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1. Introduction

Digitalization in materials science and engineering (MSE) is
currently a ubiquitous topic in the community. The motivation,
the expected benefits, and the hurdles are comprehensively
described in various perspective articles.[1–5] The consensus is
that a shared, well-organized materials data space offers many
opportunities for accelerated and more efficient materials devel-
opment. So far, a coherent material data space that is available to
the entire MSE community and in which a large part of the

community participates by contributing
data is still a vision. A major challenge in
creating such a data space is the highly
interdisciplinary nature of this project.
State-of-the-art approaches for semantic
description and interoperable storage of
data, web-based tools for authentication,
and retrieval and processing of data must
be combined with the specific knowledge
of experts in the various MSE domains.
Typically, however, MSE experts are not
sufficiently trained in the development
and use of the required digital tools.
Although the various aspects of digitaliza-
tion in MSE are widely presented and dis-
cussed, the concepts often remain very

abstract for materials researchers and technologists. This means
that the entry barriers for active participation in and further
development of digitalization are comparatively high for many
research groups and companies in MSE. There is a lack of prac-
tical examples that show how material properties, technological
parameters, and simulation results can be found, accessed, inter-
operably linked, stored, and used in a reproducible manner.

The MaterialDigital initiative (www.materialdigital.de) is
working together with associated research projects to provide
precisely such practical examples and thus create a basis for
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A key aspect in the development of multilayer inductors is the magnetic
permeability of the ferrite layers. Herein, the effects of different processing steps
on the permeability of a NiCuZn ferrite are investigated. Dry-pressed, tape-cast,
and cofired multilayer samples are analyzed. An automated data pipeline is
applied to structure the acquired experimental data according to a domain
ontology based on PlatformMaterialDigital core ontology. Example queries to the
ontology show how the determined process–property correlations are accessible
to nonexperts and thus how suitable data for component design can be identified.
It is demonstrated how the inductance of cofired multilayer inductors is reliably
predicted by simulations if the appropriate input data corresponding to the
manufacturing process is used.
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the broad and low-threshold participation of the community in
the creation of a material data space.

Here, we report on a corresponding example from the field of
functional ceramic component development. The materials
engineering task is to develop a multilayer ferrite inductor as
a passive microelectronic component integrated in a multilayer
low-temperature cofired ceramics (LTCC) architecture. Ceramic
multilayer technology, cofiring of a dielectric base material with a
new type of Ni–Cu–Zn ferrite as a magnetic functional material,
is used. The fabrication depth ranges from the synthesis of vari-
ous ferrite starting powders, to shaping by tape casting, and
finally multilayer fabrication by structuring ceramic green tapes,
stacking, laminating, and cofiring. The relationship between the
particle size of the ferrite starting powder, the magnetic perme-
ability of ferrite bulk samples and the inductance of the cofired
multilayer coils is investigated. Along the process chain, selected
material data and technological parameters are collected by
domain experts and semantically linked using a domain ontology
developed for this purpose. The application of the data linked in
this way is demonstrated by example queries.

In this article, first the most important material science fun-
damentals and the current state of research on multilayer induc-
tors are presented. Then, the fundamentals and concept of the
ontology-based data processing and utilization are described.
The results section is divided into three subsections. First, the
material science results are presented. The second part describes
the concrete implementation of data processing and semantic
linking by an automated data pipeline. In the third part, querying
the linked data is briefly demonstrated.

1.1. Ceramic Multilayer Technology

Multilayer technology is a special, very application-oriented
ceramic fabrication route. The technology is well-established
in the fields of passive multilayer components, including multi-
layer ceramic capacitors (MLCC),[6] multilayer piezo actuators,[7]

and LTCC for electronic packaging.[8,9] It comprises powder
preparation, tape casting,[10] structuring of tapes, stacking and
lamination, cofiring, and post-processing. Powder synthesis
includes mixing and milling of raw materials and sometimes
dopants. Depending on the process route, a thermal treatment,
calcination, is interposed to transform the raw materials mix into
the desired chemical composition and crystallographic phase.
Generally, many options for shaping of ceramic powders are pos-
sible, including dry-pressing, injection molding, additive
manufacturing, slip casting, or tape casting. Each shaping tech-
nology requires a purposeful preparation of the powder with
additives to create a granulate, feedstock, or slurry. The shaping
technology determines the density of the powder compact, called
green density, which in turn can strongly influence the sintering
behavior. For tape casting, a slurry is prepared. In addition to the
ceramic powder and a solvent, it contains organic binder, plasti-
cizer, and further additives like dispersing agents. The slurry is
cast onto a polymer substrate (Mylar tape) using a doctor-blade
tape caster to give a flexible green tape after removing the solvent
in a drying channel. The resulting green tape is a flexible polymer
tape highly filled with ceramic particles, which can be structured
using cutting and punching. Typically, metallization is realized

