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Abstract. Structural health monitoring (SHM) using ultrasonic-guided waves 

(UGWs) enables continuous monitoring of components with complex geometries and 

provides extensive information about their structural integrity and their overall 

condition. Composite overwrapped pressure vessels (COPVs) used for storing 

hydrogen gases at very high pressures are an example of a critical infrastructure that 

could benefit significantly from SHM. This can be used to increase the periodic 

inspection intervals, ensure safe operating conditions by early detection of anomalies, 

and ultimately estimate the remaining lifetime of COPVs. Therefore, in the digital 

quality infrastructure initiative (QI-Digital) in Germany, an SHM system is being 

developed for COPVs used in a hydrogen refueling station. 

In this study, the results of a lifetime fatigue test on a Type IV COPV subjected 

to many thousands of load cycles under different temperatures and pressures are 

presented to demonstrate the strengths and challenges associated with such an SHM 

system. During the cyclic testing up to the final material failure of the COPV, a sensor 

network of fifteen surface-mounted piezoelectric (PZT) wafers was used to collect the 

UGW data. However, the pressure variations, the aging process of the COPV, the 

environmental parameters, and possible damages simultaneously have an impact on 

the recorded signals. This issue and the lack of labeled data make signal processing 

and analysis even more demanding. Thus, in this study, semi-supervised, and 

unsupervised deep learning approaches are utilized to separate the influence of 

different variables on the UGW data with the final aim of detecting and localizing the 

damage before critical failure. 
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1. Introduction  

Composite overwrapped pressure vessels (COPVs) are increasingly used for storing 

hydrogen gases at very high pressure levels due to their strength and lightweight design. 

Current safety guidelines require periodic inspections at predefined time intervals to ensure 

safe operational conditions [1]. More importantly, these guidelines have a predefined useful 

lifespan for such pressure vessels. However, for both the visual inspections and determination 

of remaining useful life, the loading history of these COPVs is not considered. This can lead 

to a scenario where damages are not detected by visual inspection or a scenario where a fully 

intact pressure vessel is replaced since its predefined useful lifetime has arrived. Both 

scenarios lead to downtime of facilities, increased operational costs, and wasting of 

resources.  

Structural health monitoring (SHM) systems could be used to alleviate these issues 

through continuous monitoring where data about the structural integrity of the monitored 

structure are gathered with the loading history. These data can be used for early detection of 

anomalies, potential damages, and for predicting the remaining useful lifetime.  Ultrasonic-

guided waves (UGWs) are especially well-suited for such tasks given their ability to travel 

long distances in complex geometries with minimal energy loss. More importantly, they have 

the ability to interact even with very small damages such as cracks, delamination, or impact 

damage. However, analyzing the collected UGW data and extracting the important features 

that are correlated with actual damages is still a very complex and challenging step. 

Especially due to the impact of the environmental factors on the UGW data. This becomes 

even more difficult if assessing the condition of the COPV has to be automated [2, 3]. 

Deep learning models can be used to remedy some of these issues since they have 

emerged as a powerful tool for analyzing large and complex data [3, 4]. In this work, a sensor 

network of fifteen surface-mounted piezoelectric (PZT) wafers is used to collect data during 

the cyclic loading of a Type IV COPV resulting in 105 unique time series data corresponding 

to 105 sensor-actuator combinations. However, the gathered data during the cyclic loading 

of the COPV are not labeled. Therefore, unsupervised or semi-supervised methods are 

required to analyze the data [5, 6]. The time series data are analyzed using the TimesNet 

model [7] in an unsupervised setting where the first dataset is used for model training and the 

rest of the data for calculating the anomaly scores. Finally, the anomaly scores are used within 

the reconstruction algorithm for probabilistic inspection of damage (RAPID) to localize the 

observed anomalies [8]. 

