/m2) are also in agreement with the measured values. From the CFD predicted

irradiance ECFD it is possible to determine the thermal safety distances from large pool

fires of hydrocarbons and organic peroxides.



Nomenclature

AP Pool surface m2

cp Specific heat capacity J/(kg K)

D Diffusion coefficient m2/s

d Pool diameter m

E Irradiance W/m2

e Specific total energy J/kg

EA Activation energy J/mol

f Frequency of pulsation 1/s

frad Radiative heat fraction

g Gravitational acceleration m/s2

Δhv Specific enthalpy of vaporisation J/kg

−Δhc Specific enthalpy of combustion J/kg

H Flame length m

k Reaction rate constant reaction dependent

K Conductive heat transfer coefficient W/(m K)

L Latent heat J/(kg K)

ṁ Mass flow kg/s

ṁ
′′
f Mass burning rate kg/(m2s)

n Molar quantity mol

p Pressure N/m2

Q̇c Heat release rate due to combustion W

Q̇∗ Dimensionless number

Q̇rad Heat rate due to radiation W

q Heat quantity J



R Universal gas constant J/(mol K)

r Radial coordinate m

r1/e Radial coordinate where the variable value is 1/e m

rst Stoichiometric ratio

SEP Surface Emissive Power W/m2

T Temperature K

t Time s

u Velocity of flame gases m/s

U Hydrodynamic velocity m/s

V Volume m3

va Burning velocity m/s

x Axial distance above pool surface m

y Horizontal distance from pool centre m

Δy Distance between pool rim and receiver m



Greek Letters

α Convective heat transfer coefficient W/(m2K)

β Exponent of temperature

γ Small fraction of flame zone thickness

εF Flame emissivity

θ Flame tilt and angular coordinate o

κ Absorption coefficient 1/m

λ Wavelength nm

μ Dynamic viscosity kg/(m s)

ρ Density kg/m3

σ Stefan-Boltzmann constant W/(m2K4)

τ Atmospheric transmissivity

ϕF,R View factor from flame to receiver

χ Mass fraction



Indices

a Ambient conditions, air

c Combustion

cl Clear flame zone

ent Entrainment

f Fuel

F Flame

g Gas

max Maximum value

P Product

rad Radiation

v Fuel vapour

w Wind



Abbreviations

CFD Computational Fluid Dynamics

DSC Differential Scanning Calorimetry

DTBP Di-tert-Butyl peroxide

EDC Eddy Dissipation Concept

INP Di-isononanoylperoxide

LES Large Eddy Simulation

OSRAMO Organised Structure Radiation Model

RANS Reynolds Averaged Navier-Stokes

S Gibbsian surface

SADT Self Accelerating Decomposition Temperature

SAS Scale Adaptive Simulation

SEP Surface Emissive Power

TBPB tert-Butyl peroxybenzoate

TBPEH tert-Butyl peroxy-2-ethylhexanoate

TBHP tert-Butyl hydroperoxide

URANS Unsteady Reynolds Averaged Navier-Stokes

Miscellaneous

(−) Time averaged value

(∼) Favre averaged value

� Divergence

< > Surface averaged

〈 〉 Value averaged over cross section of the flame
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Chapter 1

Introduction

The demand of safe processing of hazardous substances in chemical industries is steadily

increasing due to strict regulations laid down by the regulating authorities to prevent

disasters. A such major accident happened in the early morning (0520 GMT) of 11th

December 2005 when an overflow of unleaded petrol took place in Hertfordshire Oil

Storage Terminal (HOSL) (also known as Buncefield Oil Depot) which finally converted

into one of the worst ever industrial accident seen in Europe [1, 2]. It is reported that the

Figure 1.1: Buncefield Accident (London,UK, 2005)
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1 Introduction

Figure 1.2: Event tree for release of flammable material [3]

vapour cloud covering an extensive area exploded due to an unknown source of ignition

which is shown in Fig. 1.1. A continuous overflow of petrol led to large shape of pool and

mixture of petrol and air simultaneously. The intensity of this disaster could be imagined

by the fact that it took four days until the fire was completely extinguished. However

the disaster left many unanswered questions behind. Despite of all safety precautions

such accidents whether small or large, can occur due to ignorance, mistake by personnel

or due to the failure of mechanical devices. An event tree of a series of consequences

which could occur as a result of release of flammable material is shown in Fig. 1.2.

The pressurised release of any flammable material may lead to a jet flame (immediate

ignition) or a pool fire (delayed ignition). The right half of the Fig. 1.2 depicts the

occurance of a pool fire [1].

A wide variety of different hydrocarbon jet and pool fires have been studied by many

authors in the past. There are some energetic materials e.g. organic peroxides which have

been continuously produced and used by the chemical industries as an initiator for free

radical polymerisation in polymer production. Because they are unstable compounds

their safe storage and transportation is of great interest. They are normally available in

standard packages, stored in large containers made of either metal or plastic. In Germany

there are corresponding regulations for the storage in packages, which are based on mass

burning rate of organic peroxides in packagings and also taking into account the emerging

2 BAM-Dissertationsreihe



1 Introduction

thermal radiation protection and safety distances. So-called pool fires can arise if for

example the packaging or container is damaged and thus liquid organic peroxide leaks. In

the relevant literature both experimental and simulated data on pool fires of flammable

liquids such as gasoline, kerosene and other petroleum products can be found. Pool

fires of organic peroxides were previously investigated at BAM (Federal Institute for

Materials Research and Testing, Berlin) for diameters in the range between 0.03 m and

3.4 m. Little is known about detailed flame characteristics of different organic peroxides

so far. A recent PhD thesis from the BAM group investigated pool fires of di-tert butyl

peroxide (DTBP). Pool fires of organic peroxides are of great importance from safety

point of view in order to calculate effective methods of protection and safety distances.

The purpose of the present work is to experimentally and numerically investigate and to

characterise the pool flames of two organic peroxides [tert-butyl peroxybenzoate (TBPB)

and tert-butyl peroxy-2-ethylhexanoate (TBPEH)] in comparison to hydrocarbons. A

fire from packaged material is compared to the equivalent shape of a pool fire and is nu-

merically investigated. The fundamental flame characterstics, e.g. mass burning rates,

flame lengths, flame temperatures and irradiances of six pool flames are measured for

both of the peroxides. CFD simulations were performed for five pool diameters of both

peroxides and the respective flame characterstics were simulated. A finite volume based

implicit solver Ansys CFX-11 has been used for solving unsteady Reynolds Averaged

Navier-Stokes (URANS) equations.

The knowledge gained from the pool fire characteristics of previously investigated or-

ganic peroxide i.e. DTBP showed that there are significant differences between pool fire

characteristics of hydrocarbons and of organic peroxides. Therefore, as an addition in

the exisisting knowledge two other organic peroxide (TBPB and TBPEH) pool fires are

experimentally investigated and simulated with CFD.

3



Chapter 2

Theoretical Background

2.1 Introduction

Liquid fuel spill and pool fires represent potential hazards in many applications ranging

from accidents at industrial plants, using combustible liquids, sometimes intended fire

to properties with flammable fuels. A pool is characterised by a confined body of liquid

fuel that typically has a depth greater than 1 cm. A pool can result due to a liquid

fuel release that collects in a low spot, such as a trench, or can exist as a results of

normal storage of fuels in tanks and containers. In the following sections the different

characterstics of pool flames are discussed in detail. The development in the exisisting

understanding is described in subsequent subsections.

2.2 Dynamics of pool fires

The structure of most pool fires may be split into a number of fairly well-defined zones

[3, 4, 8, 9, 10, 11]. These zones are shown in Fig. 2.1 and the physical processes along

with their technical importance is described below.

• The liquid fuel itself: In deep pools there may be a significant convective flow

within the fuel which can affect the fuel vaporisation rate and hence influence the

“external” characteristics e.g. size and visibility of the fire; the interaction between

4 BAM-Dissertationsreihe



2 Theoretical Background

Fig. 2.1(a)

Fig. 2.1(b)

Figure 2.1: Existence of three zones in a turbulent buoyant diffusion flame defined by
Schönbucher (Fig. 2.1 (a)) [11] and Raj (Fig. 2.1 (b)) [10]
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2 Theoretical Background

the fuel and the vessel which surrounds it (if any) may also have a big impact on

the burning behaviour.

• A zone of unburnt fuel vapour above the liquid fuel, which is usually close to a

constant conical shape.

• A combustion region above this zone (also known as continuous flame regime), but

here there is intermittency (also known as intermittent regime or pulsation zone)

and obvious turbulence in the reactive flow.

• The non-reacting buoyant plume (plume zone or plume regime), which is gen-

erally fully turbulent in nature and is characterised by decreasing velocity and

temperature with height and lateral position.

Each individual zone has been extensively analysed in the literature and numerous stud-

ies have described the different parameters controlling the behaviour of each zone and

their interactions [13]. The resulting pool is then quantified via a number of measurable

quantities. The main “measurable quantities” associated to a pool fire are:

• Burning rate or mass loss rate (ṁf): these quantities are closely related to

the heat release rate. The mass loss rate is generally expressed in terms of kg/s.

Historically, burning rate has been expressed in terms of a regression rate given in

mm/min (i.e. the surface is lowered by a number of mm per minute as the fuel is

consumed in the fire).

• Heat release rate (Q̇c): the total amount of heat energy released by the fire,

generally expressed in kilowatts (kW) or megawatts (MW). For pool fires this is

sometimes expressed in terms of heat release rate per unit area (i.e. kW/m2).

• Flame length (H): generally expressed in metres (m). The flame tip is often

defined to be the point of 50% intermittency i.e. the length it maintains for more

than 50% of time during the steady burning period [10]

• Flame temperature (T ): actually a distribution of temperatures (instantaneous

and time averaged), often given as mean centreline values, with radial variations

[11].

• Smoke production rate: may be expressed in m3/s or kg/s.
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• Radiation (E, SEP ): described either as the irradiance or emissive power at a

given point in space (kW/m2). Sometimes also specified as the sum of all heat lost

by radiation (kW) and often expressed as a percentage of the total heat release

rate i.e. fraction of radiation frad[12].

A number of physical characteristics of the pool then control these measurable quantities.

These physical characteristics vary from the very simple to the complex. A simple

abbreviated list will include:

• Pool geometry (diameter, depth, substrate)

• Fuel composition

• Ventilation conditions (wind, forced or restricted ventilation, etc.)

• Surrounding geometry (open air, compartment height, proximity to walls etc.)

• Nature of the bounding materials (conductive or insulated) i.e. those used to

construct the lip of liquid pool fire trays.

Physical characteristics associated with the pool fire have a direct impact on the different

zones and this impact is generally defined by means of measurable quantities. It is

important to note that concept of zones and description by measurable quantities are

a practical way to describe a pool fire. They are useful to simplify a very complex

problem but do not correspond to the fundamental physical processes that control the

combustion and different transport processes. These will be discussed as follows.

2.2.1 Mass burning rate

Pool fire research is considered to have started with the work of Bilnov and Khudiakov

[5] (Fig. 2.2) who performed a wide range of experiments on gasoline like liquids in pans

ranging in size from a fraction of a centimetre upto nearly 30 meters in diameter. The

correlation proposed shows that burning rates depend on the ratio of heat of combustion

to the heat required to raise the fuel temperature to the boiling point and then vaporize

it. It was concluded that burning of liquid fuel on surfaces and in pans can be correlated

by using the simple theory of Hottel [6] for individual fuel components. His explanations

7
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Figure 2.2: Burning rates and flame lengths of hydrocarbons [5, 7]

of how geometrical scales and different heat transfer modes affect fire behaviour lay the

foundation for the two most important scientific concepts that have been developed for

fire safety engineering during the last 30-40 years [6]. Early experiments with pools of

liquid fuels showed that there are two basic burning regimes for pool fires: radiatively-

dominated burning for pools with large diameters and convectively dominated burning

for pools with small diameter. Nevertheless, diameters smaller than 0.2 m will always

fall in the category of small pools. The burning rate per unit area (and hence most other

characteristics) of a pool fire increases with tray diameter up to about 2-3 m, beyond

which limit it becomes largely independent of diameter or may decrease slightly. This

dependence is related to the burning regime which becomes increasingly dominated by

radiation as soot levels rise up to a value where the fire is effectively optically thick.

Several studies indicate a slight decrease in burning rate per unit area at very large pool

diameters (∼ 10 m), but there is not enough reliable data to accurately describe this for

general cases [13]. To estimate the average mass loss rate, ṁ
′′
f (the ′′ symbol indicates

a value per unit area and the dot above the quantity indicates a rate) of a pool fire in

the open air, the following equation may be used [13, 14]:

ṁ
′′
f = ṁ

′′
max(1− e−kβd) (2.1)
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ṁ
′′
max is the mass loss rate per unit area for a very large pool, k is the extinction

coefficient of the flame, β is the mean beam length corrector and d is the pool diameter.

The average heat release rate (Q̇c) of a pool fire may be estimated from this if the heat

of combustion (−� hc) of the fuel is known:

Q̇c = ṁ
′′
f (−� hc)AP (2.2)

where AP = π
4 d2 is the surface area of the pool. Tables of values of ṁ

′′
max, kβ and�hc for

most common liquid fuels can be found in the literature [7, 13, 14]. It should be noted

that the burning behaviour of alcohol pools is different from most other hydrocarbon

fuels as the burning rate does not vary significantly with diameter, this is due to that

fact that alcohols burn very cleanly, producing little soot and thus ṁ
′′
f ≈ ṁ

′′
max. Fay [9]

derives the equations for mass evaporation rate separately for adiabatic (there is negli-

gible heat transfer between pool and substrate) and non-adiabatic (there is significant

heat transfer from pool and substrate) pool fires.

Adiabatic pool fires

ṁ
′′
f =

(
1× 10−3 kg/m2s

)× −� hc

�hv
(2.3)

Where − � hc is the heat of combustion ≈ 45 MJ/kg for a typical hydrocarbon fuel.

The evaporative heat transfer to the fuel surface is ṁ
′′
f � hv ≈ 45 kW/m2. This heat of

combustion utilised in raising the temperature of flame surface by means of convective

(small pool diameters) and radiative heat transfer (large pool diameters) to the exposed

objects.

Fay [9] considers convection as a major mode of heat transfer to the liquid rather than

radiation as Hottel suggested. There are two reasons for this: 1. A hydrogen fire plume

is not luminous enough to consider significant radiation transfer to the surface. 2. Also

for large diameters, the surface emissive power SEP is inversely proportional to the

diameter d so it is convective driven heat transfer (convective heat transfer coefficient

∝ 1
d).

On the basis of the above facts Fay derives convective heat flux (from flame to liquid

9
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pool) for circular and rectangular pools as written below.

Circular pool:

ṁ
′′
f�hv = 1.30× 10−3(1± 0.19)

(
ρa

√
gd

(−� hc

1 + f

))
(2.4)

Rectangular pool:

ṁ
′′
f�hv = 1.75× 10−3(1± 0.34)

(
ρa

√
gd

(−� hc

1 + f

))
(2.5)

Non-adiabatic pool fires (Effect of the substrate)

It has been already observed experimentally that fuel pools on a substrate e.g. water

always show an increased mass burning rate due to the external heat transfer from the

substrate to the fuel. The total increased mass burning rate or mass evaporation [9] can

be written more precisely as follows:

Total burning rate = Adiabatic mass burning rate + external mass burning rate due to

enhanced evaporation due to heat transfer from the substrate

ṁ
′′
f (t) = 1.30×10−3

(
ρa

√
gd

( −� hc

(1 + f)� hv

))
+1.10×10−4

(
ρ1V1cp(Ta − T1)

�hv

)
(2.6)

where ṁ
′′
f (t) denotes the increase in mass burning rate as function of time due to spread-

ing of fuel on water. Suffix 1 stands for the pool liquid properties. cp is specific heat

capacity of water. V1 Fuel radial convective velocity (m/s). The variation of V1 with

time can be given as:

V1(t) =
dD(t)
2dt

(2.7)

Eq.(2.7) explains the variation of mass burning rate of a non-adiabatic pool fire which

varies with the size of spilled pool and time.

The errors and uncertainties in the measurable quantities are a great concern for the

reliable estimation of hazard from pool fires. The error in the measurement can be

defined as the difference in the measured value and actual value whereas uncertainties

are the spread in the data assigned in a justifiable manner [41]. Due to the several

complexities in the measurements and uncontrolled field conditions in the large pool

fire experiments, the errors and uncertainties are not extensively studied in the past.

Therefore, only a qualitative estimation of uncertainties in different quantities are given
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in the literature [13, 16]. Babraukas [13] gives a range ouncertaintyiy of ±0.0018 kg/(m2

s) in the measurement of ṁ
′′
max (� 0.2 m ≤ 20 m) for hydrocarbon fuels.

2.2.1.1 Theory of burning rate according to Hertzberg

Hertzberg [15] carries out the energy balance across the Gibbsian surface and derives

the average burning rate equation. As shown in Fig. 2.3 any individual element of

the surface area, of diameter dr, in the steady state coordinate frame at its individual

fuel-feed rate va(r, θ). Sg in the gas and Sl in the liquid.

Figure 2.3: Energy and mass balance an element of surface area of a pool flame [12]

va(r, θ) =

Kg

(
∂T

∂x

)
Sg

−Kf

(
∂T

∂x

)
Sf

+ (Q̇rad)g→f

ρf (cpv − cpf) TS + ρf�hv
(2.8)

The local burning rate of any surface element is directly proportional to the conductive,

convective and radiative flux balance across the phase discontinuity. It is inversely

proportional to the sum of the latent heat per unit volume of liquid plus the difference

in thermal capacity across the phase boundary.

11
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va =
1

πr2
0

∫ 2π

0

∫ r

0
va r drdθ (2.9)

An exact solution of eq. (2.9) would be obtained by averaging va over the entire pool

surface.

2.2.1.2 Effect of lip height, thickness and pan material

The layer thickness of the pool has an effect if it is less than that required to reach steady

state burning. Bounding materials (the material of the pan) also have great influence

on burning rates due to conduction from the solid conductive pan material to the liquid

pool but this is not valid for large diameters where the mode of heat transfer from flame

to pool slowly changes from convection to radiation [7]. A significant lip height also

leads to initiate turbulence closer to the pool edge and thereby raise convective heat

transfer. It can also change the temperature distribution of the pan walls and hence

change conduction terms in the total heat equation. It also tends to a larger, more

emissive flame volume. The effect of cross wind on the flame characteristics is studied

in much detail by many authors in the past [7, 9, 14, 16]. Some important findings

are increased convective heat transfer and there on mixing which finally enhances the

temperature of flame. It also decreases the radiative heat due to reduced flame volume

and less well centred flame. A doubling of the burning rate of a hexane pool under a

4 m/s wind conditions was observed, with no further increase for greater velocities [4].

However, certain equations are given for different range of velocities and tilt angle of

flame [13].