by screen printing of metal pastes. Vertical interconnects in the
later multilayer (VIAs) are created by filling holes in the green
tape with metal paste. Structured sections of the green tape,
so-called green sheets, are then stacked and aligned to build
up the intended multilayer. The stack is laminated by thermo-
compression to fixate the alignment of the sheets. In the subse-
quent cofiring process, the organic binder is burned out and the
powder compact densifies to form a monolithic ceramic micro-
structure. The metal paste is cofired simultaneously to give con-
ductor paths or electrodes. Cofiring of the multilayer component
is performed at temperatures below the melting temperature of
the metal paste. This often requires lowering of the sintering
temperature of the ceramic material by additives or adjusted
compositions. Depending on the multilayer concept, specific
post-processing steps like soldering and bonding of surface-
mounted devices, polarization, or thin-film deposition may
follow.

An essential common feature of all multilayer concepts is the
combination of ceramics with other materials, or the combina-
tion of different ceramics, respectively. When combining or inte-
grating different materials and material classes, mechanical
misfits due to different shrinkage and thermal expansion as well
as interface reactions must always be taken into account.[11–14]

The typical consequences of these effects are cracking, delami-
nation, distortion, and changes in physical properties. So far,
highly integrated multilayers and multi-material concepts can
only be successfully realized on a large scale with closely speci-
fied material pairings or in individual case studies on a laboratory
scale. These successful concepts are often based on a combina-
tion of domain-specific expertise and the experience of the tech-
nologists involved. The underlying development work is very
complex due to the multistep technology and has so far only been
transferable to product innovations to a limited extent. At the
same time, new material variants are constantly being presented
in the academic field, but these rarely make the transition from
the laboratory to industrial utilization.

1.2. Cofiring of Ferrite and Multilayer Inductors

Cofiredmicroelectronic ferrite components are an apt example of
how difficult it is to commercialize multi-material multilayer
concepts. The cofiring of low-sintering ferrite and dielectric base
material has been researched for more than 10 years. The fabri-
cation of cofired components on a laboratory scale has been dem-
onstrated occasionally.[15] Nevertheless, this technology has not
yet been mastered and unexpected problems repeatedly arise
in component development, as is also shown in this study.

An important group of soft magnetic materials used for many
applications including power ferrites, electromagnetic interfer-
ence devices, or multilayer inductors are NiCuZn ferrites.[16,17]

These ferrites are characterized by their low sintering tempera-
ture, high resistivity, medium permittivity, low losses, and excel-
lent performance up to frequencies of up to several hundred
MHz. Their magnetic properties depend, among other factors,
on composition and microstructure. For applications as multi-
layer inductors, low sintering temperatures as low as 900 °C
are required, because coil patterns are printed and fired using
Ag metal pastes. Many studies report on the sintering behavior,
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application of sintering additives, microstructure formation, per-
meability, and DC-bias superposition behavior.[18–20] A common
feature of most of the low-firing NiCuZn ferrites is their Fe
deficiency, i.e., less than 50mol% of Fe2O3 in the starting
oxide raw materials mixture, which results in compositions of
the spinel ferrites typically with less than two iron per formula
unit, i.e., Me1.002Fe1.998O3.99 (instead of MeFe2O4 as for a regular
spinel ferrite). This Fe deficiency z, for example, in
Ni0.30Cu0.20Zn0.50þ zFe2�zO4�(z/2) ferrites, provides shrinkage
at low temperature and allows for sintering at 900 °C.
Moreover, formation of tenorite CuO at triple points or grain
boundaries during sintering at 900 °C was identified as an inter-
nal sintering aid.[21,22]

The integration of inductive ferrite multilayer components in
LTCC multilayer modules is desirable to enable further minia-
turization and higher integration density.[23,24] To successfully
cofire ferrite layers and commercial LTCC tapes, the mismatch
in shrinkage and thermal expansion behavior of both materials
should be minimized; moreover, compatibility of both material
chemistries is another important prerequisite.[25] Taking into
account all these requirements, cofiring of Ni–Cu–Zn ferrites
with LTCC tapes and the fabrication of LTCC modules with inte-
grated ferrite multilayer structures remain challenging.