2. Methodology  

2.1 Experimental Setup  

The Type IV COPV was instrumented with fifteen DuraAct patch transducers (P-876K025) 

from PI Ceramics (Lederhose, Germany) forming three rings, two of them close to dome 

areas and one in the middle as shown in Fig. 1. The PZTs in each ring have a spacing of about 

144 mm and the distance between the rings is kept at 610 mm. The PZTs were bonded to the 

surface of the COPV using a thin layer of two-component epoxy adhesive. The UGW 

measurements were carried out using a VantageTM 64 LF system from Verasonics (Kirkland, 

USA). The excitation signals consisted of 130 kHz and 220 kHz 5-cycle Hanning windowed 

sine waves. During the data acquisition process, the VantageTM 64 LF system cycled through 

all PZTs and used each one of them as an actuator while the rest of the PZTs were used as 

sensors. This process resulted in 105 different actuator-sensor combinations. These 

measurements were carried out during a predefined pressure ramp and at specific pressure 
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levels shown in Fig. 2. Between each pressure ramp the COPV was cycled 1000 times from 

20 to 700 bar. In total and up until the failure, 46 pressure ramps were completed during 

which the state of the COPV was monitored at the pressure levels shown in Fig. 2.  

 

 
Fig. 1. The instrumented Type IV COPV. A total of fifteen PZT wafers are mounted on the COPV. Three 

rings of five sensors are formed (highlighted in red), two of them are close to the dome areas, and one is in the 

middle of the COPV. 

 
Fig. 2. Pressure ramp used for UGW measurements. Measurements were carried out at each step of this 

pressure ramp. The red circles mark the pressure levels used for the analysis in this work. 

2.2 Deep Learning Model 

The unsupervised anomaly detection task in this work has been carried out using a state-of-

the-art model called TimesNet [7] implemented in [9]. In [7] it has been shown that, unlike 

many other task-specific models, TimesNet is well suited for different tasks, such as 

forecasting, classification, and anomaly detection. TimesNet uses a convolutional neural 

network (CNN) architecture. The main idea behind the TimesNet architecture is that many 

real-life time series exhibit multi-periodicity, such as daily, weekly, and yearly trends in a 

dataset, which interact with each other and can create complex patterns. To tackle this issue 

TimesNet reshapes the time series in a 2D space to capture intraperiod and interperiod-

variations as shown in Fig. 3. TimesNet makes use of several TimesBlocks stacked on top of 

each other with residual connections. In each TimesBlock the time series are transformed 

into the frequency domain using fast Fourier transform (FFT). This is done to find the top-k 

important frequencies and their corresponding periods as visible in Fig. 3. This step enables 

the intraperiod and interperiod-variations to be represented as two different axes in a 2D 

space where variations in the time series are visible for both the adjacent points and adjacent 

periods. These 2D data are processed in the Inception Block which parses these data and 

extracts the most important features since the 2D kernels in the Inception Block enable the 

model to simultaneously aggregate the intraperiod and interperiod-variations. Afterward, the 

2D representations are reshaped into 1D arrays and aggregated together using adaptive 

aggregation, which weights different periods based on their relative importance. For the 

unsupervised anomaly detection task, the time series data are split into consecutive 

overlapping segments. To achieve this, a sliding window is defined which is also a 
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hyperparameter of the model. The reconstruction error of the model for these time series 

segments is used as the anomaly criteria. 

 
Fig. 3. Schematic overview of TimesNet architecture for capturing the intra and interperiod-variations [7]. 

 

2.3 Model Training and Evaluation 

The collected experimental data lack any labels. The available information is that the COPV 

was intact at the beginning of the experiment and that the polymer liner failed after thousands 

of cycles after which the experiment was stopped. The position of the damage was located 

between sensors 1 and 5, and closer to sensor 1 as shown in Fig. 4. Thus, to detect possible 

anomalies before critical failure, an unsupervised deep learning method is chosen. In this 

setting, the TimesNet model is trained using the measurement datasets from the first 

measurement ramp shown in Fig. 2 since they belong to the pristine condition of the COPV. 