2.2.2 Flame length

The flame length is generally visible as the maximum length or time averaged visible

length. The length trackable by the human eye is related to the area that emits light

in the wavelength range of 380 nm� λ � 750 nm. However, it is difficult to determine

accurately the visible flame length because of temporal variation referred to as inter-

mittency. A number of semi-empirical models have been developed by many researchers

e.g. Thomas [16], Heskestad [14], McCaffrey [8], Moorhouse [7] and recently Fay [9].

The visible flames above a fire source contain the combustion reactions. Tamanini has
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Figure 2.4: Definition of mean flame height by Zukoski [3]

investigated the manner in which combustion approaches completion with respect to

height in diffusion flames. Typically, the luminosity of the lower part of the flame re-

gion appears fairly steady, while the upper part appears to be intermittent. In case of

strongly sooting flame a variation in visible flame height can be caused by temporally

variation in transmission properties of the soot cloud. Thus, reaction can be present but

not visible. This effect seems to be typically ignored when determining flame lengths.

Sometimes vortex structures, more or less pronounced, can be observed to form near

the base of the flame and shed upward. Fig. 2.4 helps to define the flame height, H.

It shows schematically the variation of flame intermittency, I, versus distance above the

fire source, x, where I(x) is defined as the fraction of time that at least part of the

flame lies above the elevation, x. The intermittency decreases from unity deep in the

flame to smaller values in the intermittent flame region, eventually reaching zero. The

mean flame height, H, is the distance above the fire source where the intermittency has

declined to 0.5. Measurements of the mean flame height according to the intermittency

measurements are fairly consistent with (although tending to be slightly lower than)

flame heights that are determined by the human eye. The mean flame length is an

important quantity that marks the level where the combustion reactions are essentially

completed and the inert plume can be considered to begin. Several expressions for mean

flame height have been proposed. Fig. 2.5, taken from McCaffrey [8] shows normalised

flame heights, H
d as a function of a dimensionless number, Q̇∗ (represented as Q̇∗2/5),

13
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Figure 2.5: Flame length correlations for different hydrocarbon fuels compiled by McCaf-
frey [3]

from data correlations available in the literature. This dimensionless number Q̇∗ can be

defined as

Q̇∗ =
Q̇c

ρacpTad2
√

gd
(2.10)

where Q̇c is the total heat release rate (given in terms of the mass burning rate, ṁf

as ṁf(− � hc); ρa and Ta are ambient density and temperature respectively; cp is the

specific heat of air at constant pressure; g is the acceleration of gravity; d is the diameter

of the fire source. Capital letters without subscripts in Fig. 2.5 correspond to various

researchers as follows: B: Becker and Liang, C: Cox and Chitty, H: Heskestad, K:

Kalghatgi, S: Steward, T: Thomas, W: Hawthorne et al., and Z: Zukoski. Capital

letters with subscripts represent chemical formulae [3].

Quoting McCaffrey [3] with respect to Fig. 2.5: “On the left are pool-configured fires

with flame heights of the same order of magnitude as the base dimension d. In the middle

is the intermediate regime where all flames are similar and the Q̇∗2/5 is seen as a 45o

line in figure. Finally, in the upper right is the high Froude number, high-momentum jet

flame regime where flame height ceases to vary with fuel flow rate and is several hundred

times the size of the source diameter.”
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2.2.2.1 Flame length model according to Thomas

Thomas [16] performed a range of experiments on wood crib fires and used the conserva-

tion of mass principle to formulate the height of the visible flame as a function of Froude

number of the fuel Frf which is defined as follows

Frf =
ṁ
′′
f

ρa
√

gd
(2.11)

According to Thomas [16] a general equation for flame length can be written as

H

d
= A

(
ṁ
′′
f

ρa
√

gd

)B

(2.12)

H

d
= A (Frf)

B (2.13)

where A and B are constants that depend on the chemical properties of fuel being burnt.

Thomas derived a value of A and B for wood crib fires as 42 and 0.61. Eq. (2.13) does

not take into account the effects of cross wind. If the effect of cross wind is considered

eq. (2.13) becomes
H

d
= 55(Frf)0.67(u∗)−0.21 (2.14)

where u∗ is the nondimensional wind velocity given by

u∗ =
uw(

gṁ
′′
f d

ρv

) 1
3

(2.15)

2.2.2.2 Flame length model according to Steward

By carrying out mass and momentum balance across the combustion zone Steward [17]

derived an equation for the total visible length of a turbulent diffusion flame as follows:

log10

(
H

y0

)
= 0.20 log10 N + 1.21 (2.16)

where N is the combustion number of fuel and defined as:
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N =
Q̇

2

c{rst + ω

ρ
′
0

}2

ρ2
a(−�hc)2gy5

0(1− ω)5
(2.17)

where

ω: Inverse volumetric expansion ratio due to combustion

ρ
′
0: Dimensionless source density (lb/ft3)

rst: Stoichiometric air to fuel ratio

ρa: Atmospheric density (lb/ft3)

yo: Source radius, respectively
(

d

2

)
(ft)

The modified form of eq.(2.17) in SI units is given by Heskestad [18] and Fay [9] which

are described in section 2.2.2.6.

2.2.2.3 Flame length model according to McCaffrey

McCaffrey [8] performed experiments on a 0.3 m x 0.3 m burner of natural gas. The

flame was a fully developed turbulent buoyant diffusion flame. The centreline and radial

flame temperature and the velocity were measured for a range of heat release rates of

10-50 kW. The data of measured temperature and velocity compiled for various heat

release rates on one plot show a constant behaviour for three regimes if plotted against

axial distance normalised by Q̇
2
5

c . He divides the entire flame into three regimes based on

x
′
which is a normalised axial distance above the fire source. The value of x

′ ≤ 0.08 m

kW−2/5 represents a continuous flame regime, 0.08 ≤ x
′
(m kW−2/5) ≤ 0.2 is considered

to be an intermittent regime and x
′ ≥ 0.2 m kW−2/5 is the plume regime, based on heat

release rate. Scaling is done in a way to allow comparison between different fuels at

different heights. An assumption of x
′
is equal to 0.2 is done for predicting the visible

flame length.

x
′ ≈ x

Q̇
2
5

c

≈ 0.2 (m kW−2/5) (2.18)

or the eq. 2.18 can be written as follows

H ≈ 0.2 (m kW−2/5)Q̇
2
5

c (2.19)
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where H is in m and Q̇c is the average heat release rate in kW.

2.2.2.4 Flame length model according to Moorhouse

Moorhouse [7] conducted several large scale tests of Liquefied Natural Gas pool fires.

The crosswind and downwind motion picture data were analysed to determine the flame

length. The correlation given by Moorhouse is as follows:

H

d
= 6.2

(
ṁ
′′
f

ρa
√

gd

)0.254

(u∗10)
−0.044 (2.20)

where u∗10 is the nondimensional wind speed determined using eq. (2.15) with measured

wind speeds at a height of 10 m.

2.2.2.5 Flame length model according to Heskestad

The correlation by Heskestad [18] represented in Fig. 2.5 covers the entire Q̇∗ range

except the momentum regime (jet flames) and has the following form

H

d
= −1.02 + 15.6N

1
5 (2.21)

where N is the combustion number defined as

N =

⎛⎜⎜⎜⎝ cpTa

gρ2
a

(−� hc

rst

)3

⎞⎟⎟⎟⎠ Q̇
2

c

d5
(2.22)

The simplified form of eq. (2.21) can be written as

H

d
= −1.02 + A

(
m kW−2/5

) Q̇
2/5

c

d
(2.23)

The coefficient, A (m kW−2/5) varies over a rather narrow range, associated with the

fact that −�hc

rst
, the heat released per unit mass of air entering the combustion reactions,

does not vary appreciably among various fuels. For a large number of gaseous and liquid

fuels, −�hc

rst
remains within the range of 2900 kJ/kg, for which the associated range of
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A under normal atmospheric conditions (293 K, 1 bar) is 0.240 to 0.226 (m kW−2/5),

with a typical value of A = 0.235 m kW−2/5.

2.2.2.6 Flame length model according to Fay

Fay’s model considers the pool fire phenomena as a combination of two zones, i.e. the

combustion zone and the plume zone. This model also takes into account the grey-body

thermal radiation (emission and absorption) by the soot particles both in the optically

thick and the thin region. Following the basic conservation laws for both combustion

and plume zone Fay derives a more precise relationship for H/d. The sensible enthalpy

flux E remains constant in the plume zone (as no fuel is available in the plume zone)

but the mass and momentum flux, i.e. M and P continue to increase. By integrating the

mass, momentum and enthalpy flux equations with suitable initial conditions and than

substituting the (x = Hcl) the full expression for length of clear flame or combustion

zone can be written more precisely as follows

Hcl

d
=
(

9π2

32

) 1
3
(

1
φ3

vηcα2
c

) 1
3
(

f3
stcpTa

−� hc

) 1
3

Fr
2
3
f (2.24)

The ratio of the visible flame length to the diameter of pool is (Following the Steward

criterion, i.e. visible length of the flame is a region where the equivalence ratio φv is 0.2)

H

d
= −x0

d
+

⎛⎝π2
(
(5)4

) 1
5

4(35)

⎞⎠
1
5 (

1
φ3

vηpα2
p

) 1
5
(

f3
stcpTa

−� hc

) 1
5

Fr
2
5
f (2.25)

where: M : Mass flux

P : Momentum flux

φv : Equivalence ratio

fst : Mass ratio of products to fuel in a stoichiometric mixture

η : Dimensionless form factor

α : Mass ratio of product to fuel in a stoichiometric mixture

cp : Specific heat capacity (kJ/(kg K))

Ta : Ambient temperature (K)

−� hc : Specific enthalpy of combustion (kJ/kg)

Frf : Fuel Froude number
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g : Gravitational acceleration (m/s2)

x0 : Distance below the pool surface where M and P are zero

Subscripts c and p stand for combustion and plume zone, respectively.

Fay also provides a simplified form of eq. (2.17) given by Steward as

N ≡ π

4

(
f3
stcpTa

−� hc

)
Fr2

f (2.26)

A wide range of LNG pool fire data (effective diameters d = 1.8 m to 35 m, wind speed

uw = 1.8 to 14.4 m/s, flame lengths H = 3.3 to 77 m, and flame tilt θ = 28o to 66o was

compared by Fay and the simplified forms of eq. (2.24) and (2.25) have been developed.

Combustion zone:
Hcl

d
= (13.8± 2.15)Fr

2
3
f (2.27)

Visible length:
H

d
= 15.5 (1± 0.095)Fr

2
5
f (2.28)

All semi-empirical models available to date may be utilised for fuels for which they have

been specifically developed. Hydrocarbon fuels seem to follow them relatively well. The

accuracy of measurements is sometimes also questionable under different atmospheric

conditions. The equations in their full form (including chemistry and turbulence) may

appear different for different fuels specifically when the chemistry of fuel is considered.

Nevertheless, they are still useful for a first approximation of the visible flame length.

Flame tilt The effect of cross wind on flame characteristics is studied in much detail

by many authors in the past [3, 4, 7, 9, 14]. Some important findings are an increase

in convective heat transfer and thereon mixing which finally enhances the temperature

of the flame. It also decreases the radiative heat due to the small flame volume and

the less well centred flame. Lois and Swithenbach [4] observe a doubling of the burning

rate of a hexane pool in a 4 m/s wind, with no further increase for greater velocities.

However, certain equations were given for different ranges of wind velocities and flame

tilt angle [13]. Fays model for predicting flame tilt under the influence of cross wind is

sinθ =
Frw

Frw + 0.19
(2.29)
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where Frw is wind Froude number defined as
uw√
gd

uw = Velocity of wind in m/s

θ = Angle of tilt in degree

2.2.2.7 Effect of unsteadiness

The measure of cyclic unsteadiness is the Strouhal number which is defined as the

product of the length scale times the frequency divided by the velocity scale. In pool

fires the length scale is d and the velocity is
√

gd. Thus, the Strouhal number is given

by

Sr = f

√
d

g
. (2.30)

The typical Strouhal number for jet flames is proportional to
√

d and is 0.48 [18]. Large

pool fires also show distinct features due to turbulence which mainly governs the fire

by fluctuations (the frequency of pulsation varies inverse root of diameter of pool, i.e. f

∝ 1√
d
)[19].

2.2.3 Flame temperature and flow velocity

McCaffrey [8] carried out extensive measurements of temperature, velocity along the

centreline of fully developed buoyant diffusion flame in a 0.3 m × 0.3 m natural gas

porous burner [14]. In Fig. 2.6 and 2.7 the measurement of temperature difference

between flame and ambient i.e. �T , measured with the thermocouples and velocity

of gases (measured with the pressure probes) normalised by Q̇
1
5

c for four different heat

release rates is shown against the normalised distance x
′
(see eq. (2.18)).

As can be seen the data of �T and u/Q̇
1
5

c show the similar trend for a specific region

of x
′
irrespective of the heat release rates. So the entire fire can be divided into three

regimes based on x
′
. The value of x

′ � 0.08 represents the continuous flame regime,

0.08 � x
′ � 0.2 is considered to be the intermittent regime and x

′ � 0.2 is the plume

regime, based on heat release rate. Scaling is done in a way to allow comparison between

different fuels at different heights (Figs. 2.6 and 2.7). This scaling helped to classify the

three different regimes in a large pool fire quantitatively as shown in Fig. 2.1.
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Figure 2.6: Centreline average temperature for different heat release rates [14]

Figure 2.7: Centreline average velocity for different heat release rates [14]
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A number of measurements were made to define the thermal and flow conditions in

a 9 m x 18 m JP-4 pool fire by Schneider et al. [20] to simulate a transportation

accident. Temperatures were measured (with thermocouples, ±8oC) at twenty-eight

locations throughout the continuous flame region. Velocities were measured (with bi-

directional pressure probes, ±7 m/s) at four vertical positions near the centreline of

the pool. The measurements of gas velocity made in the lower continuous flame region

(Fig. 2.8) in this study agree well with the data available from smaller fires. Velocity

measurements (Fig. 2.9) at higher positions than those addressed here (in the upper

continuous flame and the intermittent flame region) in fires of this size have not been

published to date. These measurements should be attempted in future to study if the

agreement with small fires continues in this region.

Temperatures measured in this study have been compared with the results of others.

Comparisons are difficult because of the lack of information in many cases about the

existing winds, and the known strong wind effects. In spite of these difficulties, a scheme

has been attempted which mitigates, to some degree, the effects of mild wind conditions.

The average temperatures conditioned for times of low wind have been compared with

results of other workers taken during times of ”quasi-steady” burning and reasonable

agreement was found at low stations (x
′ ∼ 0.02 m kW−2/5) [20].

In the plume zone mass and momentum flux continue to increase but the mass flow

average value of temperature T and velocity u decline according to the relation below:

T

Ta
− 1 =

(
π2(5)4

4(35)

) 1
3
( −� hc√

ηpαpcpTa

) 2
3

(Frf)
2
3

(
x + x0

d

)−5
3

(2.31)

u√
gd

=
(

25π

48

) 1
3
(

ηp(−� hc)
α2

pcpTa

) 1
3

(Frf)
1
3

(
x + x0

d

)−1
3

(2.32)

Eq. (2.31) and (2.32) are the results of mass, momentum and energy balance across the

combustion and plume regime of a large pool fire [9]. The notations have been already

defined in section 2.2.2.6. The important facts both equations carry along are the tem-

perature and velocity both tend to decrease along the length of the flame with a power

of 5
3 and 1

3 respectively.
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Figure 2.8: Centreline measured average temperature for different heat release rates [20]

Figure 2.9: Centreline average velocity for different heat release rates [20]
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2.2.4 Adiabatic flame temperature

For a closed, adiabatic system (δQ = 0), the first law of thermodynamics yields the total

enthalpy dh=0. Furthermore, the overall mass is constant.

Therefore, the enthalpy of reactants (denoted as index r) and products (denoted as index

p) have the same specific enthalpy.

∑
i

wriΔhri(Ta) + (−Δhci) =
∑

j

wpjcpj(Tad − Ta) (2.33)

here, wri is the mass fraction of reactant i before combustion, Δhri is the enthalpy

of each reactant at ambient temperature, (–Δhci) is the heat of combustion, in J/kg,

wpj is the mass fraction of products j with average heat capacity cpj and the reference

temperature is taken as ambient, Ta. By using eq. (2.33) Tad of the stoichiometric

TBPB and TBPEH pool flames can be determined [3, 14, 62]

2.2.5 Thermal radiation

One of the main reason for determining safety criteria is due to the damage caused by

fires due to heat radiation [7].

2.2.5.1 Point source model

The point source thermal radiation model is based on the following assumptions: (1)

the flame can be represented as a small source (point) of thermal energy; (2) the energy

radiated from the flame is a specified fraction of energy released during combustion; and

(3) the thermal radiation intensity varies proportionally with the inverse square of the

distance from the source.

Expressed mathematically, the average irradiance E at any distance from the source is

given by the following equations:

E =
Q̇rad

4πΔy2
(2.34)

and

Q̇rad = fradṁ
′′
f (−� hc)AP (2.35)
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Here, Q̇rad: Average total energy radiated per unit time (W)

ṁ
′′
f : Fuel mass burning rate (kg/(m2 s))

frad: Fraction of combustion energy radiated

Δy: Distance from source to the receiver (m)

While the above model is elegant because of its simplicity, two important limitations

should be recognised. The first involves the modelling of radiative output and the second

is the description of the intensity as a function of distance from the source.

The most important parameter in the point source model is the fraction of combustion

energy radiated to the surrounding. This fraction frad can be estimated by several ex-

pressions e.g. OSRAMO [11] and by using measured radiometer data. There is extensive

laboratory data which suggest that the radiation from buoyant diffusion flames remains

proportional to the overall heat release rate provided the flame is fully turbulent and the

flame geometry is properly scaled. It was shown in [7] that the radiative power linearly

varies as a function of heat release rate for a propane diffusion flame. Similar laboratory

data is available for gaseous ethane, methane, ethylene, butane and propylene diffusion

flames, gasoline, hexane, benzene and liquefied natural gas, methanol, unsymmetrical

dimethylhydrazine and hydrogen pool fires.

It is suggested that the radiative fraction for geometrically similar buoyant turbulent

diffusion flames is constant due to an essentially invariant Kolmogorov microscale. This

assumes that the flames are both optically thin and chemically similar and hence the

radiative fraction is determined by the thermochemical properties of the fuel. Both these

assumptions break down as one goes from a “moderate scale” laboratory experiment to

a “large scale” field experiment as the atmospheric conditions i.e. cross wind affects

the radiation upto a great extent. At present, however, there is insufficient composition

data on larger fires to clearly delineate the dependence between moderate and large

scale fires. The equated point source and a uniformly radiated cylindrical source model

concluded that the fraction of combustion energy radiated may be expressed as follows

[7]:

frad =
SEP

ṁ
′′
max(−� hc)

(
1 + 4

H

d

)
(2.36)

Here SEP is the average surface emissive power of the flame in kW/m2. Since the flame

height is influenced by the flame diameter (with larger diameter flames have shorter
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flame heights), it is concluded in [7] that the fraction of energy released by radiation

should decrease for larger fires. However, in large scale hydrocarbon pool fires, smoke

obscuration contributes to a reduction in measured flame emissive powers. Therefore,

the effect of flame geometry on the radiative fraction may be of second order.