1.3. Ontologies in Material Research

Applied ontologies are defined to formally model the structure of
a system of interest and serve a dedicated purpose, e.g., quick
search in large data sets, bridge gaps between separated data
sources, etc.[26] This contrasts to philosophical descriptions that
rather aim at describing a certain reality per se without consid-
ering a dedicated background or following a direct purpose. The
discipline of engineering and material science suffers from dis-
tributed data repositories, lacking reuse of already discovered
insight and semantic content for informed decision-making.[27]

To overcome these shortcomings, the material community
launched different research activities such as MaterialDigital
with the Platform MaterialDigital core ontology (PMDco),
European Materials and Modeling Ontology (EMMO), or
Material Development Ontology.[28,29] The general target of these
initiatives is to accompany the material research and develop-
ment process and to structure data in a reusable manner.
These ontologies offer general concepts of material research
and development. Therefore, the description of domain-specific
insight, such as ceramic multilayer technology, requires addi-
tional descriptions. The targets of the domain ontology in this
study are first to collect material, as well as production process
parameters in the realm of ceramic multilayer component devel-
opment; second to provide access to this data to any authorized
user; and third to enable predictive simulation based on the data.
A strength of the PMDco is the connection between processes
such as practical tests in laboratories and documented results
from these tests. With these PMDco entities, executable and
sequential approaches might be well described.

The development of ontologies is becoming widespread, as it
supports the rapidly increasing relevance of findable, accessible,
interoperable, and reusable (FAIR) principles and open data for
science. FAIR principles are driven by the urgent need to ensure

the quality of data, guarantee its reusability, and promote the
advancement of scientific knowledge. Applying the FAIR princi-
ples is proving essential to manage data ethically and responsibly,
and to ensure that data can be used fairly, transparently, and
securely.[30]

In today’s scientific landscape, there are a variety of initiatives
dealing with the FAIR principles, similar to FAIRMat.[31] These
initiatives span different disciplines and industries and have the
common goal of improving the quality and reusability of data. By
developing standards, guidelines, and tools, they help to ensure
that data is organized and made available in a way that complies
with the FAIR principles. Examples of such initiatives are FAIR
data principles, GO FAIR, FAIRsharing, and FAIRplus.[32] These
efforts reflect the growing consensus in the scientific community
that adherence to the FAIR principles is essential to fully realize
the value of data and accelerate the advancement of scientific
knowledge.

2. Results and Discussion

2.1. Material Development and Simulation

The fabrication process of LTCC modules with integrated ferrite
multilayer inductors is shown in Figure 1. The process consists
of three major parts: 1) ferrite powder preparation; 2) tape cast-
ing; and 3) multilayer LTCC processing. For complete digital
reproduction of the whole process chain, data were collected
for every single step of the whole process chain.

In this study, this entire process chain was used to fabricate
integrated multilayer inductors with five different powders of
NiCuZn ferrite with different particle sizes. Five powders of
Ni0.3Cu0.2Zn0.52Fe1.98O3.99 were synthesized by milling of the
calcined raw materials resulting in powders with mean particle
size (d50) of 0.5, 0.6, 0.7, 0.8, and 0.9 μm, respectively. To inves-
tigate the effect of the process steps on sintering behavior and
resulting magnetic permeability of these powder variants, ring
core specimens were produced from dry-pressed powder, lami-
nated ferrite green tapes, and co-laminates of ferrite tapes
embedded between dielectric LTCC tape (CT708). To limit the
experimental parameters to particle size and manufacturing
depth, all samples and prototypes were fired under nominally
identical conditions (4 h at 900 °C in air). Figure 2a shows a scan-
ning electron microscope (SEM) micrograph of the 0.5 μm pow-
der. A selection of sintered specimens is presented in Figure 2b,
with the LTCC material CT708 with blue color and the ferrite.
Dense microstructures are achieved for dry-pressed samples
and co-laminated samples by firing at 900 °C. Figure 2c shows
the sintered microstructure of a pressed and sintered 0.5 μm
powder sample with a relative density of 97.9% and a mean
grain size of 1.1 μm. In Figure 2d, the cross section of a cofired
co-laminate is presented, showing a dense microstructure and
defect-free interfaces. However, close examination of SEM
micrographs reveals a 3–5 μm thick interface layer in the ferrite.
This layer is infiltrated by the LTCC glassy phase during sintering
and thus exhibits increased densification and different composition.

The sintered ferrite bulk samples exhibit an increase of den-
sity after sintering at 900 °C with decreasing powder particle size.
Ferrite powder with d50= 0.9 μm results in a relative sintered
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density of 84%, whereas powder with d50= 0.5 μm results in a
sintered density of 98%. This is due to a higher sintering activity
of the fine-milled powder as compared to a coarse powder and is
reflected in a stronger shrinkage of the fine-milled powder
measured using dilatometry (not shown here). Accordingly,
the relative permeability of dry-pressed samples made from
coarse powder with d50= 0.9 μm is μr= 140, whereas that of a
dry-pressed ring core made from fine-milled powder with
d50= 0.5 μm shows a higher permeability of μr= 380
(Figure 3a). Generally, the permeability scales with density
and grain size.[33] Since the bulk samples show a very small
increase of grain size from g= 0.95 μm for powder particle size
of d50= 0.9 μm to g= 1.14 μm for powder particle size of
d50= 0.5 μm, the permeability in that range of grain sizes shows
an almost linear dependency on density.