In order to reduce the training and evaluation time, only three pressure levels are chosen, 

namely 50, 400, and 700 bar. For each of these pressure levels, and each excitation frequency, 

a separate TimesNet model is trained. In total six models are trained on the dataset for the 

pristine condition of the COPV. The rest of the measurement data are used during the 

evaluation phase and for the calculation of the anomaly scores. During the evaluation phase, 

the datasets for the chosen pressure levels were selected from all measurement ramps and 

were used as input to the corresponding TimesNet model. The output of the model for each 

subsequent dataset was an array of anomaly scores corresponding to the 105 different paths 

or sensor combinations as shown in Fig. 6. The hyperparameters of the TimesNet model are 

as follows: learning rate = 0.0001, total training epochs = 40, sequence length = 200, batch 

size = 32, number of encoder layers = 8, dimensionality of the model = 128, dimensionality 

of the feedforward layer = 128, top-k frequencies = 5, and number of kernels for inception 

block = 6. The model was trained using an NVIDIA GeForce RTX 3090. 

2.4 Damage Localization 

To localize the anomalies, a similar approach to RAPID is used [8]. In this approach, the 

location of the damage is determined by the anomaly scores from the deep learning model 

and the spatial distributions which are calculated using the positions of sensor pairs. In this 

work, an elliptical distribution function is assumed as the spatial damage probability 

distribution between two sensor pairs with these sensors being located at the foci. The scaling 

factor β controlling the elliptical size of this distribution is set to 1.05. The total damage 

probability distribution is calculated using all the anomaly scores and their corresponding 

spatial distributions. Only the cylindrical part of the pressure vessel is analyzed. The used 

sensor network and the damage localization results are shown in Fig. 7. The surface grid used 

for damage localization has a resolution of 1 mm. 
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3. Results and Discussion 

The COPV was subjected to ~46000 load cycles between 20 and 700 bar at 65 °C before its 

failure. The failure occurred inside the COPV due to damage to the liner which led to 

penetration of the liquid through the carbon fiber-reinforced polymers (CFRP) during cycling 

until leakage detectors stopped the experiment. After the experiment, the COPV was cut for 

further analysis. The damage was located to be between sensors 1 and 5 and closer to sensor 

1. The cut COPV dome section was also inspected by X-ray computed tomography (XCT), 

and the results are shown in Fig. 4. The XCT analysis revealed delaminations in the 

composite part of the COPV at the same location where the liner was damaged. In the next 

step, the collected data were analyzed. The signals from different paths and for different 

pressure levels and frequencies show similar behavior, where the signals slowly change from 

the beginning of the experiment up until the failure. These changes manifest themselves 

usually through an amplitude change and/or a frequency shift in the signals. This trend is 

mainly due to material aging caused by cyclic loading and shows that the UGWs are sensitive 

to material degradation and can be used to track the condition of the COPV. This behavior is 

shown for path 1-2 in Fig. 5 where all the 46 collected time series are compared against each 

other. 

 

 
Fig. 4. (a) Photograph of outside of the COPV: the estimated location of the damaged liner is marked. (b) 

Photograph taken from the inside of the COPV showing the damaged liner. (c) Reconstruction of the XCT 

scan where the damaged liner is visible. (d) Virtual cut of the reconstruction of the XCT scan where the 

damaged liner and the damaged composite are visible. 
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Fig. 5. Time series data collected during the experimental campaign for sensor path 1-2 and a pressure level 

of 50 bar and a frequency of 220 kHz. Each of the 46 time series shown in this image has a unique color and 

the changes in color from blue to red indicate the chronological order of the measurements from the very first 

to last measurements. This figure shows the continuous evolution of the recorded signals, mostly evident from 

the decrease of the amplitude due to the aging process occurring during cyclic loading of the COPV. 