The second limitation to be observed in a point source model is that the model over-

estimates the intensity of thermal radiation at observer locations close to the fire. This is

primarily because the near field radiation is greatly influenced by the flame size, shape,

tilt and the relative orientation of the observer. The model, however, predicts far field

thermal radiation intensities with reasonable accuracy.

In summary, a point source model provides a simple and elegant means of estimating

thermal radiation intensity in the farfield where the effects of flame geometry are not

significant. This can be used to determine thermal radiation hazards to personnel, where

normally a conservative estimate of hazard is acceptable. Caution must be exercised in

using the model to determine siting criteria, such as spacing between two storage tanks

as the engulfment of multiple storage tanks in fire may produce a very different scenario

of radiation hazard than that in case of single tank.

2.2.5.2 Conventional and modified solid flame radiation model

A more useful approach generally used in the literature to evaluate the thermal radiation

field around a fire is based on recognising the fact that the radiation originates from the

hot products of combustion. This approach is based on the fact that the entire volume

of the flame emits thermal radiation in the luminous spectral range and partly in the less

intensive non luminous infrared range. The rate of thermal radiation is significant only

from the infrared spectral region. The measurements have confirmed that the irradiance

of the burnt gas (non-luminous) plume above a fire accounts for less than 10% of the

mean irradiance of the visible fire [7].

A simplified version of this model is called the ”solid flame radiation model” and it

is widely used for describing thermal radiation from large hydrocarbon fires. The solid

flame model assumes the flame to be a cylinder with diameter equal to the base diameter

of the fire and axial length equal to the length of visible fire plume. The flame is assumed

to radiate isotropically in horizontal direction and inhomogeneously in axial direction.
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The determination of the average surface emissive power SEP of a flame is more diffi-

cult. The thermal radiation from a fire emanates from both gaseous species such as water

vapour, carbon dioxide and carbon monoxide as well as from luminous soot particles.

The gaseous species emit radiation in certain spectral bands whereas the soot radiation

is continuous over the entire spectral range of flame. The theories of gas radiation and

the models developed to describe the band emission from various gases are described

in most text books on radiative heat transfer. Some simplified calculation procedures

have been developed for obtaining the gas emissivities. A model proposed in [7] which

considers fire as a two-species emitter whose total radiance is equal to the weighted sum

of the radiation due to gas emissions and that due to luminous soot.

The surface emissive power (SEP) of a pool fire is given in the conventional solid flame

radiation model:

SEP = SEP bε̄F (2.37)

Here,

SEP b: Black body average surface emissive power (kW/m2)

ε̄F: Flame emissivity

with the surface emission temperature TF of the fire is known (which is significantly less

than the adiabatic flame temperature) the black body emissive power is given by:

SEP b = σ
(
T

4
F − T 4

a

)
(2.38)

where

TF: Average surface emission temperature of the flame (K)

Ta: Ambient temperature (K), and

σ: Stefan-Boltzman constant (kW/(m2K4))

In the conventional solid flame model ε̄F = 0.95 (valid for optical thick flames) is assumed.

The emissivity accounts for the fact that the flame is a grey emitter, i.e. not an ideal

black body radiator. Calculation of combined emissivity of the burnt gases (soot, water

vapour and carbon dioxide) is extremely difficult even when the concentrations are

uniform and the temperature is constant. The emissivity also depends on the path

length through the fire. The combined emissivity is given by:

ε = εs + εc + εw −�εc,w (2.39)
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where,

εs: Spectrally averaged emissivity of soot,

εc, εw: Molecular band integrated emissivity of CO2 and H2O and,

�εc,w: Correction factor for the CO2-H2O band overlap

It was shown that the soot emissivity can be determinded by the following expression[7]:

εs = 1− 15
π4

ψ3{1 +
7
C2

TFCL} (2.40)

Here,

C : Effective soot concentration parameter,

L : Path length (m)

C2 : Planck’s second constant, and

ψ(3) : Penta gamma function

Many experimental data on soot emission from luminous flames of gaseous, polymer and

wood fuels were reviewed and it was demonstrated that eq. (2.41) can be approximated

by the following expression for a grey emitter:

εs = 1− e−ksL (2.41)

where

ks = 3.6
CTF

C2
(2.42)

is the effective soot emission parameter.

There has been considerable discussion on whether luminous flames can be regarded

as being spectrally gray. In general, the emissivity of a homogeneous mixture of path

length x can be given by:

εm(x) =
1

σT 4
F

∫ ∞

0
SEPb(λ) (1− exp(−kmλx)) dλ (2.43)

If the mixture is spectrally gray, km = kmλ and the integral becomes

εm(x) = ε = 1− exp(−kmx) (2.44)

where km: Extinction coefficient (m−1)
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From a theoretical point of view, the assumption of a homogeneous gray mixture per-

mits the calculation of radiative heat transfer in terms of the characterstics flame shape

and the single dimensionless optical depth parameter kmx, where x is some characterstic

length for a particular geometry. This assumption simplifies such calculations.

For large fires, the numerical value of flame emissivity approaches unity. Therefore, the

SEP can be determined using the surface emission temperature TF. However, the TF

for many liquid fuels are not available. In fact, measurements of radiative flux using

narrow angle radiometers are often used to predict the SEP and the irradiances E for

some liquid hydrocarbon fuels.

Most hydrocarbon fuel fires become optically thick when the diameter is about 3 m or

larger. Under these conditions, the SEPmax that has been determined for gasoline fires

is in the range of 110 to 130 kW/m2. It was reported that the SEP of 130 kW/m2 for

1.5 diameter fires and 20 kW/m2 for 10 m diameter fires. The measured irradiance E

appears to decrease for larger fires, indicating that the SEP is decreasing with increas-

ing d [7].

It has been observed in large liquid hydrocarbon fuel fires with a carbon to hydrogen

ratio greater than about 0.3, that a substantial part of the fire is obscured by a thick

black smoke on the outer periphery. This smoke layer absorbs a significant part of the

radiation and results in a very smaller irradiance to the surroundings. However, occa-

sionally the smoke layer opens up exposing the hot flame and pulse of intensive radiation

is emitted to the surroundings.

Although the thermal radiation from black relatively cold smoke is low, the hot spots

appearing on the flame surface due to turbulent mixing have a higher SEP . Large ed-

dies within the flame bring fuel to the outer edges of the fire plume and a more efficient

combustion takes place on the flame surface. Based on a qualitative observation of the

movie records of kerosene fires on land and gasoline fires on water, it appears that the

luminous zones cover approximately 20% of the flame surface area, on a time averaged

basis. These luminous spots have an emissive power of about 110-130 kW/m2. However,

it is not possible to calculate the radiation field surrounding a fire with intermittent lu-

minous spots. It has been also observed that the emissive power of the black smoke is

about 20 kW/m2 and the temperature is about 800 K.

From a hazard prediction point of view, one can combine the thermal radiation from

the black smoke with the radiation from luminous spots on an equivalent area basis to

arrive at an SEP for the fire. For example, if we assume that 80% of the surface area
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is covered with black smoke and 20% with luminous spots, the SEP is given by the

following expression:

SEP = 0.2[130] kW/m2 + 0.8[20] kW/m2 = 42 kW/m2 (2.45)

Such an estimate is consistent with the wide angle radiometer measurements of JP-4,

JP-5 and gasoline fires [7].

2.2.5.3 View factors

The view factor between a fire and a receiver element outside of the fire depends on the

flame shape, the relative distance between the fire and the area of the receiving element,

and the relative orientation of the element. In general, the view factor is defined by the

following equation:

ϕF,R =
1

πΔAR

∫
AF

∫
AR

cos βF cos βR

Δy2
dAFdAR (2.46)

Here, βF and βR are respectively the angles made by the normals and dAF on the fire

and dAR on the receiving element; where Δy is the distance between the fire element

and the receiving element. The integration is carried out over the entire surface of the

flame. In the point source model, the radiant intensity at any location is calculated

Figure 2.10: View factor between flame and receiver

using inverse square law. The finite size of the source can be taken into account by
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determining the radius of an equivalent sphere or a hemisphere located at ground level.

The view factor is given by the following equation:

ϕp ∼
(d
2)2

Δy2
(2.47)

where d
2 is the radius of the source and �y is the distance from the centre of the fire

to observer location. As pointed out earlier, point source models are applicable at large

distances from the fire.

In the solid flame model, the turbulent flame is approximated by a cylinder. Under

wind free conditions, the cylinder is vertical. Under the influence of wind, the cylinder

is assumed to be tilted. These two configurations of the solid flame model are shown in

[7, 11]. The horizontal and vertical view factors (Fig. 2.10) for a vertical cylinder are as

follows:

b =
y1

(d/2)
= 1+

Δy

(d/2)

a =
H

(d/2)

A = (b + 1)2 + a2

B = (b− 1)2 + a2

ϕR,F,h =
1
π

(
tan−1

√
b + 1
b− 1

−
(

b2 − 1 + a2

√
AB

)
tan−1

√
(b− 1)A
(b + 1)B

)
(2.48)

ϕR,F,v =
1
π

(
1
b

tan−1 a√
b2 − 1

+
a(A− 2b)

b
√

AB
tan−1

√
(b− 1)A
(b+1)B

− a
b

tan−1

√
(b− 1)
(b+1)

)
(2.49)

The maximum view factor is the vectorial sum of horizontal and vertical view factors

and is as follows:

ϕF,R,max =
√

ϕ2
F,R,h + ϕ2

F,R,v (2.50)
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2.2.5.4 Atmospheric absorption

The radiation from the fire to surrounding objects will be partially attenuated by ab-

sorption and scattering along the path. The main species of the atmosphere that absorb

thermal radiation are water vapour (H2O) and carbon dioxide (CO2).

The absorption by the water vapour and carbon dioxide in a certain length of the atmo-

sphere of black body radiation from a source can also be calculated using the emissivity

charts published by Hottel and Sarofim [7].

2.2.6 Organised Structures Radiation Models (OSRAMO II, OSRAMO

III)

The Organised Structure Radiation Models (OSRAMO)[11, 94] take into account the

specific SEP of hot spots (hs) and soot parcels (sp). It is assumed that the hot spots,

soot parcels, effective reaction zone (re) and the fuel bales (fp) have homogeneous entity

characterised by the lengths li(i = hs, sp, re, fp). These organised (dissipative) structures

i can partially emit, absorb and transmit thermal radiation. It is further assumed

that these structures i have different, but constant medium temperatures and effective

absorption coefficient. It is also assumed that hot spots and soot parcels with flame

diameter–dependent surface area ratios occur on the flames surface. In the models

OSRAMO II, III this is the first time the highly complex three-dimensional thermal

radiation phenomenon adequately taken into account.

The heat radiation model OSRAMO II regards the different thermal radiation of the

coherent structures hot spot and soot parcel and their mean area fractions on the flame

surface, depending on the fuel and the pool diameter. With this model it is possible to

give a realistic description of the thermal radiation of large scale pool fires [11, 21, 85].

The thermal radiation from the reactive zones is by the hot spots and soot parcels

absorbed and then partially re-emitted. The average specific SEP of the entire surface

according to OSRAMO II consists of the SEP of the structural elements: Soot parcels

and hot spots and can be written as

SEP
II
OS(d) = SEP hs ahs(d) + SEP sp asp(d) (2.51)
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where a stands for the area fractions of hot spot (hs) and soot parcels (sp).

In the stochastic radiation model OSRAMO III [85] from the empirically determined

log-normal probability density functions for JP-4 pool fire and relating large, sooty,

hydrocarbon pool fires, considering the temperatures and temperature ranges, as well as

the areas of hot spots and soot parcels, the mean surface emissive power SEP
III
act(d, f)

is calculated by:

SEP
III
act(d, f) =

∫
SEP

gSEP

(
SEP, d, f

)
SEP dSEP, for d ≥ 1 m (2.52)

With OSRAMO III the pdf of temperature (gT) and SEP (gSEP) regions of hot spots

and soot parcels can be determined by using the probability density function of T and

SEP [11, 21, 85].

2.3 Organic peroxides

Organic peroxides are extensively used as initiators of free-radical polymerisation in

polymer production. Organic peroxides can have a variety of characteristics depending

on their chemical structure and reactivity. The reactivity of the peroxides depends on

the peroxide group configuration and on the type of substituents. Organic peroxides can

be classified into different groups depending on their chemical structures (see Table 2.1)

[24]. Organic peroxides combine a number of interesting features for the application in

organic synthesis:

• High purity

• Good solubility in most organic systems, enabling homogeneous reaction conditions

• Well defined and temperature controlled reactivity

• High efficiency in radical formation

• Relatively low cost/performance ratio

Peroxides are unstable compounds and therefore knowledge about their safe handling is

of great interest [25, 26, 28, 29, 30]. A wide range of publications on several safety pa-

rameters determination based on thermal stability, the fast decomposition, mechanical

sensitivity, flammability, sensitivity to contamination and also their physiological effects

have been reported and outlined in the United Nations recommendations on the trans-

port of dangerous goods under Class 5. In general, organic peroxides are not explosive
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but their decomposition may lead to explosion, particularly if confined [26]. The safety

distance calculations and assignment of an organic peroxide in a particular storage group

is determined by their intensity of burning [26, 29].

A number of large fire tests were carried out during the last decades in different organ-

isations to develop uniform guidelines for such safety measures [7, 27]. Most of such

tests reported in the literature are for packaged materials either solid or liquid. One

such large scale test for two organic peroxides [tert-Butyl peroxybenzoate (TBPB) and

tert-Butyl peroxy-2-ethylhexanoate (TBPEH)] was carried out in the Federal Institute

for Materials Research and Testing (BAM) during 1979.

The chemical structures of some organic peroxides: DTBP (Dialkylperoxide), TBPB

(peroxyester), TBPEH (peroxycarbonates), TBHP (Dialkylperoxide) and INP (Diiso-

nonanoylperoxide) are shown in Fig. 2.11. An experimental and numerical approx-

imation of this test in a form of a pool fire has been also carried out in this work.

The stoichiometric combustion and the physical and chemical properties of TBPB and

TBPEH are listed in Table 2.2 [29, 30, 31].

TBPB

C11H14O3+13O2 −→ 11CO2+7H2O

TBPEH

C12H24O3+33
2 O2 −→ 12CO2+12H2O

The temperature dependence of single step chemistry for combustion is modelled by an

Arrhenius relationship (used to calculate source or sink term in the energy and species

conservation equation) which states:

k = AT β exp
(−EA

RT

)
(2.53)

Where k is the reaction rate constant; A is pre exponential factor; EA is activation

energy; β is reaction dependent parameter.
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Figure 2.11: Chemical structures of DTBP, TBPB, TBPEH, TBHP and INP [31]
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Parameter TBPB TBPEH

Molar mass (g/mol) 194.23 216.32

Activation energy (stoichiometric combustion) (kJ/mol) 151.59 124.90

Pre-exponential factor (1/s) (stoichiometric combustion) 2.23x1016 1.54x1014

Reaction dependent coefficient β 0 0

Specific enthalpy of formation (kJ/kg) –1377 –1158

Heat of combustion (kJ/kg) 30113 34455

Refractive index 1.499 1.428

Dynamic viscosity (mPa s) 8 4

Density (kg/m3) 1037 900

Table: 2.2: Properties of TBPB and TBPEH

2.3.1 Self Accelerating Decomposition Temperature of organic perox-

ides

The capability of organic peroxides to decompose may initiate violent chemical reac-

tions leading to explosions. Therefore, the Self-Accelerating Decomposition Tempera-

ture (SADT) is an important characteristics to be defined for organic peroxides. The

SADT is defined as the lowest temperature at which self accelerating decomposition may

occur with a substance in the packaging as used in transport. The SADT is a measure

of the combined effect of the ambient temperature, decomposition kinetics, package size

and the heat transfer properties of the substance and its packaging [26]. The extrapo-

lated onset temperature is defined as the point of intersection of the tangent drawn (on a

heat flow versus temperature diagram) at the point of greatest slope on the leading edge

of the peak with the extrapolated base line [95]. Malow and Wehrstedt [29] describe

the use of Differential Scanning Calorimetry (DSC) for the measurement of SADT of

different organic peroxides.

2.3.2 Fire and explosion hazards of organic peroxides

The organic peroxides contain a large amount of oxygen which directly supports the

combustion and explosion processes, even though air is excluded. The unusual burning

characterstics of Benzoyl peroxide have been demonstrated in tests which show that it
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ignites under about one-fifth the amount of the heat required to ignite black powder,

and that it burns with great rapidity [25].

Organic peroxide fires have much higher burning rates and will burn faster than usual

flammable liquids or combustible solids. For instance, automatic sprinklers will not usu-

ally operate in time to extinguish a fire when some of the more reactive organic peroxides

have started to burn. They will, however, serve to cool adjacent containers and prevent

other combustibles from burning. Ditertiary butyl peroxide burns at a rate ten times

that of an equal quantity of methanol in small test quantities [25]. As the burning of

most organic peroxides is a rapidly accelerating phenomenon, small scale tests are not

always a satisfactory indication of high mass burning rate of large quantities of these

peroxides.

In general, liquid organic peroxides, combined with diluents in the form of a paste or

liquid, burn at a slower rate than the concentrated peroxide and it is usually less sensi-

tive to thermal shock or impact. The choice of the diluent is important in determining

the hazard of such materials. The fire hazard is reduced only during the time when both

the organic peroxide and diluent burn off simultaneously. It has been demonstrated that

diluents which burn either more or less rapidly than the organic peroxide permit some

of the hazardous chemical to be consumed alone and with great rapidity, sometimes

approaching explosion. The more desirable mixtures of organic peroxides and solvents

are likely to produce a type of burning in which the whole mass is burnt more slowly

and can be easily extinguished. The use of volatile solvents which may entrain or creep

up the sides of a container and evaporate should be avoided. This can result in the

deposition of very sensitive concentrated peroxides.

Some of the organic peroxides will decompose slowly when exposed to a slow and gradual

increase in temperature. On the other hand, these materials can decompose violently or

even explode when subjected to a rapid and excessive increase in temperature. This be-

haviour is termed ”thermal shock”. Benzoyl peroxide is typical of this, as it is sufficiently

unstable to be exploded by rapid heating in a confined space [25].