The permeability of sintered ferrite tape laminates follows the
same trend. Although, laminated samples produced from pow-
der with d50= 0.7 μm and smaller exhibit smaller permeability
than their dry-pressed counterparts. These differences cannot
be attributed to density. The corresponding densities of pressed
and laminated samples differ only slightly. However, the differ-
ences in fabrication technology and sample thickness apparently
result in a reduction of magnetic permeability of multilayer sam-
ples, especially with regards to these finer powders that result in
relative densities above 90%.

Regarding integrated multilayer inductors, the influences of
cofiring must also be considered. These can be observed on
the co-laminated samples. Figure 3a shows that the permeability
of co-laminated and cofired samples is significantly lower as
compared to bulk ferrite samples. For the 0.6 μm powder, for
example, the permeability is ranked as follows according to
processing technology: μr, dry pressed= 362> μr, laminate= 178>
μr, co-laminate= 77. The permeability in the cofired multilayer is
reduced by 79% as compared to a bulk sample. The main reason

for this is the lower density of the embedded ferrite layers due to
constrained sintering effects during cofiring with the LTCC tape
layers.

However, we successfully cofired integrated multilayer induc-
tors with ferrite layers sandwiched between LTCC layers. For the
fabrication of integrated ferrite multilayer inductors, the CT708
and ferrite tapes were cut, and VIAs were punched and filled with
AgPd VIA fill paste. Spiral coil patterns on the ferrite tape and
contact pads on the CT708 tapes were screen-printed using a
AgPd paste. Finally, multilayers as shown in Figure 2e were
stacked, laminated, and cofired at 900 °C. In any case, CT708
serves as top and bottom layer. Ferrite tapes with different pow-
der particle sizes (designated 0.9–0.5) are used as inner layers.
Reference samples (designated CT) with CT708 as inner layers
were also prepared. The coil pattern was printed on the top side
of the lower inner ferrite layer. As an example, an X-ray radiog-
raphy image of a cofired integrated ferrite multilayer inductor
with 10 windings is shown in Figure 2f.

The inductance of the multilayer inductors is plotted in
Figure 3b. In principle, a high permeability of the ferrite layer
leads to a higher inductance of the inductor component. The
effect of embedded ferrite is clearly visible when comparing
inductors with embedded ferrite layers (samples 0.9–0.5) with
the reference without ferrite layers (CT). The multilayer ferrite
inductors exhibit inductances from L= 1.5 μH to L= 2.1 μH,
whereas the reference multilayer inductor shows L= 0.4 μH
only. The integrated multilayer ferrite inductors show a correla-
tion between powder particle size and inductance. This observa-
tion is in accordance with the expectations based on the
permeabilities of the co-laminates.

The results shown here demonstrate that the concept of a
cofired integrated multilayer inductor with NiCuZn–ferrite
layers embedded in an LTCC multilayer arrangement is funda-
mentally effective and technically feasible. Nevertheless, the

Figure 1. Scheme of process chain for the fabrication of integrated ferrite multilayer inductors; process steps with technical parameter data (middle); raw
materials (left); and measured property data (right).
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many parameters of the manufacturing technology significantly
affect the performance of the multilayer components, which
must be considered in the component design. Using proper
material parameters is crucial for reliable component simulation
for design development. This is illustrated by the simulation
results in Figure 3b. The simulated inductance of the reference
(CT) is fairly accurate, indicating the suitability of the model. The
inductance of the LTCC-integrated ferrite multilayer inductors
was simulated using different datasets for the permeability of
the ferrite layers. If permeability data are acquired on sintered
ferrite (bulk) laminates, the resulting inductance of the multi-
layer component is overestimated by a factor 2–3 (red circles
in Figure 3b). If, in contrast, the adequate ferrite permeability
data of cofired LTCC–ferrite co-laminates is used, the simulated
inductance is only slightly overestimated (blue triangles in

Figure 3b). In the reverse direction, simulation of the permeabil-
ity of the ferrite layer from the measured inductance of the
multilayer device gives permeabilities, which are slightly
lower compared to those measured on cofired co-laminate
samples (green, upside–down triangles in Figure 3a).
Apparently, the permeability of the ferrite layer in the inductor
prototype is lower than expected. Presumably, this is due to
interactions of the ferrite layers with the metallization, which
are subject of further investigations.

The reported results on the fabrication of ferrite multilayer
inductors integrated in between LTCC layers allow to conclude
that the individual process steps of the multilayer technology,
from powder synthesis to cofiring, have complex effects on
the permeability of NiCuZn ferrite layers. If these factors are
properly taken into account, component properties and perfor-
mance can be predicted quite reliably.

To enable successful component design, the results presented
here should be considered properly. To benefit from the
findings, the obtained research data should be available in a
comprehensible manner. The following sections explain how
this was achieved in this study.

