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Abstract. Hydrogen is an energy source of increasing importance. As hydrogen is 

very reactive to air and needs to be stored under high pressure, it is crucial to provide 

safe transportation and storage. Therefore, structural health monitoring, based on 

guided ultrasonic waves and machine learning methods, is used for Composite 

Overwrapped Pressure Vessels (COPVs) containing hydrogen.  

To acquire data that allows robust detection of COPV defects, there are two 

main process parameters to consider. These are the pressurization of the vessel and 

the temperature conditions at the vessel. This paper will focus on the derivation of a 

design of experiment (DoE) from the needs of various validation scenarios (e.g. 

concerning pressure, temperature or excitation frequency). 

We designed experiments with multiple reversible damages at different 

positions. A network of 25 transducers, structured as five rings with five sensors in 

one line, is installed on a vessel. Guided ultrasonic waves are used via the pitch-catch 

procedure, which means that the transducers act pairwise as transmitter and receiver 

in order to measure all transmitter-receiver combinations. This leads to 600 signal 

paths, recorded by a Verasonics Vantage 64 LF data acquisition system. Finally, the 

influences of temperature and pressure within the acquired data set will be visualized. 

 

Keywords: Composite Overwrapped Pressure Vessel, Hydrogen, Guided Ultrasonic 

Waves, Data Acquisition, Pressurization, Machine Learning. 
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Introduction  

In this paper, we explain the methodology to measure ultrasonic guided waves (GW) on a 

composite overwrapped hydrogen pressure vessel (COPV) used for the experiment. Previous 

work initially investigated these influences for simple geometries such as plate-like structures 

made of composites [2, 3]. Furthermore, a description of the experiment setup is provided. 

Following this, we explore the influence of temperature change between 28 and 32°C and 

pressure change between 100 and 700 bar on the acquired GWs. Finally, we inspect the 

capability of machine learning to classify the previously explored influence of pressure[5]. 

1. Methodology 

1.1 Structure under Investigation 

The structure under investigation was a fully composite type IV hydrogen high-pressure 

vessel (AH350-70-4) manufactured by NPROXX (Fig. 1). The pressure vessel had a 

polyamide liner inside overwrapped with carbon-fibre reinforced polymer composite. The 

cylinder's length was 1670 mm, and its outer diameter 352 mm. The pressure vessel is 

designed for pressures up to 700 bar. 

 

 

Fig. 1. Structure under investigation: Composite overwrapped pressure vessel (COPV) for storing hydrogen 

up to 700 bar [1].  

 

 

1.2 Experimental Setup 

For assessing how varying pressure levels and temperatures impact the propagation of GWs 

in the COPV, and to evaluate their sensitivity to varying types and positions of artificial 

damage, a sensor network of piezoelectric wafers (PZT) was applied on the cylindrical 

surface of the pressure vessel (Fig. 2). The design of the sensor network consists of five rings 

with five PZTs each. The spacing between the PZTs around the circumference is about 221 

mm and 312.5 mm is kept between the single rings for covering the total length of the COPV 

as shown in Fig. 3. DuraAct patch transducers (P 876K025) with a 10 mm circular ceramic 

embedded in a ductile polymer from PI Ceramics (Lederhose, Germany) were the PZTs used 

in the setup. The total of twenty-five PZTs were bonded to the COPV’s surface with a thin 
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layer of two-component epoxy adhesive and then wired to a Vantage 64 LF system from 

Verasonics (Kirkland, USA), a multi-channel ultrasonic data acquisition system.  

The COPV filled with glycol as test medium was installed inside a hydraulic pressure 

test system (PN020) from Maximator GmbH (Nordhausen, Germany) as can be seen in 

Fig. 2. This test rig is capable of pressurising the COPV for different pressure levels while 

operating under different ambient temperatures. The data acquisition process was designed 

in a way that one single PZT worked as an actuator while the rest worked as sensors and the 

role alternated until all the PZTs served as actuators. This results in an entire dataset of 600 

different actuator-sensor combinations. This process was repeated for a set of different 

pressure levels, temperatures and excitation signals (Table 1). Besides the ambient and the 

temperature of the liquid, the temperature was also measured at four different locations on 

the surface of the pressure vessel. 