2.4 Modelling and simulation of pool fires

Pool fire modelling presents number of significant challenges to researchers due to si-

multaneous occurrence of complex physical phenomena e.g. turbulence and combustion.
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A coupling is required between these two along with not loosing too many realistic fea-

tures e.g. soot formation, radiation blockage, etc. Such phenomena are modelled in the

literature by using Navier-Stokes equations using a turbulence model (most often k-ε)

for closing the system of equations. A more advanced model i.e. Large Eddy Simulation

(LES) is proposed by Ferziger et al. [32] where all small eddies are modelled by k-ε or

other standard turbulence model but the large scales are solved explicitly on the compu-

tational grid. Direct Numerical Simulation (DNS) for small sized domains is considered

to be the most expensive and time consuming tool for reactive flows. In DNS all the

scales of motions are resolved to full accuracy and without using any models for closure.

However, the use of DNS is limited to fundamental research and results obtained can be

a source to modify existing RANS models [33, 34, 35]. Some LES codes were developed

and validated for large fires by several research groups e.g. ISIS-3D and Fire Dynamics

Simulator. Details can be found in [33, 34].

After reviewing 200 papers on the basis of multistep chemistry, more elaborate model

than unity Lewis number (Le = 1) for molecular transport and unsteady strain rate in

the reaction zone Hilbert et al. [34] conclude that there is still much to be done concern-

ing identification of chemical pathways, accurate determination of rate constants and

the development of reliable chemistry reduction techniques. They also emphasised the

requirement of a proper balance between chemistry and transport models along with

other realistic physical phenomena that occur simultaneously. Due to strong coupling

between chemistry and diffusion of heat and species, reliable and simplified models for

turbulent combustion have been developed. These models assume the chemical reaction

to take place only in a single step and neglecting the effect of detailed chemical reactions

in comparison to turbulent mixing. However, such approximation leads to poor results

when pollutant emission and there stability is concerned. The applicability of a partic-

ular method depends mainly on the available computational resources and the details

expected from the simulation. DNS calculations are often considered as ’numerical ex-

periments’ where unwanted physical effects can be excluded [34]. LES is somewhere in

between RANS and DNS in terms of accuracy and cost. RANS is still the best choice

for industrial applications where the mean flow quantities are primarily of concerned.

Hilbet et al. [34] consider RANS as an estimation of major trends of ’happening’.

38 BAM-Dissertationsreihe



Chapter 3

Experimental Investigations

3.1 Description of measuring instruments

The following measuring instruments were used to measure the physical, chemical and

thermo-dynamical properties of the TBPB and TBPEH. The working principle and state

of the art of each instruments are discussed in the respective sections.

3.1.1 Dynamic Differential Calorimetry (DDC)

Dynamic differential scanning calorimetry (DDC) is widely used to capture the physical

and/or chemical properties changes caused by temperature variations. At the same

time, the specific heat capacity at constant pressure cp and its temperature dependence

cp(T ) is determined with an accuracy in the ±1% range [53]. The concept of Dynamic

Differential Scanning Calorimetry is available as DSC (Differential scanning calorimetry)

and DTA (Differential Thermal Analysis) methods. Fig. 3.1 presents the schematic of

such a measuring device [36, 37, 38].

The principle of DSC is to identify the heat using a double measuring equipment. This is

according to the DIN (German Institute for Standardisation) definition of the thermal

analysis and temperature control. The following processes are possible by controlled

programming of the temperature variation [37, 38]:

• time-linear heating/cooling

• isothermal measurements in the single-step mode
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Figure 3.1: Schematic of a Differential Scanning Calorimeter (DSC) [36]

• isothermal measurements in the multi-step mode

• measurements with so-called modulate heating.

The DSC measures temperature difference between sample and reference with a com-

mon, highly insulated heat supply. The conversion or heat of reaction is determined by

integration of peak areas considering the weight of the sample. For DSC measurements

a sample size in the order of a few mg is sufficient. By DSC measurements the following

quantities can be determined:

• Determination of the melting and crystallisation behaviour

• Determination of the glass transition temperature

• Determination of the specific heat capacity

• Determination of activation energy.

In this work, the DSC is used to determine the activation energy EA of the thermal

decomposition reaction of TBPB and TBPEH. The device ”Pyris Diamond DSC from

Perkin Elmer was used for the measurements.
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The measurements were carried out at temperatures from 273 K to 523 K with heating

rates of 0.2 K/min, 0.5 K/min, 1.0 K/min, 5.0 K/min, 10 K/min and 20 K/min.

3.1.2 Thermocouples

The working principle of a typical thermocouple in shown in Fig. 3.2 [43] where two

wires composed of dissimilar metals are joined at both ends and one of the end is heated,

there is a continuous current which flows in the thermoelectric circuit. The open circuit

voltage (the Seebeck voltage) is a function of the junction temperature and the two

metals.

All dissimilar metals exhibit this effect. The most common combinations of two metals

e.g. Ni-Cr or Pt-Rh. For small changes in temperature the Seebeck voltage eAB is

linearly proportional to temperature difference ΔT :

ΔeAB = ΓΔT (3.1)

Where Γ, the Seebeck coefficient, is the constant of proportionality. The uncertainties

Figure 3.2: Schematic of a typical thermocouple

in thermocouple (K type) measured temperature in a large sooty pool fire are ± 8oC.

Under non-uniform temperature conditions or the situation where the thermocouple can

not see the flame (e.g. tilted flame under cross wind) the errors are high due to low

atmospheric absorption of radiation.
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3.1.3 Thermographic camera

Infrared thermography (Fig. 3.3) is the technique for producing an image of infrared

light (Fig. 3.3) emitted by objects due to their thermal condition [44]. An infrared (IR)

thermography system is used widely for optical measurement of temperature for a wide

range of applications. The IR thermography system consists of an infrared sensor, a video

camera and a computer with integrated software which converts measured irradiances in

temperatures. During the test the sequence of infrared images were registered within the

camera. Since the system first measures irradiance therefore, it is required to convert it

into temperature by setting the emissivity, transmissivity, distance between the camera,

the object ambient temperature, reflection and absorption of the flame.

The conservation of energy law states that [44]:

Figure 3.3: The electromagnetic spectrum [44]

ε + � + τ = 1 (3.2)

ε, � and τ are emissivity, reflectivity and transmissivity respectively. For opaque targets,

τ = 0 and the equation reduces to:

ε + � = 1 (3.3)

According to eq. (3.3) a high emissivity means a low reflectivity. Calculations show the

measurement uncertainty gets unacceptably high for target emissivities below about 0.5

[44].
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The emissivity is a material property. The shape of an object affects its emissivity.

Other factors affecting emissivity include: viewing angle, wavelength and temperature.

The wavelength dependence of emissivity means that different IR cameras can get dif-

ferent values for the same object.

The major source of error in thermographic measurement comes from the wrong setting

of objects emissivity as mentioned before. The other components which may introduce

error are the atmospheric temperature, the background noise level and the object tem-

perature. In general the object temperature should be 50o C higher than the background

temperature [41, 42]. The situations where the noise i.e. pressure signals are much more

stronger than the signals of radiation of the object may have a significant contribution

towards error in measurements.

3.1.4 Radiometers

The measurements of heat flux (irradiance) at different distances from the fire are carried

out by using the radiometers manufactured by Meditherm Corporation, USA. The heat

flux from the fire is absorbed by the surface of the sensor (Fig. 3.4) which is covered

by a purged window. The opening angle of the window can be adjusted from 7 to 150o

depending on application. A number of water and purge tubes are connected to the

flange for cooling and cleaning of sensors. The working principle is based on the concept

Figure 3.4: Schematic of a typical radiometer [96]

that the flow of heat flux between a source (sensor) and sink (reference) is proportional

to the temperature difference between source and sink. The transducers at source and

sink are equipped with thermocouples or thermopiles to form an electric circuit. The

induced emf (electro motive force) in the circuit is directly proportional to the heat

transfer rate.
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The uncertainty in the radiometer measurement is ± 3 % (upto 95 % confidence level)

for a range of heat flux of 2-40000 kW/m2 [96].

3.2 Experimental set-ups for small and large scale fire tests

3.2.1 Construction

The fire tests were conducted in a laboratory bunker of the Federal Institute for Materials

Research and Testing (BAM) and at the BAM Technical Safety Test Site. The size and

the materials of the pans are given in Table 3.1. The experiments from pool diameter

of 0.059 m to 0.18 m were carried out in the laboratory and from 0.5 m to 3.4 m in

diameter in the outside technical safety test facility.

Figure 3.5: Small scale test set up

The arrangement of small scale tests is shown in Fig. 3.5 where the fuel pan was placed

on top of a weighing instrument. The thermocouples were located at increased axial

distance above the liquid pool surface. The video camera, thermographic camera and

radiometers were located at a defined location (depending on the intensity of the flame)

from the flame. The same arrangement was followed for the large scale test as well which

can be seen in Fig. 3.6.
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Pan Material Pool Diameter (m) Pan Height (m) Pan Wall (m)

Steel 0.059 0.051 0.0015

Steel 0.107 0.51 0.0012

Steel 0.18 0.51 0.0012

Steel 0.5 0.08 0.003

Steel 1.0 0.08 0.003

Steel 3.4 0.08 0.003

Table 3.1: Size and material of pans

Figure 3.6: Large scale test set up

3.2.2 Fuels

Two organic peroxides i.e. TBPB and TBPEH (technically pure, Degussa, Arkema and

United Initiators, Germany) were selected for this study. The motivation behind the

selection of these two particular substances was to compare the pool fire characterstics

with the large scale packaged material fire test (described in section 3.6) carried out

with the same substances in 1979.
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3.2.3 Mass burning rate

For the determination of the mass burning rate an electronic precision scale and load

cell were used for each of the experiments in the laboratory and at the test site. The

electronic precision balance Sartorius 1203C MP3 was used in combination with a DA

converter Sartorius 7087 and a compensation recorder PM 8222. The writer speed and

sensitivity of the scale were adjusted to the respective experimental conditions. A load

cell (measuring up to 50 kg) from HWM Ltd. and a load cell (measuring range up to 500

kg) from Burfter Ltd. were used for the measurements of mass burning rates in the field

tests. The centrical 3-point location load cell was installed and linked to a computer.

Consequently, the decrease of amount of fuel during the burning time in the connected

to computer records. This enabled the mass burning rate (kg/s) to be gradually seen.

The mass burning rates (kg/(m2 s)) have been found by the reference to the surface area

of the burning pool.

3.2.4 Flame length

Flame lengths were measured by using the movie sequence recorded by a video and a

thermographic camera. The instantaneous images of the flame obtained during the main

burning period were then converted into time averaged value of the flame length.

3.2.5 Flame temperature

The flame temperatures were measured with the thermocouples in the laboratory ex-

periments and with the infra-red thermography system. The thermocouples (type K,

Ni-CrNi, d = 1 mm, type S, Pt-PtRh, d = 0.5 mm, Thermocoax sheath thermocouples)

measured values of temperature were directly stored in computer. There were several

thermocouples (depending on the size of the flame) positioned at the centre of the flame

at the top and around the base of the flame.

The IR thermography system ThermaCAMTM Researcher from FLIR Systems Ltd. was

used for the measurement of flame surface emission temperatures. The system has a

capacity of maximum image resolution of 240 x 256 pixels in colour. The thermal sen-

sitivity of the device lies in the range of �T = 0.08 K at 30oC at standard 50 Hz and

the accuracy is ± 2% of measured value. Maximum 50 digital images saved within 1
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s. The detectable Wavelength ranges from 7.5 μm to 13 μm. The distance from fire to

camera was varied according to the diameter of pool e.g. it was 62 m for d = 3.4 m. The

emissivity was set to 0.9. The error in the temperature measurement increases with the

decrease in emissivity (T ∝ 1
ε0.25
F

). The value of emissivity (0.9) seems to be reasonable

for turbulence and radiation dominated pool fires as also described for optically thick

hydrocarbon pool fires in [14, 27, 41, 98]. Nakos [98] carried out uncertainty analysis by

considering both convective and radiative heat transfer in large hydrocarbon pool fires

and concluded that the εF = 0.85 and T = 1300 K under low wind conditions whereas

an emissivity εF = 0.4 and T = 1700 K under cross wind (10 m/s) conditions. Since the

cross wind speed (see Table 3.2) in the present measurements were negligible therefore

the uncertainty due to the unknown emissivity expected to be much lower.

3.2.6 Surface emissive power

The device ThermaCAMTM delivers surface temperatures of the investigated objects,

as described in section 3.2.5. These temperatures can be converted to Surface Emissive

Power (SEP ) by using the the Stefan-Boltzmann law (eq. (2.38)). The selection of

the emission level εF was based on the facts reported in [45]. The consequence of the

uncertainties in the measurement of flame temperature due to the unknown emissivity

will result in e.g. a lower value (when εF is higher) of SEP .

3.2.7 Irradiance

For irradiance measurements ellipsoidal radiometers (Meditherm Ltd., USA) and in-

frared sensors (Sensors-Inc Ltd., USA) were used. Three ellipsoidal radiometer were

located near the flame and six IR sensors were located away from the flame (Table 3.2).

Fig. 3.4 presents the schematic of used ellipsoidal radiometer. The head of the radiome-

ter is constructed in the form of an ellipsoidal cavity, with the radiometer aperture in

one of the focal points of the ellipsoids is located. The maximum possible opening angle

is 150o. The radiometer has a fixed order during the measurements. The maximum per-

formance of the use of first three radiometer is in the range of 200 kW/m2, 100 kW/m2

and 50 kW/m2. The receiving wavelength range of ellipsoidal radiometer is between

0.2 μm and 7 μm. During the experiments, the ellipsoidal radiometers are cooled and

purged continuously using N2 and water.
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Figure 3.7: Location of the radiometers

Due to the performance limit (up to 2 kW/m2), the IR sensors are placed at large

distances from the flame. The operating principle is almost identical with that of ellip-

soidal radiometers (see section 3.1.4), but because of the distance there was no cooling

or lavage needed during the measurements. The sensor absorptance range was 0.6 μm to

15 μm. During the measurements to minimise possible external influences, the sensors

and ellipsoidal radiometer were kept in a metal enclosure.

Six wide opening radiometers (R1 to R6) have been placed at varied distances (Δy = 1

m to 125 m) from the rim of the pool (Fig. 3.7). The location and angles were selected

in such a way that the maximum part of the luminous flame could be seen by the optical

lens of the sensors.

Fuel Pool Outside Cross Relative

diameter d (m) temperature (K) wind (m/s) humidity (%)

TBPB 0.5 290 1–2 63

1.0 290 1–2 63

3.4 290 0-0.5 60

TBPEH 0.5 290 1–2 63

1.0 288 1–2 68

3.4 288 0-0.5 67

Table 3.2: Test conditions in pool fire experiments
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3.3 Description of packaged material fire test

A number of large tests were carried out during past few decades in different organisa-

tions to develop uniform guidelines for safety measures for transportation and storage of

hazardous substances [26, 46]. Most of such tests reported in the literature are mainly

for packaged materials either solid or liquid. Two large scale tests with 5000 kg of

two different organic peroxides were carried out at the BAM outside test facility in

1979. The substance chosen were tert-butyl-peroxybenzoate (TBPB) (CAS- 614-45-9)

and tert-butyl per-2-ethylhexanoate (TBPEH) (CAS- 3006-82-4). A schematic of the

test arrangement of different packages from front is shown in Fig. 3.8(a). Each packet

consist of one inner receptacles of polyethylene and outer protective coating of cardboard

and contain 25 kg in case of TBPB and 25 and 20 kg in packets for TBPEH. A number

of steel tubes (thermocouples inside) were passed through the fire in order to measure

temperature; these tubes were supported by two concrete walls on northern and eastern

sides respectively. The construction was in accordance of class F90 of DIN4102 (German

Institute for Standardisation). The packets were placed on a collecting trough of 4 m x

4 m with a rim of 0.35 m height and capacity of 5.6 m3. One important feature in their

temperature measurement is the placement of thermocouples not only above the stack

but also within some selected packagings [47].

Repetition of such huge tests are really very expensive and therefore a need was felt

to get some prior estimation of the desired variables by means of computer simulation.

However such simulations for an exact physical scenario is the next problem as the small

interface between outer packaging material and the fuel has to be modelled which re-

ally makes the problem more cumbersome. But as far as the main burning phase (Fig.

3.8(b)) is concerned such fire can be represented as an equivalent pool provided that

the interest lies in the time averaged behaviour and the small fluctuations could be ne-

glected. A such approximation is presented as a second part of the work in this thesis.

Furthermore, it is also tried to bring out the essentials features related to flame structure

of such large organic peroxide flames without loosing much of the real physics.

The following sections summarises the test report in [28, 47] which will be helpful for

validating the results obtained from simulation of an equivalent pool fire.
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(a)

(b)

Figure 3.8: (a)Arrangement of a packaged material fire test; (b) Irradiance vs. time plot
of a large packaged fire test [47]
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3.3.1 Flame length

It was quite difficult to predict correctly the visible height of flame due to enormous

amount of soot which covered most upper of the flame. Wind un-influenced maximum

flame height for TBPB was about 20 m but 30o tilt in the direction of wind made the

flame height to be 25 m (Fig. 3.9). The same visible flame height of the flame has also

been reported for TBPEH. The following conclusions were drawn from the test:

Figure 3.9: Images of TBPB and TBPEH packaged fires (5000 kg each) [47]

1. Both peroxides do not exhibit an explosion risk if the materials are packed in weak

packings provided there is no additional confinement is present.

2. Both showed high burning rate along with intense heat radiation during main fire

phase.

3. The effect of surrounding temperature and substrate influenced the flame character-

istics significantly.

3.3.2 Temperature measurement

Flame temperatures were recorded with twelve thermocouples (Ni-Cr) at different lo-

cations of the fire. However, it was also indicated that these measured values of tem-

perature could not be finally treated as absolute values due to relatively low response

time and different modes of heat losses to and from cooled steel column near the flame
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axis on which thermocouples were fixed. Nevertheless, the maximum flame temperature

measured by thermocouples were reported around 850-950oC for TBPB whereas for

TBPEH it was 827-920oC. The description about uncertainties in measurements were

not reported.

3.3.3 Irradiance measurement

Irradiance in different directions and distances were measured by BAM constructed

and calibrated radiometers and compared with theoretical values also. A satisfactory

conclusion was drawn for this comparison. The reported maximum irradiance values

were not taken into account for the safety distance calculations as these values only stood

for few seconds. Instead, a relevant irradiance was defined as a value between maximum

irradiance and evaluated from irradiance/time record by a straightening and equalising

treatment of the curve recorded during the main burning phase. Such measured value

of relevant irradiance at 60 m from south was 0.64 kW/m2 for TBPB fire which was

65% of the maximum irradiance and 2.78 times as much as the average irradiance.

52 BAM-Dissertationsreihe



Chapter 4

CFD (Computational Fluid

Dynamics) Simulation

4.1 Introduction

Computational Fluid Dynamics (CFD) is a tool comprising of solutions of governing

equations for fluid flow, heat transfer and other process associated with it. The des-

critized governing equations are solved over an area of interest with the known physically

possible boundary conditions [48, 50, 51].