2.2. Ontology

When developing an applicable domain ontology, the extension
of one or more existing high-level ontologies provides the oppor-
tunity to reuse knowledge that has already been modeled.
However, adapting it to the specific requirements of a certain
domain can present a certain challenge, as the way in which
the knowledge is represented has a direct influence on which
methods can be used effectively. The ontology developed in
this study (KN ontology, for KnowNow ontology, referring to
the name of the research project) is designed based on the
PMDco and has been carefully adapted to the PROV Ontology
(PROV-O) standard.[34] Furthermore, it was developed in close
alignment with the concept of the EMMO ontology. This means
that the upper concept and entities of PMDco served as the start-
ing point, the KN ontology entities, concepts, and content linked
to it (Figure 4).

The KN ontology comprises a hierarchical structure of terms
representing the various entities, processes, and functions
involved in the development of multilayer ceramic components.
This structure has been developed taking into account expert
knowledge and expertise to provide a precise and comprehensive
representation of the development of multilayer ceramic
components.

Figure 4 shows an excerpt of the KN ontology exemplarily
demonstrating how the relation between permeability and den-
sity is represented. The upper part of Figure 4 shows so-called
T-box statements, which are definitions of classes, categories,
and relations. The bottom part shows the so-called A-box,
describing specific entities, i.e., instances related to the classes
they belong to, and their relations. The blue balloons represent
classes which were taken from the PMDco. From these, more
specific classes such as density and powder were derived for
the domain ontology (shown as green balloons). From a ceramics
point of view, a powder with a distinct composition and particle
size distribution is considered to be an EngineeredMaterial. As

Figure 2. Micro- and photographs illustrating different steps in the fabri-
cation of integrated ferrite multilayer inductor: a) SEM micrograph of
milled ferrite powder with d50= 0.5 μm; b) photograph of sintered ferrite
ring cores for the measurement of magnetic permeability, pressed and
sintered ferrite (middle), sintered multilayer ferrite (lower left), cofired
LTCC/ferrite multilayer (lower right); c) SEMmicrograph of sintered ferrite
microstructure; d) SEM micrograph of cross section of LTCC/ferrite
cofired multilayer; e) design of integrated ferrite multilayer inductor;
and f ) X-ray radiography image (top view) of printed spiral coil inside
a cofired LTCC/ferrite multilayer inductor.
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different types of samples can be produced from it, SampleType
is modeled as a subclass of powder. An instance of SampleType,
i.e., a dry-pressed specimen, has different properties, which are
described by composed_of relations to different subclasses of
ValueObject.

In the example, we consider a NiCuZn ferrite powder with a
mean particle size of d50= 0.7 μm (designated sample 4). From
this powder, a dry-pressed and a laminated specimen were
produced and characterized. Permeability and density were
measured. Structuring the respective data according to the KN
ontology results in the entities shown at the bottom of
Figure 4. Following the different relations, it becomes clear that
a dry-pressed specimen of the respective powder has a density of
5.04 g cm�3 and a permeability of 314, whereas a laminated

specimen of the same powder has a density of 4.88 g cm�3

and a permeability of 157.
Being able to make such conclusions just from the data is

especially useful if we imagine that the different measurements
were performed by different groups with a large time interval at
different locations. To structure independently collected data reli-
ably and efficiently in this way, the use of automated processing
procedures, so-called data pipelines, is recommended.

2.3. Data Pipeline

To conveniently and reliably acquire and structure the data
collected during the study, an automated data pipeline was

Figure 3. a) Magnetic permeability of sintered ferrite samples prepared from powders with decreasing particle size by dry pressing, lamination of ferrite
tapes, and co-lamination of ferrite and LTCC tapes, and permeabilities obtained from simulation and measured inductance of cofired inductors, and
b) measured inductance of cofired multilayer inductors (sample designates the material of the two inner layers), and simulated values based on ferrite
permeability measured in ferrite laminates or ferrite—LTCC co-laminates.

Figure 4. Excerpt of ontology-based data structure; blue boxes depict PMDco entities; green round-shaped boxes depict KN entities; green angularly
shaped boxes depict KN instances; and transparent boxes depict KN value objects.
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implemented. The data pipeline takes conventional, unlinked
research data from various sources, converts it into more pro-
cessable data formats and links the included information seman-
tically according to a domain ontology. The upload pipeline is
based on the idea of minimizing the learning curve for laboratory
staff. Therefore, the data conversion process is covered behind a
web front end that serves as user interface. It is executed from the
server and provides access to the ontology and all functionalities
around it to those possessing the URL. Imperative in this setting
is a backend support that runs the server as well as the user inter-
face application. The user interface attains user commands and
transfers the input and data to the corresponding functions and
vice versa provides system feedback to the user. Next to the
upload pipeline, a download functionality supports SPARQL
(recursive acronym for SPARQL protocol and RDF query lan-
guage) queries to access data stored in the ontology in a table
format visualization. The upload functionality is supported with
folders for different groups of researchers producing data, e.g.,
from different institutions. This helps users to intuitively apply
the framework and provides order to the data pipelining process.
After the data is successfully uploaded, confirmation is given to
the user.