To evaluate the sensitivity to potential damages on the COPV, different conditions of 

varying types and positions of artificial damages were considered during the data acquisition 

process as well (Table 1). The artificial damages are four identical cylindrical steel 

blocks (D1-D4). The blockes were glued onto the COPV’s surface at various locations. The 

mass application leads to a local change of the acoustic impedance and thus to a change in 

propagation behaviour of the GWs. The positions of the simulated defects can be seen in 

Fig. 3 and 4. Before considering different damage scenarios, baseline measurements of the 

structure in a pristine state were recorded. 

 

 

 

Fig. 2. Photograph of the experimental setup. The COPV is carried via tension belts inside the test rig 

(PN020). A sensor network of 25 PZTs forming five rings with five PZTs each is applied for damage 

localization with guided waves. 
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Fig. 3. Overview of the sensor placement and reversible damage positions (D1-D4) on the unwrapped COPV 

without dome areas.  

 

 

Fig. 4. Photograph of damage case setup. COPV with four masses glued onto the surface as artificial damage 

on different positions (D1-D4). The fourth damage (D4) is covered by the tension belt. 

 

 

Table 1. The measurements were conducted for following parameters and configurations. 

Pressure: 20 bar (start pressure) 

Ramp from 50-700 bar in 50 bar steps 

Temperature: T1 = 28°C  

T2 = 30°C 

T3 = 32°C  

Condition of COPV: D0 = pristine  

D1-D4 = with artificial damages at four different positions.  

Excitation signals: Burst 

Chirp 

Excitation frequencies (burst): 60-300 kHz in 20 kHz steps 

5-cycle hann-windowed 

Excitation frequency (chirp): 60-300 kHz 

Duration of 0.125 ms 

Damage positions: Four identical cylindrical blocks (see Fig. 3 & 4) glued at the same 

time and then removing one at the time 

 

1250 mm 

1
1

0
5

 m
m
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2. Investigating Temperature and Pressure Influence   

As mentioned in the previous section, we studied the vessel under different conditions of 

inner pressure and temperature, from where we wanted to identify variations in acquired GW 

signals, due to either changes in temperature or inner pressure. Additional to this, under the 

previous defined conditions, reversible damage was strategically added in four different 

locations over the vessel’s surface, this towards damage identification under various pressure 

and temperature conditions. For this matter, different types of GW signals were applied and 

measured all over the structure, we present in this section, the case where inner pressure and 

temperature will vary; for starters the inner pressure remain constant, while temperature 

fluctuate from 28°C to 32°C; the applied GW signal is a hann-windowed burst of 5 cycles at 

60 kHz.  

 

From the many channels over our transducer network, we started our study with transducer 

pairs 1Tx - 5Rx and 1Tx - 6Rx with a pristine structure under low pressure, namely 20 bar 

and three temperature steps. Fig. 5 present the signals recorded by sensors 5 and 6. These 

paths were selected since damage (D1) will be placed afterwards near and in the middle of 

this GW path. For both channels under this configuration, in (Fig. 5) only small differences 

were observed: a slight phase shift to the right and minor amplitude decrease for an increase 

in temperature.  

 

 
Fig. 5 Sensed signals for temperature variation at 20 bar and no damage D0. 

 

Next, we performed the same experiment but kept stable the temperature at 28°C, while the 

pressure within the vessel increased from 20, to 50 bar and then in steps of 50 bar up to 700 

bar. The results registered by sensors 5 and 6 are plotted in Fig. 6. For sake of clearness, we 

present only three pressure steps: for pair (1Tx - 5Rx) a noticeable amplitude reduction is 

shown when pressure rises from 20 bar to 350 bar, although by a continuous increase in 

pressure up to 700 bar there is no major amplitude variation.  

 

 
Fig. 6 Sensed signals for inner pressure variation at 20 bar, 350 bar & 700 bar at constant 28°C and no 

damage D0. 
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On the other hand, the signals referred to pair (1Tx - 6Rx) present a different behaviour, the 

amplitude of the signals increase with rising pressure, and although the major variation is 

displayed for a change in pressure from 100 bar to 350 bar, the increase in amplitude is easy 

to identify when pressure goes up to 700 bar with respect to 350 bar.  