Combustion is a phenomena described by chemical reactions and fluid dynamics. De-

pending on the availability of oxidiser, it can be further classified into premixed and

non-premixed combustion. A pool fire is an example of non-premixed combustion. With

the increase in source size turbulence starts playing a dominant role in the overall be-

haviour of the flame. This is the reason why a large pool fire is often called as a buoyant

turbulent diffusion flame where radiation acts as a major mode of heat transfer from

source to the surrounding.

A mathematical model of the problem consisting of above mentioned physics can be

represented in form of steady or unsteady reactive Navier-Stokes equations. Some as-

sumptions are necessary to be made in order to solve these equations as the complexity

of the problem does not allow to solve them accurately. In this chapter a description

of the procedure adopted for modelling of pool fires is presented. Each part of the

modelling process is described in detail in the preceding sections.

53



4 CFD (Computational Fluid Dynamics) Simulation

4.2 Modelling methodology

A flow chart of a model comprising basic governing equations followed by appropriate

boundary conditions and subsequent solution process adopted in Ansys CFX-11.0 is

shown in Fig. 4.1. The same method is followed for the simulation in this work.

Figure 4.1: Flow chart of simulation process in CFX-11.0 [48]

4.2.1 Geometry, mesh and boundary conditions

The pool and the flow domain (Fig. 4.2) are modelled as axisymmeteric with a diameter

of 3.4 m and 8.5 m and heights of 0.08 m (rim) and 7.65 m. The pool wall (pan

wall) is 0.0028 m thick. The minimum cell distance from wall to pool is 0.053 m. The

scaled mesh was used for the other pool diameters. The details of mesh and boundary

conditions are listed in Table 4.1 and shown in Fig. 4.2.

Alltogether more than 1 million control volumes are used for the solution of transport

equations described below. Simulations have also been carried out for four other pool

diameters (d = 0.18 m, 0.5 m, 1 m and 8 m). The size of the meshes varied according to

the size of the pool. Since the mesh-dependent studies are important for the numerical

solution to be independent on mesh size so it was made sure that the meshes in all cases

were in accordance with the mesh independent studies of buoyant plumes in [49].
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Part Number of Boundary

Elements Boundary

Pool 3441 Inlet (mass flow rate)

Pool wall 1440 No slip, Adiabatic

Bottom wall 5580 No slip, Adiabatic

Out 19882 Opening Pressure

Table 4.1: Mesh and boundary conditions

Figure 4.2: Mesh and boundary conditions used in simulation

4.2.2 Transport models

4.2.2.1 Multi-component flow

Multicomponent flow assumes that the various components of a fluid are mixed at the

molecular level, that they share the same mean velocity, pressure and temperature fields,
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and that mass transfer takes place by convection and diffusion [48]. The transport equa-

tions for mass, momentum and scalars (energy and species) for a multicomponent flow

can be written in tensorial notation as follows:

Mass Conservation:
∂ρ

∂t
+

∂(ρUj)
∂xj

= 0 (4.1)

Momentum Conservation:

∂(ρUi)
∂t

+
∂(ρUjUi)

∂xj
= − ∂p

∂xi
+

∂τij

xj
+ ρgi (i = 1, 2, 3........) (4.2)

Scalar Conservation:

∂(ρφ)
∂t

+
∂(ρUjφ)

∂xj
=

∂

∂xj
(Γ

∂φ

∂xj
) + qφ (4.3)

Where ρ denotes mixture density; U is the component of hydrodynamic velocity; p is the

pressure and τij is the viscous stress tensor components and gi is the ith component of the

external force; φ stands for scalar variable i.e. species concentration and temperature;

Γ is diffusivity of scalar φ; qφ is the source or sink of scalar φ.

In addition to above set of equations perfect gas law reads:

p = ρ
R

M
T (4.4)

Where p, T and M are defined as pressure, temperature and molar mass. R is perfect

gas constant = 8.314 kJ/(kg K) [50, 51] .

4.2.2.2 Turbulence models

Turbulence consists of fluctuations in the flow field in time and space due to which non-

linearity in the conservation equations appear. Since it is beyond the scope of present

computational power to solve all the scales of flow to the full accuracy therefore they need

to be modelled. It has been seen that the turbulence in the pool fires controls the mixing

and combustion thereon in its entirety. Therefore, it is essential to make sure that the

knowledge of turbulence in pool fires from measurements are good enough to introduce
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certain parameters in the empirical relations of the turbulence model. In pool fires, the

time scales for turbulence i.e. the flow are much larger than the time scales of combustion

i.e chemical reactions so the pool fires are normally seen as large Damköhler number (Da)

problems. The most common turbulence model used in different application is k-ε. In

this work also for carrying out CFD simulations the k-ε turbulence models has been used

until the flame has reached fully developed condition. SAS (Scale-Adaptive Simulation)

turbulence model is also incorporated later on when the flame reached its steady state

condition. According to [52] SAS is an improved Unsteady Reynolds Averaged equations

(URANS) formulation, which allows the resolution of the turbulent spectrum in unstable

flow conditions. The SAS concept is based on the introduction of the von Karman

length-scale into the turbulence scale equation. The information provided by the von

Karman length-scale allows SAS models to dynamically adjust to resolved structures in

a Unsteady RANS simulation, which results in a LES like behaviour in unsteady regions

of the flowfield [48]. At the same time, the model provides standard RANS capabilities

in stable flow regions [52]. The detailed description on mathematical formulation could

be found in [48].

4.2.3 Thermodynamic properties

The specific heat capacity (cp) (KJ/mol) are defined by the following expressions:

TBPB:

cp

R
= −49.61 + 4.42T − 0.001545T 2 − 5.15× 10−7T 3 + 4.635× 10−10T 4 (4.5)

TBPEH:

cp

R
= −35.654 + 1.197T − 0.0004T 2 − 2× 10−7T 3 + 1× 10−10T 4 (4.6)

The above expressions are based on the numerically evaluated data from ARTIST Soft-

ware (Dortmund Databank Software DDBST, Oldenburg) [53] which calculates the rel-

ative transport and thermodynamic properties for the hydrocarbons for which experi-

mental data are not available. The variation of cp is shown in Fig. 4.3. It is assumed

here that all the species have the same value of specific heat capacity which is not really

true in flames. If one considers simple H2-air flame, the cp for H2 and O2 vary as an
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Figure 4.3: Computed specific heat capacity vs. temperature of TBPB and TBPEH

order of magnitude. However depending on accuracy expected from simulation leads

to a compromising situation and this simplification has often been used for theoretical

developments [35].

4.2.4 Combustion model

There are a number of combustion models (based on the elaboration of chemistry) are

available in CFX for non-premixed combustion. Due to the unavailability of detailed

chemical reaction model for organic peroxides the single step chemistry coupled with

eddy dissipation model has been used in the present CFD simulations.

4.2.4.1 The eddy dissipation concept (EDC) model

In turbulent flows, this mixing time is dominated by the eddy properties and, therefore,

the rate is proportional to a mixing time defined by the turbulent kinetic energy, k, and

dissipation, ε.
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rate ∼ k

ε
(4.7)

In many cases the reaction rates are fast compared to reactant mixing rates and can

be considered as mixing controlled combustion. In the eddy dissipation concept model

[102], the rate of progress of elementary reaction k, is determined by the smallest of the

two following expressions:

• Reactants limiter

Rk = A
ε

k
min

[I]
ν
′
kI

(4.8)

where [I] is the molar concentration of component I and I only includes the reactant-

components.

• Products Limiter

Rk = AB
ε

k

⎛⎜⎜⎝
∑
P

[I]WI∑
P

ν
′′
kIWI

⎞⎟⎟⎠ (4.9)

where P loops over all product components in the elementary reaction k. The products

limiter is disabled when the model coefficient B is set to a negative value. For both

single step and multi-step reaction schemes the value of B set to -1 [48].

• Maximum Flame Temperature Limiter

The maximum temperature for limiting the chemical reaction in eddy dissipation model

is done by either of the equation.

Rk,MFT = A
ε

k
CMFT (4.10)

where

CMFT = max{(Tmax − T ), 0[K]} ρcp

−� hc
(4.11)

CMFT is virtual concentration. cp is the specific heat capacity of the multi-component

mixture at constant pressure and -�hc is the heat of combustion per unit mole [48].
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4.2.5 Soot models

In this work the formation of soot has been modelled by Magnussen soot model [56].

It assumes that soot is formed from a gaseous fuel in two stages, where the first stage

represents formation of radical nuclei, and the second stage represents soot particle

formation from these nuclei. Transport equations are solved for the specific concentration

of radical nuclei, XN [mol/kg], and for the soot mass fraction, ỸS [kg/kg]:

∂(ρX̃N )
∂t

+
∂(ρũjX̃N )

∂xj
=
(

μ +
μt

Prt

)
∂(X̃N )

∂xj
+ S̃nuclei, f + S̃nuclei, c (4.12)

∂(ρỸS)
∂t

+
∂(ρũj ỸS)

∂xj
=
(

μ +
μt

Prt

)
∂(ỸS)
∂xj

+ S̃soot, f + S̃soot, c . (4.13)

The subscript t denotes the value for turbulent flow. Pr: Prandtl number defined as
μcp

K
. S: Source term.

4.2.5.1 Soot formation

Formation of nuclei and soot particles is computed by following the empirical models of

Tesner et al. [57] as follows:

CN = ρ NA part/m3 (4.14)

CS = ρ
YS

mp
part/m3 (4.15)

Where A = 6.022x1023 [part/mol] is number Avogadros and:

mp = ρsoot

πd3
soot

6
(4.16)

is the mass of a soot particle; ρsoot and dsoot are the density and the mean diameter of

the soot particles respectively. With the above definitions, the source terms for nuclei

S̃nuclei, f and soot formation S̃soot, f can be modeled as [56]:

S̃nuclei, f = n0 + (f − g)CN − g0CNCS (4.17)
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S̃nuclei, f = mp(a− bCS)CN (4.18)

In the nuclei equation, the spontaneous formation of radical nuclei from the fuel, n0, is

modeled using the Arrhenius approach,

n0 = a0fCρYfuel exp(−TA, 0

T
) (4.19)

where fC is the mass fraction of carbon in the fuel material; f is a linear branching

coefficien; g is a linear termination coefficient; ρ is density of flow and g0 is a coefficient

of linear termination or radical nuclei on soot particles. In the soot equation, a and b

are constants. Due to the lack of experimental data on the detailed soot properties of

the pool fires of organic peroxide, the default values recommended by the CFX have

been used as an approxiamtion. The default values used by the Ansys CFX for all of

the soot model parameters are given in the following Table 4.2:

Parameter Default Value by [Part]

ρsoot 2000 [kg/m3]

dsoot 1.785 x 10−8 [m]

a0 1.35 x 1037 [part/kg/s]

fc Fuel dependent

(methane 12/16, acetylene 24/26)

TA,0 90000 [K]

f − g 100 [1/s]

g0 1.0 x 10−15 [m3 /s/part]

a 1.0 x 105 [1/s]

b 8.0 x 10−14 [m3/s/part]

Table 4.2: Properties of soot [48]

The mean rates of combustion of nuclei, S̃nuclei, c, and soot particles, S̃soot, c are calculated

from the fuel consumption reaction rate, S̃fuel in [kg/m3/s], as:

S̃nuclei, c = S̃fuel

X̃N

Ỹfuel

(4.20)
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S̃soot, c = S̃fuel

ỸS

Ỹfuel

(4.21)

4.2.6 Radiation model

The radiation transport equation has to be solved for obtaining the source term S in

the energy equation. The spectral radiative transfer equation (RTE) can be written as

[59]:

dIν(r, s)
ds

=
(
−(κaν + κsν)Iν(r, s) + κaνIb(ν, T ) +

κsv

4π

∫
4π

dIv(r, s
′
)Φ(s • s

′
)dΩ

′
+ S

)
(4.22)

where

ν: Frequency; r: Position vector; s: Direction vector; s: Path length; κa: Absorption

coefficient; κs: Scattering coefficient; Ib: Blackbody emission intensity; Iν : Spectral

radiation intensity which depends on position (r) and direction (s); T : Local absolute

temperature; Ω: Solid angle; Φ: In-scattering phase function; S: Radiation intensity

source term.

For diffusely emitting and reflecting opaque boundaries it can be written that

Iν(rw, s) = εν(rw)Ib(ν, T ) +
ρw(rw)

π

∫
n•s′<0

Iν(rw, s
′
)|n • s

′ |dΩ
′

(4.23)

where εν : spectral emissivity [48, 59].

The discrete transfer radiation model is used in the CFD simulation in this work is

described as follows.

4.2.6.1 Discrete transfer model

The implementation of the discrete transfer radiation model in ANSYS CFX assumes

that the scattering is isotropic; therefore, eq. (4.22) can be further simplified as:

dIv(r, s)
ds

= −(κav + κsv)Iv(r, s) + κaIb(ν, T ) +
κsv

4π

∫
4π

Iv(r, s
′
)dΩ

′
+ S (4.24)
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Assuming that the system is reasonably homogeneous, so that:

Iν(r) ∼ Iν(r + dr)qR
ν (r) ∼ qR

ν (r + dr) (4.25)

the approach is then to solve for the intensity, Iν , along rays leaving from the boundaries

using the equation of transfer:

Iv(r, s) = Iν0exp(−(κaν + κsν)s) + Ibν(1− exp(−κas)) + κsνIν (4.26)

where:

Iν0 : Radiation intensity leaving the boundary; Iν : Mean radiation intensity.

The spectral incident radiation G can be obtained by integrating I over solid angle at

discrete points. The radiative heat flux qr can be determined by using the homogeneity

assumption to extend the solution to the entire domain. Since the objective of thermal

radiation modelling is to obtain the total volumetric absorption and emission, additional

calculations are still needed. For the grey spectral model, the calculation is done once for

a unique radiation intensity field. When coherent radiation field is assumed the solution

obtained at a given frequency is independent of at all other frequencies [48, 59].

4.3 Solution strategy

For solving the hydrodynamic equations ANSYS CFX uses a coupled solver i.e pressure

and velocity terms are solved simultaneously. When simulating steady state problems,

the time-step acts as an acceleration parameter which guides the solution to a defined

path until convergence has reached. In case of transient simulations the coefficient loop

iterations are required to bring down all the variables below the target criterion of con-

vergence [48]. The time step size (Δt) of 0.01 to 0.0001 second is used depending on the

pool diameter and fineness of the grid. Five coefficient loop iteration for each time step

is set with 8 CPUs of 2 GB of memory each for a target criterion of 10−4 for all variables.

Time dependent transport equations are solved by using second order backward Euler

method with an implicit finite volume method.

The flow chart shown in Fig. 4.4 illustrates the general field solution process used by

the ANSYS CFX-Solver.
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Figure 4.4: Flow chart of solution process in CFX [48]
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The solver proceeds in each timestep as follows:

1. Coefficient generation: It linearises the non-linear equations and generates the solu-

tion matrix.

2. Equation solution: The linear equations are then solved by using an algebraic multi-

grid method.

The obtained solution matrix can be then visualised by a post-processor.
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Chapter 5

Results and Discussion

5.1 Mass burning rate

5.1.1 Mass burning rate as a function of pool diameter

The dependence of measured mass burning rates ṁ
′′
f versus the pool diameter d of

organic peroxides and kerosene is shown in Fig. 5.1. It is already established that ṁ
′′
f of

hydrocarbon pool flames is a function of d until it reaches the turbulent regime however

some deviation from the above known fact is shown in [60] where the ṁ
′′
f of diesel and

gasoline were found to be increased for 1 m � d � 6 m. As shown in Fig. 5.1 the ṁ
′′
f

of kerosene becomes independent of d at or after 0.3 m whereas organic peroxide pool

flames show this independence right from the smallest d.

This can be seen for all peroxides (DTBP[62], TBPB, TBPEH and INP[61]) in Fig. 5.1

which undoubtedly are fully developed turbulent flames and are independent of size of

the source d. The mass burning rate (for d � 3.4 m) of a large diameter pool of organic

peroxide can be written in the following way

ṁ
′′
max ≈ ṁ

′′
f (5.1)

which means that a finite diameter pool flame of organic peroxide burns with the same

rate like a very large diameter pool flame. It also signifies the importance of the prop-

erties of the fuel on the fluid dynamical behaviour of the flame. In case of pool fires
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Figure 5.1: Measured ṁ
′′

f vs. d of kerosene and organic peroxide pool flames [89]

of organic peroxides the fuel properties deliver the turbulence and therefore size of the

source i.e. pool diameter has negligible influence on the burning rate [63].

As can be seen in Fig. 5.1 the organic peroxide pool fires burn almost about 4-60 times

faster (for d = 1 m) than a corresponding flame of kerosene. The three different regimes

laminar, transition and turbulent as described for hydrocarbons [5, 6] are not observed

for all the investigated organic peroxides (see also [61, 62]). This fact is correct for the

values in Fig. 5.1 which were obtained for mass loss of 60% of the total fuel mass. For

smaller d the mass burning rate for 60% mass loss was not measurable because the flames

were extinguished due the lack of heat conduction through the pan walls however the

mass burning rates were very high before these flames extinguished [61]. The transition

regime can not be observed for organic peroxides because the higher mass burning rate

is radiation dominated. For further discussion see section 5.1.2.

The values of ṁ
′′
max of hydrocarbons and organic peroxides are listed in Table 5.1
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Fuel JP-5 LNG LPG Gasoline Kerosene Kerosenea DTBPa TBPBa TBPEHa

Measured ṁ
′′
max 0.054 0.078 0.099 0.085 0.039 0.068 0.300 0.370 0.530

(kg/(m2 s))

Table 5.1: Measured ṁ
′′
max of hydrocarbons and organic peroxides

aMeasured at BAM.

The uncertainties associated with the measurement of ṁ
′′
f for large pool fires i.e. d ≥

1 m are mainly influenced by the properties of the fuel e.g. boiling point, enthalpy of

vaporisation and the field conditions e.g. ambient temperature and wind velocity. The

strength of cross wind affects the fluctuations in fire up to a great extent. These fluc-

tuations in fire directly contribute to the uncertainties in the measurement. In present

measurements, the effect of cross wind in d = 3.4 m tests were negligible (see Table

3.2) therefore errors and uncertainties caused by cross wind can be neglected and higher

accuracy can be assured. The range of uncertainty (based on present measurement and

in [61]) in the measurement of ṁ
′′
f for d = 1 m for TBPB pool fire is ± 13%.

5.1.2 Mass burning rate as a function of Self-Accelerating Decompo-

sition Temperature (SADT)

The discussion in section 5.1.1 does not provide enough facts to explain the behaviour of

organic peroxide pool fires. Therefore some characteristic data of these organic peroxides

are summarised in Table 5.2. These listed data show that the organic peroxides with

the lowest active oxygen content, the lowest heat of decomposition shows the highest

mass burning rate. On basis of the data only one conclusion is plausible. The mass

burning rate of the investigated peroxides depends on their nature to decompose at

different temperatures. The ordering depends on the SADT, on the extrapolated onset

temperature as determined by DSC and consequently on the half-life temperature.