The upload data pipeline involves the following steps. First,
different types of raw data are uploaded to a local server via a
web front end and converted into a format that can be processed
by machines. To link the uploaded data to a specific area of the
knowledge domain, semantic triples are generated according to
the Resource Description Framework (RDF) data model. An RDF
triple corresponds to the form subject–predicate–object, for
example, sample-has_property-density. The semantic links
described in the triples correspond to the relationships defined
in the ontology. Finally, this linked data is stored in a triple store
database to make it accessible for logical inference using
SPARQL. The pipeline is divided into four main phases: data
storage, preprocessing (wrapping), mapping, and querying
(Figure 5). In summary, the data pipeline takes unstructured,
unrelated data from various spreadsheets as input. The wrapper
converts these data to structured, unrelated data in a JavaScript
Object Notation (JSON) file. In the mapping process, data from
the JSON file is converted to structured and related data accord-
ing to a Turtle file and stored as triples in an Web Ontology
Language (OWL) file in a triple store. Data in the triple store
can be explored using SPARQL queries.

The following sections describe the design rational and imple-
mented structure of the three main steps. It should be noted that,
like the structure of an ontology, there are many possibilities to
design a functional data pipeline. The concepts described here
generally follow the recommendations of the PMD, but, in detail,
are individual solutions that were chosen with regard to the type
of data and the preferences of the researchers involved.

2.3.1. Data Storage

Automated converting and linking data into the ontology
requires a machine readable and reproducible structure of both
the location of data as well as their inner order. This rigorous data
management approach has been agreed between the involved
researchers. A folder dedicated to each group in an explorer-like
hierarchical directory structure predefines the storage location.
The files are grouped in directories depending on the method
or process, e.g., density measurements or tape-casting protocols.
The individual data files uploaded to dedicated folders are
expected in certain format and inner structure, e.g., a density
value is expected in a designated cell.

2.3.2. Preprocessing

During the first step of the preprocessing, individual Jupyter
notebooks—so-called wrappers—extract data from the various
spreadsheets and transform it to a uniform data format. Such
a wrapper enables a standardized data provision by means of
minimal adjustments for each spreadsheet template to account
for differences in parameter labels, cell positions, and sheet
names. The Jupyter notebooks read, e.g., Excel files as input
and generate entries in a JSON file as output. Each notebook
in the framework creates its own JSON output file for a specific
process or measurement method. In the preparation process, the
JSON files are passed between the notebooks to seamlessly load
and build on data. The use of the JSON format allows for easy
data transfer and processing, optimizing the efficiency of the
automated processes. Finally, a single JSON file is created that
contains a structured dictionary with relevant information from
the Excel files for all processes. The wrappers are triggered from
the data upload without manual interference, and as a result, the
global JSON file continuously grows with the uploaded data.

Figure 5. Data pipeline with input and output formats of each phase; data-storage, preprocessing, and mapping form the upload pipeline, querying is
triggered by the user and added here for the sake of completeness.
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The wrappers are established using the Python libraries
Pandas and Openpyxl to simplify the handling of Excel files.
Pandas enables efficient data processing, while Openpyxl special-
izes in the direct extraction of data from Excel files.[35,36]

In the second step of the data preprocessing, the semantic
relations between the data stored in the JSON file are described
as triples. Data types, i.e., classes and entities, are considered,
i.e., “density” or “milling time”, not actual values such as
“2.9 g cm�3” or “180min”. Triples are described in Turtle files
(Terse RDF Triple Language, extension.ttl). In the preparation
phase, a single Jupyter notebook is used to automatically create
the required triples according to the predefined KN ontology. The
Jupyter notebook allows for modular and scalable automation by
splitting the code into separate cells that can be executed
independently. The interactive nature of Jupyter facilitates
debugging, visualization of intermediate results, and efficient
iteration during development.

2.3.3. Mapping

In the mapping process, actual data is structured as triples,
according to the general descriptions in the Turtle file, and stored
in an OWL file. For example, a permeability measurement of
μr= 314 results in the triple “Permeability”-has_value-“314”,
where “Permeability” is a class, has_value is a property, and
“314” is an instance. To really describe knowledge with this
approach, a multitude of interconnected triples needs to be
created.

The Turtle file contains various data elements necessary for
the mapping, including the following: 1) prefix definitions: defin-
ing the namespaces that will be used throughout the Turtle doc-
ument to simplify the representation of URIs (uniform resource
identifiers); 2) new class and property definitions: this creates
new classes and properties that were not previously present in
the main ontology, for example, the class “Permeability” with
the property “has_value”; 3) instances of classes: each instance
represents a specific material property or process and is linked
to the corresponding class via RDF:type statements; and 4) triples
for linking data: the RDF triples are automatically generated to
establish relationships between instances, properties, and clas-
ses. This enables the hierarchy and links in the input data to
be recorded precisely.