 

The collected data are analyzed using TimesNet to detect anomalies that could indicate 

critical failure. The anomaly scores are shown in Fig. 6 which are calculated from six 

different TimesNet models trained on data for different pressure levels and excitation 

frequencies. Most of the sensor paths exhibit similar behavior. They are either zero or 

gradually increasing which shows that there is a direct relation between degradation and 

output of the models. It must be pointed out that a higher anomaly score usually corresponds 

to a greater change in the time series data which in turn is likely caused by different types of 

damage. The different rate of degradation between sensor paths indicates possible critical 

areas of higher rates of degradation. It is also worth noting that not all sensor paths show a 

gradual increase in the anomaly score such as sensor paths 8-10 and 9-10, where there is a 

sudden increase in the anomaly score that remains nearly the same during the rest of the 

experimental campaign. There could be different reasons for this behavior such as actual 

damage to the COPV, problems with the sensor itself, or changes to its bonding 

characteristics to the COPV. In this case, the high anomaly scores for sensor paths leading to 

sensor 10 are most likely not caused by actual damage. However, since the pressure vessel 

was not available for further investigation and due to the absence of experimental evidence, 

actual damage cannot be ruled out. This issue shows challenges for SHM that could also arise 

in real-life scenarios where environmental factors impact the recorded signals and make it 

very difficult to separate the influence of damage from other influencing factors. 

The localization of the anomalies is carried out using the RAPID algorithm and the 

results are shown in Fig. 7. The results are filtered using a threshold based on the maximum 

value obtained after applying the RAPID algorithm. These results highlight two regions with 

higher anomaly scores. One region is close to sensors 6, 9, and 10 which is likely caused by 

sensor 10 and not an actual damage as explained before. The second area with higher 

anomaly scores is located near sensors 1, 5, and 4. This is where the line damage is located 

together with the observed cracks in the composite part of the COPV as shown in Fig. 4. 

Although this approach looks very promising and can be used to localize the damage before 

critical failure, the main challenge remains the fact that thresholds are needed for automatic 

evaluation and decision-making process. And the current experimental results are not 

sufficient enough to determine these thresholds. Thus, further experimental work is needed 

to account for these issues and more importantly, to include the effect of sensor degradation 

and sensor failure to create robust SHM systems.  
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Fig. 6. Anomaly scores for all existing sensor combinations and all measurement data. The colors go from 

blue to red highlighting the chronological order of the measurements from the first to the last measurement 

ramp. These figures highlight three main areas with higher anomaly scores, which are more visible after 

applying the RAPID algorithm, see Fig. 7. The results for 130 kHz are very similar to those for 220 kHz but 

are not shown due to space limitations. 

 
Fig. 7. Localization results using the RAPID algorithm. The figures in the upper row show the results 

obtained for all possible sensor combinations. And the results on the lower row show the same results but for 

a limited anomaly range where the upper limit is the same and the lower limit is set to 40% of the maximum 

anomaly value. These results clearly show that the area around sensors 1, 4, and 5 together with the area 

around sensors 6, 9, and 10 show the highest anomaly scores. 
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4. Conclusion  

In this study, a sensor network of fifteen PZTs was used to monitor a COPV under cyclic 

loading and it was shown the UGWs are well-suited for continuous monitoring of COPVs 

since they are sensitive to material degradation and localized damages. Furthermore, it was 

shown that state-of-the-art unsupervised anomaly detection models such as TimesNet are 

capable of calculating anomaly scores that are correlated with material degradation and 

damage which eliminates the need for hand-crafted and task-specific signal processing 

pipelines that are otherwise required to extract such features or damage indices to assess the 

structural integrity of the COPV. Moreover, it was shown that these anomaly scores can be 

used with the RAPID algorithm to localize these anomalies to improve the inspection 

process. However, it was also shown that challenges remain such as the determination of a 

threshold value for automatic evaluation of anomalies, accounting for environmental 

variables, and sensor degradation and failure. 
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