The amount of energy from decomposition which is additionally released (before, during

or after vaporisation depending on the peroxide) is obviously not so important as the

SADT and the extrapolated onset temperature. This leads to the conclusion that for

organic peroxides as low as the SADT as higher as the mass burning rate (Fig. 5.2)

[90]. As can be seen in Fig. 5.2 that the mass burning rate of organic peroxides linearly
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increases with the decrease in decomposition temperature. An expression for ṁ
′′
max in

terms of decomposition temperature can be established as written below:

ṁ
′′
max = 68679

(
kg
m2s

)
exp

(
−0.0348

(
TSADT

1[K]

))
(5.2)

Eq. (5.2) could be further utilised for estimating the ṁ
′′
max of different organic peroxides.

Parameter INP TBPEH TBPB DTBP

Formula C18H34O4 C12H24O3 C11H14O3 C8H18O2

Molar mass (g/mol) 314.5 216.32 194.2 146.2

Active oxygen (%) 5.09 7.40 8.24 10.94

Enthalpy of combustion (−Δhc)(kJ/kg) 30100 34455 30113 36600

Enthalpy of decomposition (−Δhdec)(kJ/kg) 954 1158 1377 1365

Enthalpy of vaporisation (Δhv) (kJ/kg) - 226 268 212

Boiling point (K) - 527 556 384

TSADT (K) 293 308 338 358

Extrapolated onset temperature (K) 358 - 387 396

1 min half life temperature (K) 393 403 438 463

ṁ
′′
f (d = 1 m) 4.22 0.78 0.62 0.29

ṁ
′′
f = 10−3

(
−Δhc

Δhv

)
, d = 1 m - 0.15 0.11 0.17

Table: 5.2: Properties of different organic peroxides

The enthalpy of vaporisation of the investigated peroxides are lower than the respective

enthalpy of decomposition, if the fire is stable. Consequently the heat flux back from

the flame to the liquid surface leads to a violent vaporisation and higher mass burning

rate.

It is also shown in Table 5.2 that the commonly used equation to estimate the maximum

mass burning rate of hydrocarbon pool fires i.e. eq. (2.3) is not suitable for organic

peroxides. All organic peroxides have comparable enthalpy of combustion and enthalpy

of vaporisation but their measured mass burning rate are much higher than calculated

by eq. (2.3).

69



5 Results and Discussion

Figure 5.2: ṁ
′′

max vs. TSADT of organic peroxides

5.1.3 CFD prediction

The prediction of flame temperature, velocity, irradiance and surface emissive power

were carried out in the past by using CFD simulation with various sub models for tur-

bulence and chemistry. Almost all numerical work carried out so far concentrated on

the dynamics of fire plume and CFD modelling of the burning rate of the fuel was not

done yet. Since it requires the modelling of the evaporation and the model complexity in

a multiphase problem extends furthermore when natural convection also involved with

it so most of the simulation only considers the gas phase combustion in pool fires and

ignores the evaporation phase. Here also the gas phase combustion simulation has been

carried out and the way to predict the burning rate following the mass balance across

the combustion zone is presented [64]. A schematic of a typical pool fire can be seen in

Fig. 5.3 where two zones are shown in vertical direction.

The clear flame zone (combustion zone) shown as yellow colour is defined between sec-

tions f-f and g-g (Fig. 5.3). The following mass balance equation can be derived from a

one dimensional stationary continuity equation around liquid surface f-f.
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Figure 5.3: Mass balance across combustion zone in a pool fire

ṁ
′′
f = ṁ

′′
v + ρvvb (5.3)

where ṁ
′′
v = ρvuv: mass flow rate of fuel vapour (kg/(m2s)).

Since in a typical pool fire the fuel vapour velocities thereby fuel Froude number vary

only over less than an order of magnitude unlike jet flames where it spans over five orders

of magnitude. Therefore Fay [9] assumes that the air entrainment flow rate is given by

the following relation:

ṁent ∝ ρadHcl

√
gHcl (5.4)

following the above eq. (5.4) proposed by Fay’s entrainment model it can be written

that

ṁent = ρadHcl

√
2gHcl (5.5)

Now with the help of this eq. (5.5) the Hcl can be calculated for a large pool diameter

i.e. d = 1 m where the burning rate becomes independent of the pool diameter. From
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eq. (5.4) and eq. (5.5) Fay [9] deduced that

Hcl ∝ d
2
3 (5.6)

The length of combustion zone Hcl for other diameter pools can be calculated with the

help of eq. (5.6).

By carrying out mass balance around the section g-g it can be shown that

ṁ
′′
g(

πd2

4
) = ṁent + ṁ

′′
f (

πd2

4
) (5.7)

Here, it is further assumed that the mass of air entrained ṁent is much smaller than ṁ
′′
f ,

so

ṁ
′′
g(

πd2

4
) = ṁ

′′
f (

πd2

4
) . (5.8)

In eq. (5.8) follows that the mass flow rate of hot gases ṁ
′′
g with the definition ṁ

′′
g =

〈ρgug〉 is

ṁ
′′
g = ṁ

′′
f . (5.9)

The variables ρg, ug in ṁ
′′
g can be computed with the help of 3-D reactive Navier-Stokes

equations above the combustion zone Hcl. From eq.(5.9) it follows that the mass flow

ṁ
′′
g is equal to the fuel mass burning rate for a finite diameter pool [64].

For the prediction of the burning rate of fuel from simulation one needs to know the

length of combustion zone where all the fuel and oxidiser have been fully consumed and

what is left is only hot combustion products. The CFD predicted ṁ
′′
f for TBPB and

TBPEH pool fires (d = 0.18 m, 0.5 m and 1 m) is shown in Fig. 5.4 together with

measurements. These predictions were made when the flame has reached fully devel-

oped steady burning conditions. From the safety point of view (safety and protection

distances) the agreement between the CFD predicted mass burning rates for TBPEH

pool fires are relatively good for d = 1 m. Contrary to this the CFD predicted mass

burning rates for TBPB pool fires agree well with experimental values for smaller d.

The deviation for d = 1 m should be concluded on the basis of the discussion given in

sections 5.2 and 5.4.
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Figure 5.4: Measured and CFD predicted ṁ
′′

f of TBPB and TBPEH pool fires

5.2 Visible flame length

As can be seen in Fig. 5.1 small TBPB and TBPEH pool flames burn almost 100

times faster than a corresponding kerosene flames. The visible length of smoky organic

peroxide flames were determined by observation of the highest luminous part on the

basis of thermographic and videographic images. Due to the much higher mass burning

rates the flame extends its visibility to a larger length. When comparing with kerosene

flames one finds that the relative visible flame lengths are about 3–5 times larger (Fig.

5.5). Additionally, the TBPB flame has distinct features of pulsation leading to a lower

value of H
d than in case of the TBPEH flame. This self-controlled pulsation of TBPB

pool flame is discussed in section 5.4.

The visible flame length of large pool fire (d = 3.4 m) of TBPB and TBPEH are shown

in Fig. 5.6. The determination of time averaged relative flame length H
d was done

by following the Zukoski
′
s intermittency criterion [65]. The length was selected above

which the flame maintains its height for more than 50% of the time during main burning

phase. If compare with large hydrocarbon pool fire the H
d of organic peroxides are 4 to

4.5 times larger than a corresponding flame of Diesel (H
d ∼ 2) [60].
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Figure 5.5: Visible instantaneous photographic images of TBPEH (H
d = 16.7), TBPB (H

d =
8.9) kerosene (H

d = 3.3) pool fires (d = 0.18 m)

Figure 5.6: Visible instantaneous photographic images of TBPB (H
d = 9) and TBPEH

(H
d = 8) pool fires (d = 3.4 m)
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5.2.1 Visible flame length as a function of pool diameter

Fig. 5.7 presents the dependence of time averaged relative flame lengths of TBPB,

TBPEH and kerosene on pool diameter. The measured flame lengths for d = 0.5 m and

Figure 5.7: Relative flame lengths of kerosene, TBPB and TBPEH pool fires as a function
of d

1 m are corrected (by trigonometric relationship between vertical and tilted flame) for

the cross wind effects whereas for d = 3.4 m the cross wind effects were negligible so

no corrections were applied (see Table 3.2). Time averaged relative flame lengths of a

number of hydrocarbon pool fires have been measured and reported in [5, 7, 8, 9, 11,

14, 16, 17] where the H
d found to be decreased with pool diameter and for large pool

diameter it was shown that H
d ∼ 2. In Fig. 5.7 the same can be seen for kerosene whereas

TBPB and TBPEH show little increase in H
d for d ≥ 1 m. However, this generalisation

is only valid for d � 3.4 m. If comparing with kerosene (d = 1 m) the H
d of organic

peroxides pool fires are two times larger [60, 62].
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5.2.2 Visible flame length as a function of fuel Froude number

In Fig. 5.8 the time averaged relative visible flame lengths for three pool diameters

of kerosene, TBPB and TBPEH are plotted against fuel Froude numbers. The Frf of

organic peroxides are 100 times higher than for kerosene. That means that the peroxide

flames behaviour is similar to a low momentum jet diffusion flame and hydrocarbon

flames are buoyancy driven (depending on d). The mass flow average velocity with which

the peroxide vapours leave the liquid pool surface is (∼ 1 m/s) whereas conventional

hydrocarbon pool vapour velocities lie within 0.02-0.1 m/s [9, 11]. This also justifies the

proximity of organic peroxide pool flames to low momentum jet flames [66].

Figure 5.8: Relative flame lengths of kerosene, TBPB and TBPEH as a function of Frf

5.2.3 Flame length prediction according to the models of Thomas and

Fay

It was also shown in many past investigations [7, 9] that the length of a turbulent buoyant

flame is a function of fuel Froude number (see also eqs. (2.12) and (2.28)). In Fig. 5.9 it

can be seen that organic peroxides follow neither the equation derived by Thomas nor
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by Fay (eqs. (2.12) and (2.28)) rather it shows a decrease in H
d as the Fr

2
5
f increases.

To describe this new behaviour of these two peroxide flames further experiments must

be carried out and a new model should be developed. The following correlations eqs.

Figure 5.9: Relative flame lengths of hydrocarbons and organic peroxides as a function of
Frf

(5.10) and (5.11) state that the elevation of virtual origin (the d at which H
d ≤ 1) [67]

for TBPB and TBPEH are 1.43 cm (Frf= 0.85) and 1.52 cm (Frf = 1.14) respectively.

(
H

d

)
TBPB

= 13.382− 14.305 (Frf)
2
5 (5.10)

(
H

d

)
TBPEH

= 10.05− 7.195 (Frf)
2
5 (5.11)

A situation of mass fire (a situation where the diameter of the pool comes in the range of

km [67]) for organic peroxides could occur at these small diameters whereas hydrocarbons
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show such behaviour at very large diameters (Fig. 5.9) [63].

5.2.4 Flame length prediction according to Heskestad’s model

A number of semi-empirical models have been developed and tested for predicting the

height of large turbulent fire plume of a variety of hydrocarbons. An equation developed

by Heskestad [67] considers the chemical and thermodynamic properties of fuel into

account and follows the idea of McCaffrey [8] and Steward [17].

In order to calculate the combustion number N (eq. (2.22)) the following data are used:

−� hc = 30113 kJ/kg for TBPB and 34455 kJ/kg for TBPEH; rst = 13 for TBPB and

16.5 for TBPEH; ρa = 1.2 kg/m3; g = 9.8 m/s2; cp= 1 kJ/(kg K); Ta= 283 K.

In Fig. 5.10 a satisfactory agreement can be seen between the measured and predicted

(with eq. (2.21)) values of H
d for the two organic peroxides with d= 3.4 m. The H

d of

Figure 5.10: Relative flame lengths of hydrocarbons and organic peroxides as a function
of N

ketones and alcohols (acetone and methanol) can also be seen in Fig. 5.10 which are

almost 6 to 9 times smaller than the organic peroxide pool flames. The mass burning

rate of methanol also does not vary appreciably with pool diameter [13, 93] and therefore
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was chosen here as reference fuel for the comparison with organic peroxides.

The soot formation extends the complexities more in the correct measurement of the

visible flame length of a large pool fire. These soot particles appear and disappear

with the fluctuation in the fire. Since the fluctuations in the pool fires become smaller

with the increase in diameter (see also section 2.2.2.7) therefore, the time resolution (25

frames per second) of the present videographic camera was good enough to capture the

small fluctuations in the flame. The obscurration of the flame behind the black soot

has been seen in the videographic images. These hide and seek between flame and soot

introduce many unknown errors and uncertainties in the measurements. Due to this only

a qualitative estimation of uncertainty can be given. Such an estimated uncertainty in

the measurement of H
d (between present measurements and in [61]) for TBPB (d = 1

m) is ±9%.

5.2.5 CFD prediction

Prediction of flame length by means of CFD simulation can be done by using the CFD

predicted mass burning rates as discussed in the section 5.1.3. The semi-empirical mod-

els developed for many hydrocarbon fuel pool fires indicate that there is a dependence

of flame length on fuel mass burning rate. By using eq. (2.12) with experimentally

determined constants A and B listed in Table 5.3 the H
d were calculated for TBPB and

TBPEH pool flames.

Fuel A B

TBPB 21 0.61

TBPEH 38 0.61

Table 5.3.: Experimentally determined constants A and B used in eq. (2.12)

Thomas performed experiments on the wood crib fires and reported the value of A and B

as 42 and 0.61 respectively. Without changing the exponent i.e. B in eq. (2.12) estimates

the H
d of TBPB quite satisfactorily (Fig. 5.11) whereas the prediction of TBPEH needs

further adjustment of B. More experimental data will help to develop precise values of
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A and B and finally a general relationship according to eq. (2.13) for organic peroxides

could be realized.

Figure 5.11: Measured and CFD predicted relative flame lengths

5.3 Turbulent organised structures

An instantaneous thermogram contains data of temperatures in a matrix of 240 x 256.

By carrying out some scaling one can get an analytical detailed view of temperature

distribution near to the pool surface. Here, a square section of 0.4 m x 0.4 m just

above the pool of d = 0.18 m is selected with the assumption that it can represent

the combustion zone. A square matrix of 32 x 32 an instantaneous image above pool

contains data in 0.4 m x 0.4 m. A contour plot of kerosene, TBPB and TBPEH during

steady burning (when it reaches at the first time) period is shown in Fig. 5.12, Fig. 5.13

and Fig. 5.14. For temperature interpretation see section 5.5.

TBPB shows a structure of fully developed turbulent diffusion flame whereas kerosene

shows more organised structure along with transition to turbulence due to a strong

influence of buoyancy. A random distribution of turbulence intensity due to higher rate

of decomposition, lower enthalpy of vaporisation, lower boiling point and lower SADT
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Figure 5.12: Typical instantaneous thermogram showing flame temperature within the
clear flame zone for kerosene (d = 0.18 m)

Figure 5.13: Typical instantaneous thermogram showing flame temperature within the
clear flame zone for TBPB (d = 0.18 m)

Figure 5.14: Typical instantaneous thermogram showing flame temperature within the
clear flame zone for TBPEH (d = 0.18 m)
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for TBPEH influences the organised structure more than in case of TBPB flame (see

Table 5.2). This leads also to the larger visible length of the TBPEH flame [68, 69]

5.4 ’W’-effect in a TBPB pool flame

A pulsation of TBPB flame with different time intervals has been observed. On the

other hand TBPEH shows burning with diameter depending frequency. Such a pulsation

in pool flames was not observed for all fuels so far, including other organic peroxides

investigated here. In small-scale tests e.g. d = 5.9 cm a small flame (∼ 12 cm) is

observed about 10 s after ignition. As shown in Fig. 5.15 some seconds later the flame

Figure 5.15: Instantaneous relative flame lengths vs. time of TBPB and TBPEH pool
flame (d = 0.059 m)

increases up to a height of about 1.2 m. This process repeats itself with different time

intervals over the entire burning time. An explaination for this effect can be given on

the basis of the observed effect: At the beginning the total heat transfer processes from
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the flame to the fuel is used for heating up the liquid fuel up to the temperature where

the vaporisation starts in combination with the decomposition of the peroxide in the

heated amount of fuel. It is not clear yet whether the decomposition starts immediately

before or at the same time or shortly after the vaporisation and furthermore whether the

decomposition starts in the liquid or in the gaseous phase. The flame height decreases

some seconds later to a small height as in the beginning. Then this process starts again.

The oscillation of pool flames have been studied by many authors in the last few decades

[19]. The correlation between Strouhal number (Sr) and fuel Froude number (Frf)

indicates that the frequency f of oscillation varies according to the relationship f ∝
(Frf)−1/2 for hydrocarbon pool flames [70, 71]. It has been shown that Sr ∼ 0.5 is the

most common approximation for hydrocarbon pool flames of various heat release rates

[19]. Since the fuel Froude number of peroxide flame is 64 times of kerosene flame so

if applicable the similar expression (f ∝ (Frf)−1/2) for TBPB (d = 0.059 m) also; it

appears that the frequency of pulsation is almost 8 times smaller (so does the Strouhal

number) than a corresponding flame of kerosene. The low frequency pulsation of TBPB

pool flame is assigned as ’W’ effect. The ’W’ signifies the variation of relative flame

length with time during the main burning period (Figs. 5.15 and 5.16). A similar

pulsation can be observed if the fuel flow is controlled by means of a mechanical device

e.g. a valve (pulse combustion in the process industries).

A number of possible applications of the ’W’ -effect including other organic peroxides

are listed in [70, 71, 88, 89, 92, 101, 103, 104, 105, 106, 107].

83



5 Results and Discussion

Figure 5.16: ’W’ Effect in TBPB pool flame (d = 0.059 m) [70, 71, 103, 104, 105]

5.5 Flame temperature

5.5.1 Instantaneous flame temperature field

The instantaneous surface emission flame temperatures of pool fires (d = 0.18 m) mea-

sured by thermographic camera are shown in Fig. 5.17. The obtained thermograms

(100 images during the main burning time) were analysed and the highest measured

flame surface temperatures of the TBPB and TBPEH flames were determined. One

important point to note is that the surface emission flame temperature of TBPB flame

(∼1400 K) is higher than of (∼1200 K) TBPEH flame. The reason of lower surface

emission temperature of TBPEH is the large amount of soot with a higher emissivity

which continuously emit radiative energy to the surroundings therefore a lower flame

temperature was recorded.
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Figure 5.17: Instantaneous thermograms of TBPB (left) and TBPEH (right) pool fires (d
= 0.18 m). ”High Temperature” regions are in fact regions with high soot concentration.
Numerical values must be interpreted with great care.

5.5.2 CFD prediction of time averaged flame surface emission temper-

ature profile

In Fig. 5.18 the CFD predicted development of a TBPB flame with time can be seen.