The hierarchy of RDF triples divides the data structure into
different levels to capture complex relationships between the
data. These include the following: 1) Level 0 triples: these estab-
lish the most important link between the main data set and, for
example, the individual worksheets of an Excel file; 2) Level 1
triples: these indicate the relations between worksheets and
the associated process or property instances; 3) Level 2 triples:
these record the connections between the instances and their
data attributes by linking properties to their values; and
4) Level 3 triples: links are deepened here by representing
specific instances and their nested properties.

The data mapping automation is facilitated by the use of
Jupyter Notebook and RDFLib.[37] The focus here is on convert-
ing JSON data into RDF triples and storing them in an OWL file.
RDFLib enables the automatic generation of classes, data attrib-
utes, and object properties from the structured JSON data. This

also includes linking instances of classes with the corresponding
attributes and values. In addition, the system automatically reads
the JSON file, converts it into a Python dictionary, and processes
it to create the RDF graph. Namespaces are initialized correctly
and triples are added systematically.

The integration of the newly assigned data into the domain
ontology is automated by Apache Jena Fuseki, an open source
semantic web framework that can be run as server to handle
RDF data.[38] Data from a new Turtle file is combined with
the existing domain ontology to extend the RDF dataset.
Apache Jena Fuseki Server automatically recognizes the instan-
ces from the new file and links them to the corresponding classes
and properties in the main ontology. This eliminates the need to
redefine elements in the new file, enabling efficient and accurate
integration.

2.4. Usage Demonstration

2.4.1. Data Upload

The data pipeline is streamlined and requires a lab technician to
enter data to start the automated data pipeline. With this
approach, researchers are relieved from the burden of program-
ming tasks, as the process relies solely on drag-and-drop func-
tionality. In addition, the system is designed for versatility so
that it can easily be used by other users for other applications.

Figure 6a shows a screenshot of the web front end. Clicking
the “Choose File”-button opens a common open-file dialogue to
select the files intended for upload. Folder selection by the radio
button helps to presort the data for accurate storage. Here, each
of the involved research institutes has a dedicated folder. These
folders are automatically scanned for new data, e.g., once a day. If
new data is detected, the execution of the data pipeline is
triggered automatically.

2.4.2. Data Retrieval

Users can access the data from the triple store by means of
SPARQL queries. Certainly, the formulation of SPARQL queries
is rather impractical for untrained users. Thus, the direct entry of
queries should be understood as interim solution. Further devel-
opment is foreseen to implement natural language processing to
simplify the creation of SPARQL search strings. However, to
demonstrate data retrieval, Figure 6b shows the syntax of an
SPARQL query that asks for all available permeability data of
a given powder sample (sample_4_052021) and the related data
objects. This represents the use case of a component designer
exploring the data and trying to understand why different results
are obtained with the same material.

The output is given in Figure 6c. It shows a table with three
different permeability values in the column “Permeability_
value”. Closer examination teaches the user two important
things: first, there are three different types of samples (blue
arrows in Figure 6c: dry pressed, laminate, co-laminate); second,
each sample type is related to a different density value
(highlighted in yellow in Figure 6c). This informs the nonexpert
that the type of manufacturing has an influence on the achievable
density and magnetic properties. Hence, the nonexpert is able to
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select the correct data for a component simulation, for example,
without necessarily having to consult a domain expert.

3. Conclusion

This study demonstrates the integration of NiCuZn ferrite as
magnetically active material in a cofired ceramic multilayer
inductor. The inductance of the prototype is increased by the
factor of five compared to a similar multilayer inductor without
integrated ferrite (2.1 μH compared to 0.4 μH). However, the
multilayer manufacturing process affects the magnetic perme-
ability of the ferrite, resulting in decreased permeability of
cofired tape co-laminates compared to dry-pressed samples.
Predictive simulation of prototype inductance necessitates the
selection of appropriate permeability data. An automated data
pipeline is introduced to convert the conventionally acquired,
unstructured, and unlinked process and material data to
machine-readable and semantically linked data. In this way,
the relevant influencing variables and effects (here, e.g., sample
type and permeability) can also be understood by nonexperts
using the available data retrieved by an SPARQL query. This
enables component designers, for example, to select suitable
input data for simulations.

The data pipeline presented shows how conventionally
collected data can be stored in a FAIR and semantically linked
manner with practically no additional effort for technical or
scientific personnel. It is also a practical application example
of the concept pursued by the initiative Platform Material
Digital (PMD) to create a material data space.