 

On both cases, we distinguish a phase shift of the signals to the left that grows larger for 

rising pressures. This phase shift is easier to recognized with the surface representation 

of Fig. 7, where more pressure steps are displayed, on the right side of Fig. 7, a slight angle 

leaning to the left can be recognized along with increasing pressure; this is especially 

perceptible for signals related to pair (1Tx - 6Rx) of Fig. 7 – right. 

 

 
Fig. 7 Surface plot for inner pressure variation from 100 to 700 bar at constant 28°C and no damage condition 

D0. 

 

After following the experience, we may determine that our method using GWs to identify 

temperature variations of a vessel structure still requires further refinement before we could 

determine it does provide reliable information about temperature variation. The small 

changes shown by the signals in the temperature variation experiment could be due to the 

small temperature variation-range used (a variation of only 4°C). On the other hand, the 

approach used to sense variations in the inner pressure via GWs seem quite promising from 

our results, and given that the changes are higher for channel 6 in the longitudinal direction 

as for channel 5 in the radial direction, we may also say that they are path-dependent, this 

could also be related with the positions of the sensors, since we expect a greater deformation 

of the surface of the vessel while we approach the centre of the structure. 

 

3. Pressure and Damage Clustering 

In this chapter, we explored the feasibility of utilizing machine learning to cluster the 

influence of pressure on GW behavior in COPVs. In particular, the complex structure of the 

pressure vessel poses a challenge compared to less complex geometries that have already 

been analysed using machine learning [3,6]. In an initial experiment, we focused on a single 

sensor pair, from pitch sensor 3 to catch sensor 24, at a fixed frequency of 120 kHz. Pressure 

varied between 100 and 700 bar in 50 bar increments, aiming to minimize variations caused 

by factors like sensor position. Temperature change within the narrow range of 28 to 32°C 

was disregarded, as shown in Chapter 2 to have minimal impact on signal behavior.  

Initially, we employed time-frequency feature extraction with a segmentation parameter of 

20 (TimeFrequencyExtractor(1,20) [4,8]) on 270 time series. Subsequently, we applied 

standardized Principal Component Analysis (PCA). The left plot in Fig. 8 illustrates the 

pressure changes, with two discernible clusters attributed to the presence of glued artificial 

damages. The pressure change is depicted by the coloring from bottom/low to upper/high. 
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The right plot in Fig. 8 provides a PCA resolution regarding the extent of damages. The right 

cluster comprises measurements with one, two, and no damages, while the left cluster 

contains measurements with three and four damages. Hence, we assume that the amount of 

available damage leads to the present clustering [7]. 

 

 

Fig. 8 PCA plots showing the influence of the pressure (left) and the quantity of damages (right). 

 

 

 

In the second experiment, we explored a method to detect and visualize the influence of 

pressure on GWs, irrespective of the position of the pitch-catch sensors. To achieve this, we 

trimmed the first 2000 samples of the measured signals. As shown in Fig. 7 the phase shift 

induced by pressure changes typically occurs in the middle or at the end of the 7552-sample-

long signal [9]. To extract features, we opted for the Best Fourier Coefficient (BFC) feature 

extractor [4,10], which emphasizes signal phase. Fig. 9 illustrates the standardized PCA 

applied to around 20,000 signal series, with coloration indicating variations resulting from 

increased pressure. 

 

Fig. 9 Plot of the PCA over the BFC features showing the pressure influence.  

Pressure influence between all sensors @120kHz 

PC1 

PC2 

PC3 

Bar 

@180 kHz @180 kHz 
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4. Conclusion 

The paper focuses on analyzing a fully composite hydrogen high-pressure vessel, capable of 

withstanding pressures up to 700 bar. To investigate the impact of varying pressure levels 

and temperatures on GW propagation, the vessel's surface was equipped with a sensor 

network comprising PZTs, where the sensors are connected to the data acquisition system. 

Furthermore, artificial reversible damages were introduced by affixing cylindrical steel 

blocks to various locations on the vessel's surface. These damages were designed to alter 

propagation behavior of GWs. 

The study investigates the vessel's response under varying inner pressure and temperature 

conditions to identify changes in GW signals. Different GW signals are applied and measured 

across the structure. Varying the pressure demonstrated the most significant impact on the 

signal, particularly evident in the phase shift. This effect was visualized through individual 

time series and further analyzed using machine learning techniques. 
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