The flame lengths and areas of high flame temperature are increasing with time. A

comparison between measured and CFD predicted time averaged radial temperature

profiles at three axial locations are shown in Fig. 5.19. The time averaging is done by

taking an average (eq. (5.12)) of a number (NT = 5) of instantaneous thermographic

images of flame during steady burning period.

T i,j =

N∑
i,j=1

Ti,j(t)

NT
(5.12)

Since TBPB flame is pulsating staedily, a time is considered when the flame main-

tained steady burning. An integrated isotherm (of 65 different sections of instantaneous

isotherms along the radius of the pool) is used for CFD predictions [72].
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Thermocouple measured time averaged temperatures at the centre of the flame were

found to be always 50–150 K lower than thermographic measurements whereas CFD

predicted T are quite good in agreement near to the pool surface and qualitatively

comparable at the increased axial distances from the pool surface. A quantitative com-

parison is not possible due to the assumption of single step chemistry and the limitations

of combustion model (eddy dissipation) for such peroxides are still unknown [66, 74].

Figure 5.19: Measured and CFD predicted emission temperature T profiles of TBPB pool
fire (d = 0.18 m)

5.5.3 Time averaged flame temperature field

An averaging of thermographic images at different instant of time during the fully de-

veloped fire duration (eq. (5.12)) has been done in order to measure the distribution of

time averaged flame temperatures at various spatial locations (Fig. 5.20) [60]. Due to

continuous mixing and burning the T and visible widths of hot areas of TBPEH flame

(yellow area in Fig. 5.20) are higher and larger than the TBPB flame [63].
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Figure 5.20: Time averaged thermograms T (x, y) of TBPB (left) and TBPEH (right)
pool fires (d = 3.4 m)

In the Table 5.4 the time averaged flame surface emission temperature of various fuels

and organic peroxides are given. Tmax ≥ 1700 K (d = 3.4 m) was measured by the

thermograms for both of the organic peroxides.

The major source of error in the measured T is the uncertainty of flame emissivity εF in

thermographic camera. Due to the lack of availability of experimental values of εF for

organic peroxides, an assumed value of 0.9 was used for the temperature measurements.

As far as the large pool fires of hydrocarbons are considered they are optically thick and

therefore emissivity approaches to 1 [3, 4, 7, 14]. It has been shown that the emissivities

of different large hydrocarbons pool fires (d ≥ 3 m) range between 0.9 and 0.95 [60].

However, the value of εF can vary between 0.4 to 1 (d < 1 m). If consider this range the

uncertainty in the present measurement (εF = 0.8 to 0.9, d ≥ 3 m) can be in the range

40 K.
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Fuel Pool diameter Flame emission Remark

(m) temperature (K)

LNG 8.5 to 15 1500 Measured with thermocouples

Gasoline 1 to 10 1240 Negligible temperature w.r.t. small diameter

JP-4 5.8 1200 Smoke obscured flame

Kerosene 30 to 80 1600 Measured with thermocouples

DTBPa 1 to 3.4 1480 to 1580 Measured with Thermographic camera

Kerosenea 1 1240 Measured with Thermographic camera

TBPBa 3.4 1400 Measured with Thermographic camera

TBPEHa 3.4 1500 Measured with Thermographic camera

Table 5.4: Time averaged flame emission temperature of hydrocarbons [81] and organic

peroxides [62, 77]
aMeasured at BAM.

5.5.4 Time averaged mass fraction of combustion products

For the large Damköhler number flows the non-premixed flame can be seen as an assem-

bly of many small laminar premixed flames where the reaction takes place only within

a thin sheet called as flamelet [50, 51, 54]. Therefore, the time averaged mass fraction

of combustion products χP of a laminar or turbulent diffusion flame can be written in

the following linear form in eq. (5.13) (thermal and mass diffusivities of all species are

assumed to be equal)[9].

χP =
T − Ta

Tad − Ta
(5.13)

χP gives information about the distribution of product formation (completeness of com-

bustion). The adiabatic flame temperatures (in eq.(5.13)) for TBPB (Tad = 2295 K) and

TBPEH (Tad = 2285 K) are determined with the enthalpy balance method as described

in section 2.2.4 [74, 75]. The χp of TBPEH flame approaches to a value of 0.6 (Fig.

5.20, Fig. 5.21). The reasons for the differences in the distribution of χP referring to

the temperature are described in section 5.5.3.

[66, 71, 76].
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Figure 5.21: Time averaged χP of TBPB and TBPEH pool fires (d= 3.4 m)

Considering the fact of uncertainties in the temperature measurements this derivation

of χp should only be interpreted as a qualitative estimation.

5.5.5 CFD prediction of the axial flame temperature profile

Additionally to the CFD predicted time averaged flame surface emission temperatures

also the time averaged axial flame temperature profiles were determined using CFD.

CFD predicted radial temperature profiles are not presented here because no experi-

mental data are available.

The measurement of flame centreline temperature and flow velocity with the help of

thermocouples and pressure probes at different axial locations of a fully developed tur-

bulent diffusion flame has been carried out in the past for wide variety of hydrocarbon

fuels [20]. An observation of three well defined zones i.e. flame, intermittent and plume

were found on the basis of a scaling factor x
′

(see section 2.2.2.3). In Fig. 5.22 the
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Figure 5.22: Measured and CFD predicted time averaged flame centreline temperature
vs. x

′
(left) and CFD predicted isotherm of temperature of TBPEH flame (right)[20]

simulation results are compared with measured time averaged flame temperatures T .

Simulation underpredicts the T near to the base of flame due to the stoichiometric com-

bustion assumed (Fig. 5.22). It was also shown in [63, 77] that the location of chemical

reaction zone for organic peroxide pool flames are not only just above the liquid pool

rather it extends up to more than half of the total visible length of the flame. The

expected length of flame zone has not been found with the present simulation. The

isotherms of time averaged flame temperature T predicted by simulation are shown on

the right side of Fig. 5.22.

5.5.6 CFD prediction of the flame temperature in packaged fire test

In section 3.3 the descriptions of old large fire test were given. An equivalent pool of d

= 8 m was used to approximate the packaged fire tests. After comparing with exisisting

data on temperature of diffusion flames the uncorrected thermocouple measured data in

the trough of the old large fire test (arrangement shown in Fig. 3.10(a)) were compared

with the simulation. The initial phase of a wood crib fire time is approximately 5-6
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minutes. During this time the temperature steadily increases until the maximum value

is reached. In order to define this burning time in the CFD simulation it is assumed

Figure 5.23: Measured and CFD predicted instantaneous temperature T in large packaged
fire of TBPEH (d= 8 m)

here that the initial 20 seconds of the simulation (when the flame reaches steady burning

condition) are enough to let the temperature rise like in the experiment. For a real fire

this time was between 8-10 minutes. The measured and CFD predicted temperature for

both peroxides is shown in Fig. 5.23. CFD predicted temperatures for TBPB are higher

during the initial few seconds and reaches values > 1500 K. TBPEH flame reaches steady

burning conditions (t > 10 s) with very small fluctuations. As was indicated in section

3.3.2 that the maximum temperature measured for both peroxide fires were about 1173-

1223 K which is in good agreement with the CFD predicted value for TBPEH fires

(1200-1300 K).

In Figs. 5.24 and 5.25 a time dependent flame development of TBPB and TBPEH are

shown. TBPEH shows very different structures to TBPB. The predicted development

of the isotherms for TBPB are comparable with the small pool fire simulation at d =

0.18 m (section 5.5.2). At the same time it also exhibits the larger width than TBPB

which was also experimentally observed.
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5.6 Flow velocity of flame gases

Velocity of hot gases inside a large pool fire were measured by bi-directional pressure

probes and PIV (Particle Image Velocimetry) methods [20, 78]. Since the mass burning

rate remains constant at larger diameters so the flow velocity increases in fully developed

pool fires can reach to a maximum value i.e. the pool size does not affect the velocity

of flow [14]. In this study a method is presented to estimate the flow velocity of gases

by observing the movement of large and small eddies in thermograms with known time

interval �t. The estimation is not exact due to limited spatial and time resolving

capacity of a thermographic image which contains the information of temperature T

e.g. of a large flame (d = 3.4 m, H = 30 m) in 240 x 110 pixel elements (Fig. 5.26) and

integrates signal from the depth of the flame.

Figure 5.26: A pair of instantaneous thermograms taken with a time delay of �t = 0.019
s showing the displacement �x of the centre of small vortices in a TBPB flame
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The displacement �x of a centre of a large eddy (approximately area of constant tem-

perature) in axial direction in a time interval �t = 0.019 s is shown in Fig. 5.25. Since

the measurements were done under negligible cross wind conditions so no corrections for

cross wind effects are necessary (see section 3.2).

u =
x2 − x1

t2 − t1
=
�x

�t
(5.14)

The initial two data points of TBPB and TBPEH are shown in left of Fig. 5.26 where

the influence of large and small scale eddies can be seen between measured and CFD

predicted values. When considers the smallest eddy in present thermogram i.e. data

points for TBPB and TBPEH it (eq. (5.14)) agrees much better than the larger ones.

Since a thermogram contains only 2-D informations the flow velocity predicted com-

pletely ignores the component normal to the image. That might be one of the reasons

why the velocities determined by thermograms are higher. Probably the spatial and

time resolution are not sufficiently high therefore the flow velocities determined from eq.

(5.14) are too high [79]. Because of the slow repetition rate of the measurement it is not

easy to follow individual structures as seen from Fig. 5.26. Most structures can not be

identified anymore in the second image.

5.6.1 CFD simulation

By using CFD predicted axial flame temperature and axial flow velocities the modified

centreline Froude number was calculated as described in [49]. According to [49] for

different heat release rates the centre line Froude number Fr ≈ 2 is found for inviscid

flows. From the large scale fires of packaged TBPB and TBPEH a Q̇∗ are calculated from

eq. (2.8). As can be seen from Fig. 5.27 also a modified centre line Froude number of 2

follows for the two peroxide flames as for hydrocarbon flames. This is a quality criterion

for the simulation results in this study. The x∗ and Fr in Fig. 5.27 are calculated with

eqs. (5.15) and (5.16).

x∗ = Q̇∗
2
5 d (5.15)

Fr =
u2

(T−Ta)
Ta

gx
(5.16)
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Figure 5.27: Fr vs. non dimensional axial coordinate along the flame

The velocity of flame gases (u) predicted by simulation is good in agreement with the

existing experimental data for hydrocarbon flames in the literature (Fig. 5.28) [49].

Because the experimental determined gas velocities of the organic peroxide flames are

too high (see chapter 5.6) also the CFD predicted flow velocities for peroxide flames

should be in much better agreement with those shown in Fig. 5.28 on basis of better

resolution of the thermograms.

The CFD predicted radial velocity profiles at different axial distances in a fully developed

flame along the length of flame can be seen in Figs. 5.29 and 5.30.

The velocity field is good in agreement with the previously reported results [49] shown

in Figs. 5.31, 5.32, 5.33. To get a better understanding of the velocity field a comparison

of the velocities measured by McCaffrey [49] in three different locations of all the three

zones has been done. In Fig. 5.31, 5.32 and 5.33 are included the CFD predicted velocity

profiles of TBPB and TBPEH-flames.

On abscissa the radial distance is normalised by r 1
e
. Since the plume zone does not show

appreciable difference in velocity distribution due to buoyant forces so the abscissa r/x1

was chosen as described in [80]. This normalisation is purely based on the empirical
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Figure 5.28: Time averaged measured and CFD predicted flame centreline velocity u vs.
x

′
(left) and contour plot of velocity field of TBPEH flame (right)

Figure 5.29: CFD predicted radial velocity profiles at different axial distances in a fully
developed TBPB pool fire (d = 1 m)
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Figure 5.30: CFD predicted radial velocity profiles at different axial distances in a fully
developed TBPB pool fire (d = 0.18 m)
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Figure 5.31: Relative flow velocities of flame gases in clear flame zone

Figure 5.32: Relative flow velocities of flame gases in pulsation zone
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Figure 5.33: Relative flow velocities of flame gases in three different locations (x1) in
plume zone

relationship developed on the basis of experimental data. The deviations in the case

of peroxide fires in clear flame zone is relatively large because the present sub-model of

combustion does not take into account the elementary reactions and therefore the flow

velocities are underpredicted. In case of TBPEH fire the CFD predicted velocity in inter-

mittent and plume zones give good agreement with the hydrocarbon fire measurements

[80].

5.7 Flame irradiance

The time averaged irradiance E can be calculated by surface emissive power SEP with

the following equations:

E = ϕF,R τ SEP (5.17)

SEP = σεF(T 4
CFD − T 4

a ) (5.18)

The measured irradiances E versus time of nearest placed three radiometers (R1, R2,

and R3) for TBPEH and TBPB pool fire are shown in Figs. 5.34 and 5.35 respectively.
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Figure 5.34: Instantaneous irradiance vs. time at different distances for TBPEH pool fire
(d = 3.4 m)

Figure 5.35: Instantaneous irradiance vs. time at different distances for TBPB pool fire
(d = 3.4 m)
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The time shown on abscissa is the total time from the point of start of sensors. The

measured values of R1 were used to obtain the time averaged irradiances E. The peaks

in the curves of R1 coming from the natural fluctuation of the flame.

In case of TBPB (Fig. 5.35) the maximum irradiance measured by R1 is almost half (∼
45 kW/m2) of the TBPEH. The reason for the lower value for TBPB is the pulsation

as shown in Fig. 5.20.

The time averaged irradiances E(�y/d) as a function of non dimensional horizontal

distance from pool rim is shown in Fig. 5.36. For predicting E(�y/d) with CFD time

averaged flame surface temperature TCFD in eqs. (5.17) and (5.18) is chosen:

E = ϕF,RστεF(T
4
CFD − T 4

a ) (5.19)

where E is the time averaged irradiance in W/m2 at a certain distance from fire. σ is the

Stefan Boltzmann constant (5.67×10−8 W/(m2K4)); τ is the atmospheric transmissivity

assumed to be 1; εF is the emissivity assumed as 0.9 as most of the hydrocarbon pool fires

at d ≥ 3 m are optically thick [4, 7, 14, 60]. TCFD and Ta are average flame temperature

and ambient temperature in Kelvin.

The view factor ϕF,R from Flame (F) to Receiver (R) is given by the following equation

[91]

ϕF,R =
1
2π

(
B√

1 + B2
tan−1 C√

1 + B2
+

C√
1 + C2

tan−1 B√
1 + C2

)
(5.20)

where B and C are defined as the ratio of flame width (b) to distance between flame

and receiver (Δy) and flame height (H) to distance between flame and receiver (Δy)

respectively for approximation of flame as a rectangular surface [81].

The radiometers were able to measure the irradiance close to the flame. In the case

of TBPEH flame the irradiance predictions with CFD simulation were not carried out.

The CFD simulation for TBPB shows a good agreement with the measurements (Fig.

5.36).

If one follows the criterion described in [82] i.e. NFPA (National Fire Protection Agency)

59A Standard and the Federal Regulation, 49 CFR Part 193, the safety distance (also
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Figure 5.36: Irradiance vs. non dimensional distance from pool rim (�y/d) of TBPB
flame (d =3.4 m) (TCFD = 1012 K)

given in Fig. 5.36) for organic peroxide pool fires can be predicted when TCFD is con-

sidered for calculation [84]. The criteria of 5 kW/m2 is based on the phenomenon of

skin burn caused by radiant heat exposure whereas EN 1473 recommends this limit to

be 1.5 kW/m2 [82, 83].

The reasons given for the uncertainties in the measurement of mass burning rates, flame

lengths and flame temperatures are equally accountable for the uncertainties in the mea-

surement of irradiances. The uncertainties in the present measurement of irradiances

E in the large pool fires are in the range of ±23% to ±40% [96, 98, 100]. The uncer-

tainty analysis on the pool fires of diesel, JP-8 and jet fuel in [98] concludes that the

combined convective and radiative environment in a large pool fire introduce errors in

the measurement. The realistic determination of convective heat transfer coefficient and

the sensitivities of radiometers to such convective and radiative atmosphere are the key

issues in the correct measurement of irradiances.
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5.7.1 CFD prediction of irradiance in a fire test of packaged fuel

The measured irradiance E in all horizontal directions with calibrated radiometers in

the large packaged fire test and the CFD predicted values are shown in Fig. 5.37. More

details about the radiometer specification and location could be found in section 3.3.

Figure 5.37: Time averaged measured and CFD predicted irradiance in fire test of pack-
aged fuel (TCFD= 1229 K)

Data shown by symbols in Fig. 5.37 are data directly obtained from the radiometer

measurements. The line is the result of eq. (5.19). The calculated value of E agree well

with the measurements [80].

5.8 Surface emissive power

5.8.1 Prediction of surface emissive power from thermograms and from

CFD

The SEP is determined by evaluation of the thermograms. The experimental determi-

nation of the local distribution of surface emissive power SEP (x, y) is done by using the
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local temperature distribution T (x, y) from thermograms (Chapter 5.5.3) [85]. Based

on experimental data obtained from thermograms of TBPB and TBPEH the SEPi,j of

flame is calculated with the help of eq. (5.21) where Ti,j represents the temperature at a

pixel element i, j. The selection of emissivity (εF = 0.9) was based on the facts reported

in [60] for optically thick hydrocarbon pool fires. Because of a lack of experimental data

on emissivity of pool fire of organic peroxides a selection (based on the data of emissiv-

ity of hydrocarbon fires and packaged material fires of organic peroxides) is made as an

approximation for organic peroxide pool fires. The SEP of a pixel element can be given

by:

SEPi,j = εFσT 4
i,j (5.21)

The time averaged surface emissive power of a pixel element SEP can be calculated by

SEP i,j =
∑NT

1 SEPi,j(t)
NT

(5.22)

The average surface emissive power SEP of flame can be written as

SEP (d) ≡ 〈SEP i,j(d)〉 =

∑
i

∑
j

SEP i,j(d)ax

∑
i

∑
j

ax

(5.23)

Only the pixels with temperatures Ti,j > 600 K are considered for determination of SEP

because the lower temperatures do not make a significant contribution to the thermal

radiation of a pool fire. In eq. (5.23) the area ax of a pixel-matrix element is used to

take into account the size and current position of a pixel in the vertical and horizontal

field.

During the combustion of hydrocarbons e.g. kerosene, a considerable amount of soot

formed as a result of large residence time of fuel vapours which leads to incomplete

combustion. The cold black soot obscured the flame surface and thus caused the heat

to dissipate and therefore the surface temperature of the flame is decreased. As a

consequence a lower flame surface temperature and lower SEP has been measured by

the thermographic camera.

On the contrary to this TBPB and TBPEH show fast mixing, small residence time of fuel

vapour and therefore ensure more complete combustion. The soot produced in the case

of TBPB and TBPEH pool fires continuously receive the heat from the fast combustion
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and therefore caused the luminosity of the flame until it reaches its maximum visible

length and then becomes fully buoyant.