4. Experimental Section

Material Development: For powder synthesis, the raw materials Fe2O3

(Voest Alpine), NiO (Lohmberg), CuO (Alfa Aesar), and ZnO (Tridelta)
were weighed in stoichiometric amounts and mixed for 24 h in deionized
water in a ball mill (100 rpm, 3mm ZrO2 milling beads). The mixture was
dried (12 h, 95 °C), sieved (630 μm mesh), and calcined (2 h, 850 °C). Five
different ferrite powders with mean particle sizes d50 of 0.9, 0.8, 0.7, 0.6,
and 0.5 μm were obtained by milling (planetary ball mill, 170 rpm, 1 mm
ZrO2 milling beads, deionized water) for 0.5, 0.75, 1.25, 2, and 4 h, respec-
tively. Particle size distributions were measured by laser diffraction
(Malvern Mastersizer 2000).

For tape casting, ferrite powders were mixed with methyl ethyl ketone
mixture (MEK/EK) as solvent and dispersants and mixed for 24 h. After
addition of binders and plasticizers, the slurry was homogenized for
another 24 h. After evaluation of the slurry rheology, ferrite tapes with
thickness of 200 μm were fabricated using a doctor-blade tape-casting
machine. A lead-free, commercially available LTCC tape (CT 708) was used
for co-laminates and multilayer inductors.

Ring core specimens were prepared from calcined powder by dry
pressing. Laminate and co-laminate specimens were prepared by uniaxial
lamination (thermocompression, 80 °C, 24MPa) of green tapes (6 layers
ferrite, or 2/2/2 layers CT708/ferrite/CT708, respectively) and manually
punching of the core.

The multilayer conductors were fabricated by punching and filing the
VIAs (200 μm, Ag/Pd paste Dupont DP 6138), screen printing of coil pat-
terns and contact pads (Ag/Pd paste Dupont 6146), and stacking and uni-
axial lamination in a custom tool (80 °C, 24MPa). The 70� 70mm panels
were fabricated, one integrated multilayer from each ferrite tape variant
and an LTCC only multilayer as reference. Each panel contained three
of the coil patterns in addition to other test structures.

All specimen and multilayer were sintered at 900 °C for 4 h in air
(0.5 Kmin�1 to 500 °C for debinding, further heating with 4 Kmin�1 to
900 °C). Porous SiC setters were placed on the laminates, co-laminates,
and inductors to ensure flatness.

Figure 6. a) User interface of the web front end to upload data, b) example of an SPARQL query to retrieve data from the triple store, and c) output of the
example query.
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Magnetic permeability of the specimens was measured using an
impedance analyzer (Agilent E4991A) and a dedicated sample holder from
1MHz to 1000MHz. Two dry-pressed and laminated samples and one
co-laminate of each powder variant were measured. Inductance was
measured using a Keysight E4990A with Keysight 16047E test fixture.
Three samples were tested for each inductance data point.

Simulation: Finite-element method simulations of inductance and mag-
netic permeability were performed with COMSOL Multiphysics (version
6.1) using MATLAB integration. An axisymmetric 2D approximation of
the coil was used, in which the coil spiral was replaced by circles with
the mean radii of the individual coil windings. This spiral was embedded
between two layers of ferrite and these in turn were embedded between
two layers of CT708. The layers were infinite in the x/y plane. The individual
thicknesses were taken from cross sections of the sintered inductor pro-
totypes. Radiography data for the lateral measures (start radius, winding
spacing, width of conductor tracks) of the coil were used for the geometry
data. The entire coil package was surrounded by air and extended to infinity
by an infinite-element domain for numerical reasons. A customized mesh
with so-called boundary layers was used for better consideration of the skin
effect. Magnetic and electric fields interface (COMSOL AC/DC module)
with the RLC Coil group option was used, considering magnetic losses
in the ferrite layers. The outer boundary of the simulation area was
assumed to be magnetically insulating and 1 V was used as the excitation
voltage of the coils. To be able to calculate the necessary comparative sim-
ulations for all measured coils in one run, the possibility of connecting
MatLab and COMSOL was used. Within a MatLab script, all geometry
measures were loaded and a simulation was configured sequentially for
all coils with these and the corresponding material configuration, executed
and the results were read out and saved in corresponding data files.
All files necessary to perform these simulations, including MatLab scripts
and material data, are provided as Supporting Information.

Implementation Details: The server was a university-hosted local server
that features sufficient memory and calculation capacities for the project
purpose as well as web access and secure data hosting behind a firewall.
Windows and Unix served as applicable operating systems, regular per-
sonal computer calculation power was sufficient for the operation of
the pipeline, internet connection was not required.

The user interface was implemented with Python language, as IDE
Jupiter Notebook was used. The commented code is available as
Supporting Information.

The open-source ontology editor Protégé (protege.stanford.edu) was
used to develop the KN.
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