The measured and CFD predicted values of SEP for various hydrocarbons and organic

peroxides for different diameters are given in Table 5.5. The CFD predicted values

represent SEP of an averaged flame surface obtained after integration of 65 different

isotherms along the radial direction of the pool [85]. SEP of all hydrocarbon pool fires

(d = 1 m to 80 m) are measured between 280 kW/m2 and 30 kW/m2 whereas the organic

peroxides (d = 1 m to 3.4 m) show this range to lie between 180 kW/m2 to 330 kW/m2.

Fuel Pool diameter d SEP Remark

(m) (kW/m2)

LNG 8.5 to 15 210 to 280 Narrow angle radiometers

Gasoline 1 to 10 130 (max) to 60 -

Kerosene 30 to 80 25 to 10 Wide angle radiometers

(average)

DTBPa 1 to 3.4 130 to 260 Thermographic camera

JP-5 30 30 -

TBPBa 3.4 196 Thermographic camera

TBPEHa 3.4 258 Thermographic camera

Table 5.5: Measured SEP of hydrocarbons and organic peroxide pool fires [11, 62, 87]
aMeasured at BAM.

The interesting thing is to note that TBPB shows lower SEP than DTBP and TBPEH

due to the fact of ’W’ effect. The time averaged flame emission temperature of DTBP

[88] is higher than for TBPEH and TBPB. The flame surface of DTBP is smaller than

of TBPEH and TBPB. All these facts explained that the SEPDTBP > SEPTBPB, TBPEH.

CFD simulation overpredicts the SEP of TBPB and TBPEH pool fires due to enhanced

mixing (Fig. 5.38).

A number of models based on various assumptions have been developed and tested for

predicting the average surface emissive power. Recently a model proposed by Fay [9]

assumes the flame as a grey gas with γσT 4
F of 563 kW/m2 (based on LNG, d = 35 m test,

TF = 2300 K, γ = 0.36) and an optical length of κH. Now the SEP can be calculated
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Figure 5.38: Measured and CFD predicted SEP of hydrocarbons and organic peroxide
pool fires [11, 21, 85, 87]
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by using the following equation

〈SEP 〉
γσT 4

F

=
1

κH

(
1− (1 + κH) exp(−κH)

)
(5.24)

with κ = 0.0233 1/m [9], for TBPB the H = 31 m and for TBPEH H = 26 m. Under

such assumptions an excellent agreement was found (Fig. 5.39) between the Fays model

and those calculated with the eq. (5.24) with experimental values of H, which is the

only variable in eq. (5.24) [77].

Figure 5.39:
〈SEP 〉
γσT 4

F

of LNG and organic peroxide pool fires as a function κH

5.8.2 Soot mass fraction

Soot formation in large hydrocarbon pool fires influences the flame characteristics to a

large extent. Modelling of continuous production and oxidation of soot particles in the

present simulation has been done with the help of Magnussen soot model.

In Fig. 5.40 the dependence of soot mass fraction on x
′
for TBPB and TBPEH is shown.

A pulsation effect can be seen for TBPB whereas TBPEH shows normal burning with
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5 Results and Discussion

Figure 5.40: (a) CFD predicted soot mass fraction vs. x
′
in TBPB and TBPEH pool fire

(d = 3.4 m); (b) CFD predicted contours of soot mass fraction of a TBPEH pool fire (d =
3.4 m)

natural frequency of fluctuation [84]. The reasons for the smaller soot mass fraction

distribution is also caused by the ’W’ -effect in the TBPB flame.

5.9 Validation of CFD simulation

Due to uncontrolled field conditions, limitation of measuring instruments and compli-

cated physics, the measurement of pool fire characterstics are greatly influenced by a

number of parameters. The same is also valid for CFD simulations where the lack of

quality input parameters for turbulence, combustion and radiation models may introduce

significant errors and uncertainties in predictions. The uncertainties in CFD simulation

are analysed according to [99] and will be described as follows.

The magnitude of errors and uncertainties in the predictions of simulation largely de-

pends on the accuracy and confidence assured in experimental results. Oberkampf et al.

[99] give the quantitaive way to estimate the error and uncertainties in computational

results of a turbulent buoyant plume of helium. The method called ’Global Metrics’ is
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5 Results and Discussion

based on the error F (x) associated with the each predicted size x written as [85, 99]

F (x) = ym(x)− ye(x) (5.25)

where ym(x) is the mean calculated value and ye(x) is the mean experimental value.

The error in the field with 90% probablity is given by

(
F (x)− t0.05,f

S(x)√
n

, F (x) + t0.05,f
S(x)√

n

)
(5.26)

S(x) is the standard deviation and the distribution of t depends on the number of degree

of freedom f = n-1 for n of x

∣∣∣∣Fye

∣∣∣∣
avg

=
(

1
xu − xl

)∫ xu

xl

∣∣∣∣ym(x)− ye(x)
ye(x)

∣∣∣∣ dx (5.27)

∣∣∣∣Fye

∣∣∣∣
max

= max
xl≤x≤xu

∣∣∣∣ym(x)− ye(x)
ye(x)

∣∣∣∣ (5.28)

where the maximum value of size x is xu and the minimum is xl. The average and

maximum relative confidence indicator (CI) are given by [99]:

∣∣∣∣CI

ye

∣∣∣∣
avg

=
t0.05ν

(xu − xl)
√

n

∫ xu

xl

∣∣∣∣ s(x)
ye(x)

∣∣∣∣ dx (5.29)

∣∣∣∣CI

ye

∣∣∣∣
max

=
t0.05ν√

n

∣∣∣∣ s(x̂)
ye(x̂)

∣∣∣∣ (5.30)

Using the above eqs. (5.27), (5.28), (5.29) and (5.30) the average and maximum error

and confidence indicator can be quantitatively estimated.

The following tables summarize the results obtained from CFD simulation with SAS

(scale adaptive simulation) turbulence model for the different sizes:

SAS (1 million cells)

Maximum relative error 0.34

Confidence interval of maximum error 0.9 [99]

Table 5.6: Calculation of uncertainties in mass burning rate predicted by CFD simulation
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5 Results and Discussion

SAS (1 million cells)

Maximum relative error 0.41

Confidence interval of maximum error 0.9 [99]

Table 5.7: Calculation of uncertainties in flame length predicted by CFD simulation

SAS (1 million cells)

Maximum relative error 0.06

Confidence interval of maximum error 0.9 [99]

Table 5.8: Calculation of uncertainties in flame temperature predicted by CFD simula-

tion

SAS (1 million cells)

Maximum relative error 0.86

Confidence interval of maximum error 0.9 [99]

Table 5.9: Calculation of uncertainties in surface emissive power predicted by CFD sim-

ulation

The above qualitative estimations of maximum relative errors are based on single experi-

ment and simulation. The confidence interval for maximum error is based on the analysis

carried for multiple data sets of measurements and simulations on buoyant plume of he-

lium [99]. The average values of error and confidence interval for maximum error for

the present measurements and simulations can be estimated with the help of eqs. (5.27)

and (5.29) provided multiplicity of experiments and simulations are available.
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Chapter 6

Conclusions and Future Work

Pool fires of liquid organic peroxides show fundamentally very different characterstics e.g.

generally much higher mass burning rates, large flame lengths as well as high irradiances

in comparison to liquid hydrocarbon pool fires. Such peroxides present a potential risk

during storage and transportation. In order to measure, calculate and develop effective

methods of protection and safety distances experimental studies and CFD simulations of

TBPB (tert -butyl peroxybenzoate) and TBPEH (tert-butyl peroxy-2-ethylhexanoate)

pool fires were performed.

The experimental investigations led to the observation that low heat of vaporisation and

readily available oxygen atoms from the thermal decomposition in the combustion zone

accelerate the combustion. Therefore, very high mass burning rates were measured. Due

to this fast burning, fuel Froude numbers increase significantly which finally enlarges the

visibility of luminous flame. As a consequence the irradiance and surface emissive power

of flames were also enhanced significantly.

Probably due to discontinuous decomposition and vaporisation of TBPB an extraordi-

nary self sustained pulsating effect (’W’ -Effect) was observed.

CFD simulation is capable to predict the mass burning rate and flame lengths of TBPB

and TBPEH which are qualitatively close to the measured values. CFD Simulation

estimated the safety distances accurately when predicted time averaged flame surface

temperature is used. An improvement of combustion model employed in the present

simulation probably will lead to a better estimation of flame characteristics.

CFD simulations to compare the large storage fire characterstics with a corresponding

pool fire characterstics is also developed and tested. The simulation results are in good
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6 Conclusion and Future Scope of Work

agreement with experimental data on the pool fires of hydrocarbons and organic perox-

ides. The CFD predicted flame temperature and irradiance are comparable when the

small fluctuations in the variables are neglected. The present simulations were carried

are based solely on the assumption of a complete combustion without wind influence.

For future simulations, the detailed chemical reaction mechanisms and combustion of

TBPB (elementary reactions) in submodels could be implemented and validated. An

evaporation model (liquid phase to gas phase) which takes into account the natural con-

vection as well, needs to be developed.

From a safety point of view of, it would also be very interesting to carry out CFD study

on combustion of organic peroxides in packagings. This would enable the quantitative

prediction of safety-relevant parameters.

The potential threat of fire damage requires the inclusion of results from experimental

studies and simulations in the safety reports for emergency planning and quantitative

risk analysis. The present work can be an addition in the lessons learnt from pool fires

of liquid organic peroxides, on which very few studies have been carried out so far.
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[68] K. B. Mishra; K. D. Wehrstedt; A. Schönbucher: Pool flames of organic peroxides:

experiments and CFD simulations, Proceedings of 9. Fachtagung ’Anlagen-,Arbeits-

und Umweltsicherheit’ (Safety and Environmental Protection Group, DECHEMA
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[69] K. B. Mishra; K. D. Wehrstedt; A. Schönbucher: Safety characteristics of organic

peroxide pool flames, Proceedings of 9th Symposium on Fire Safety Science 21 -26

September 2008, University of Karlsruhe, Germany.

[70] K. B. Mishra; K. D. Wehrstedt: Brennstoff und Verwendung desselben (Fuel and

its use), DE 10 2009 016 492.8.

120 BAM-Dissertationsreihe



References

[71] K. B. Mishra; K. D. Wehrstedt: Verwendung eines Brennstoffs in einem selb-

stunterhaltenden pulsierenden Sauerstoff-Brennstoff-Verbrennungsprozess (Use of

Self-controlled oxy-fuel-pulse combustion in process industries) DE 10 2009 039

893.7.

[72] K. B. Mishra; K. D. Wehrstedt; A. Schönbucher: Pool flames of organic peroxides:
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organic peroxide fire tests, In Progress

121



References
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brennstoffkontrollierte Impulsverbrennung (Noise reduction through fuel driven

pulse combustion in jet engines), DE 10 2010 016 832.7.

[106] K. B. Mishra, K. D. Wehrstedt: Fuel and use thereof, PCT/EP2010/054544.

[107] K. B. Mishra, K. D. Wehrstedt: EP 008 990 319, PEROXY-BAM R© Burner.

124 BAM-Dissertationsreihe



List of trade marks, patents and

publications

Trade Marks

• K. B. Mishra, K. D. Wehrstedt, DE 30 2009 069 918.6 PEROXY-BAM R© Brenner.

• K. B. Mishra, K. D. Wehrstedt, EP 008 990 319, PEROXY-BAM R© Burner.

Patents

• K. B. Mishra, K. D. Wehrstedt, Brennstoff und Verwendung desselben (Fuel and

its use), DE 10 2009 016 492.8.

• K. B. Mishra, K. D. Wehrstedt, Selbstunterhaltende pulsierende Sauerstoff-Brennstoff-

Verbrennung (Self-controlled oxy-fuel-pulse combustion), DE 10 2009 039 893.7.

• K. B. Mishra, K. D. Wehrstedt, Ein effizienter und sauberer Brennstoff für die

Prozessindustrie (An efficient and clean fuel for process industries), DE 10 2009

039 894.5.

• K. B. Mishra, K. D. Wehrstedt, Brenner für Peroxy-Brennstoffe und Ofen mit

einem solchen Brenner (Peroxy-fuel burners and furnace with such a burner), DE

10 2010 000 248.8.

• K. B. Mishra, K. D. Wehrstedt, Energiereiche Raketentreibstoffe (High energy

rocket propellents), DE 10 2010 000 261.5.

• K. B. Mishra, K. D. Wehrstedt, Brennstoffkontrollierte Impulsverbrennung in In-

dustrietrocknern (Fuel driven pulse combustion in drying industries), DE 10 2010

016 831.9.

125



List of trade marks, patents and publications

• K. B. Mishra, K. D. Wehrstedt, Brennstoffgemisch und Anwendung derselben in

Gasturbinen (Hybrid Fuel and its applications in gas turbine), DE 10 2010 016

833.5.
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• K. B. Mishra, K. D. Wehrstedt, A. Schönbucher, Turbulent combustion in large

pool fires of organic peroxides, 25-29 May 2009, Short course on Turbulent Com-

bustion, von Karman Institute for Fluid Dynamics, Brussels, Belgium.

128 BAM-Dissertationsreihe



Curriculum Vitae

Personal Details

• Name: Kirti Bhushan Mishra

• Date of Birth: 19-11-1978

• Place of Birth: Cuttack, India

• Nationality: Indian

• Gender: Male

• Marital Status: Single

Education

• 01.02.2007 – 12.05.2010 PhD in Fire safety engineering

Institute for Combustion and Gas dynamics, Department of Mechanical Engineer-

ing, University of Duisburg-Essen, Germany.

• 01.08.2001 – 20.10.2003 Master of Technology M.Tech (Hons) in Fluid mechanics

and machines

Maulana Azad National Institute of Technology, Bhopal, India.

• 01.07.1997 – 01.07.2001 Bachelor of Engineering B.E.(Hons) in Mechanical engi-

neering

Rajiv Gandhi University of Technology, Bhopal, India.

129



Curriculum Vitae

Work Experience

• 16.06.2010 – till date Junior Scientist

Division II.2, “Reactive Substances and Systems“ BAM Federal Institute for Ma-

terials Research and Testing, Berlin, Germany.

• 01.08.2005 – 31.01.2007 Scientific Co-Worker

Department of Chemical Engineering, University of Erlangen-Nuremberg, Erlan-

gen, Germany.

• 20.01.2003 – 30.07.2005 Lecturer

Department of Mechanical Engineering, Madhav Institute of Technology and Sci-

ence, Gwalior, India.

School Education

• 01.07.1984 – 01.07.1994 Matriculation (Distinction)

• 01.08.1994 – 01.06.1996 Senior Secondary School (Distinction) Madhya Pradesh

Board of Secondary Education, Bhopal, India

Berlin 16 July 2010

130 BAM-Dissertationsreihe


	Experimental investigation and CFD simulation of organic peroxide pool fires (TBPB and TBPEH)
	Acknowledgements
	ABSTRACT
	Nomenclature
	Greek Letters
	Indices
	Abbreviations
	Miscellaneous
	Contents
	Chapter 1 Introduction
	Chapter 2 Theoretical Background
	2.1 Introduction
	2.2 Dynamics of pool fires
	2.2.1 Mass burning rate
	2.2.1.1 Theory of burning rate according to Hertzberg
	2.2.1.2 Effect of lip height, thickness and pan material

	2.2.2 Flame length
	2.2.2.1 Flame length model according to Thomas
	2.2.2.2 Flame length model according to Steward
	2.2.2.3 Flame length model according to McCaffrey
	2.2.2.4 Flame length model according to Moorhouse
	2.2.2.5 Flame length model according to Heskestad
	2.2.2.6 Flame length model according to Fay
	2.2.2.7 Effect of unsteadiness

	2.2.3 Flame temperature and flow velocity
	2.2.4 Adiabatic flame temperature
	2.2.5 Thermal radiation
	2.2.5.1 Point source model
	2.2.5.2 Conventional and modified solid flame radiation model
	2.2.5.3 View factors
	2.2.5.4 Atmospheric absorption

	2.2.6 Organised Structures RadiationModels (OSRAMO II, OSRAMOIII)

	2.3 Organic peroxides
	2.3.1 Self Accelerating Decomposition Temperature of organic peroxides
	2.3.2 Fire and explosion hazards of organic peroxides

	2.4 Modelling and simulation of pool fires

	Chapter 3 Experimental Investigations
	3.1 Description of measuring instruments
	3.1.1 Dynamic Differential Calorimetry (DDC)
	3.1.2 Thermocouples
	3.1.3 Thermographic camera
	3.1.4 Radiometers

	3.2 Experimental set-ups for small and large scale fire tests
	3.2.1 Construction
	3.2.2 Fuels
	3.2.3 Mass burning rate
	3.2.4 Flame length
	3.2.5 Flame temperature
	3.2.6 Surface emissive power
	3.2.7 Irradiance

	3.3 Description of packaged material fire test
	3.3.1 Flame length
	3.3.2 Temperature measurement
	3.3.3 Irradiance measurement


	Chapter 4 CFD (Computational Fluid Dynamics) Simulation
	4.1 Introduction
	4.2 Modelling methodology
	4.2.1 Geometry, mesh and boundary conditions
	4.2.2 Transport models
	4.2.2.1 Multi-component flow
	4.2.2.2 Turbulence models

	4.2.3 Thermodynamic properties
	4.2.4 Combustion model
	4.2.4.1 The eddy dissipation concept (EDC) model

	4.2.5 Soot models
	4.2.5.1 Soot formation

	4.2.6 Radiation model
	4.2.6.1 Discrete transfer model


	4.3 Solution strategy

	Chapter 5 Results and Discussion
	5.1 Mass burning rate
	5.1.1 Mass burning rate as a function of pool diameter
	5.1.2 Mass burning rate as a function of Self-Accelerating DecompositionTemperature (SADT)
	5.1.3 CFD prediction

	5.2 Visible flame length
	5.2.1 Visible flame length as a function of pool diameter
	5.2.2 Visible flame length as a function of fuel Froude number
	5.2.3 Flame length prediction according to the models of Thomas andFay
	5.2.4 Flame length prediction according to Heskestad’s model
	5.2.5 CFD prediction

	5.3 Turbulent organised structures
	5.4 ’W’-effect in a TBPB pool flame
	5.5 Flame temperature
	5.5.1 Instantaneous flame temperature field
	5.5.2 CFD prediction of time averaged flame surface emission temperatureprofile
	5.5.3 Time averaged flame temperature field
	5.5.4 Time averaged mass fraction of combustion products
	5.5.5 CFD prediction of the axial flame temperature profile
	5.5.6 CFD prediction of the flame temperature in packaged fire test

	5.6 Flow velocity of flame gases
	5.6.1 CFD simulation

	5.7 Flame irradiance
	5.7.1 CFD prediction of irradiance in a fire test of packaged fuel

	5.8 Surface emissive power
	5.8.1 Prediction of surface emissive power from thermograms and fromCFD
	5.8.2 Soot mass fraction

	5.9 Validation of CFD simulation

	Chapter 6 Conclusions and Future Work
	References
	List of trade marks, patents and publications
	Curriculum Vitae

