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Abstract 

For industrial applications dealing with hydrogen, the definition of safety distances and the 

assessment of possible hazards emanating from releases is mandatory. Since hydrogen is usually 

stored and transported under pressure, one scenario to be considered is the momentum driven release 

of hydrogen from a leakage with subsequent ignition. In this scenario, the emitted heat radiation from 

the resulting jet flame to the surroundings has to be determined to define adequate safety distances.  

For hydrocarbon flames, different jet flame models are available to assess the hazards resulting from 

an ignited jet release. Since hydrogen flames differ from hydrocarbon flames in their combustion 

behavior, it has to be checked if these models are also applicable for hydrogen. 

To evaluate the accuracy of these models for hydrogen jet flames, tests at real-scale are carried out at 

the BAM Test Site for Technical Safety (BAM-TTS). Herein, the flame geometry and the heat 

radiation at defined locations in the surroundings are recorded for varying release parameters such as 

leakage diameter (currently up to 30 mm), release pressure (currently up to max. 250 bar) and mass 

flow (up to max. 0.5 kg/s). The challenge here is the characterization of the flame geometry in an 

open environment and its impact on the thermal radiation. Existing heat radiation data from the 

literature are mostly based on unsteady outflow conditions. For a better comparability with the steady 

state jet flame models, the experiments presented here are focused on ensuring a constant mass flow 

over the release duration to obtain a (quasi) stationary jet flame. In addition, stationary outflow tests 

with hydrocarbons (methane) were also carried out, which are intended to serve as reference tests for 

checking flame models based on hydrocarbon data. 

Keywords: hydrogen, release, jet flame, thermal radiation 

1.  Introduction 

In order to reduce global CO2 emissions, hydrogen is becoming increasingly important as an energy 

carrier. Due to the enormous demand for hydrogen, the focus is shifting to safe production, 

transportation and storage. As hydrogen is usually transported and stored under pressure, one 

potential scenario is the momentum driven release of hydrogen from a leakage with subsequent 

ignition. The resulting high momentum driven hydrogen flame is called diffusion hydrogen jet flame. 

To assess the impact and hazards, the resulting jet flame must be characterized in terms of the flame 

geometry and emitted heat radiation. As a result, safety regulations can be derived from the 

knowledge gained.  

Various models already exist in the literature which describe the flame geometry and emitted heat 

radiation of jet flames. Most of the models currently used are based on studies by Becker and Liang 

(Becker, 1978) and Kalghatgi (Kalghatgi, 1984), who did fundamental research on the flame 

geometry of jet diffusion flames. They established dependencies on the release diameter, mass flow, 
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Reynolds number and the resulting flame length. Based on this, Chamberlain (Chamberlain, 1987) 

and Johnson et al. (Johnson et al., 1994) developed model approaches taking wind influence into 

account. 

In addition to characterizing the flame geometry, the influence of the thermal radiation emitted into 

the environment was also considered here. In Chamberlain's investigations for vertical outlet 

conditions, mainly low momentum hydrocarbon jet flames were measured. For a horizontal release 

of hydrocarbon jet flames Johnson et al. (Johnson et al., 1994) carried out experiments taking into 

account the influence of buoyancy. Miller (Miller, 2017) extended these models to outlet angles of 

45° and used weighted point sources on the flame centreline in contrast to (Johnson et al., 1994) and 

(Chamberlain, 1987) who used cone shaped surface emitter sources. 

The models mentioned are mainly based on a large number of experimental investigations of 

hydrocarbon flames such as methane, ethane, propane and natural gas. For hydrogen, Molkov et al. 

(Molkov et al., 2009; Molkov & Saffers, 2013) developed their own approaches in which the flame 

lengths can be described using empirical formulas. These approaches were developed on the basis of 

experiments with hydrogen jet flames by Kalghatgi (Kalghatgi, 1984), Shevyakov et al. (Shevyakov 

& Komov, 1977), Schefer et al. (Schefer et al., 2006), Proust et al. (Proust et al., 2011), Mogi et al. 

(Mogi et al., 2005) and Studer et al. (Studer et al., 2009). Other studies have investigated influences 

such as the curvature of the flame geometry due to the buoyancy effect on horizontal jet flames (Ekoto 

et al., 2014). To quantify the thermal radiation emitted by a hydrogen jet flame into the environment, 

various approaches were developed in the work of Molina et al. (Molina et al., 2007), Houf et al. 

(Houf & Schefer, 2007; Houf et al., 2009), Schefer et al. (Schefer et al., 2006; Schefer et al., 2007; 

Schefer et al., 2009) and Proust et al. (Proust et al., 2011).  

Most of the documented experimental data was obtained under transient outflow conditions (Hall et 

al., 2017; Proust et al., 2011; Schefer et al., 2006). Due to the decreasing pressure and mass flow 

during the release, the resulting jet flames do not have stationary outflow conditions. Experimental 

investigations with constant, stationary, outflow conditions have mainly been carried out on a 

laboratory scale only (Choudhuri & Gollahalli, 2003; Imamura et al., 2008; Kalghatgi, 1984; Mogi et 

al., 2005). A validation of existing (stationary) jet flame models for real-scale hydrogen releases is 

therefore currently only possible to a limited extent. 

In order to close this gap, experimental investigations of real-scale hydrogen jet flames under 

stationary outflow conditions were carried out at the Test Site for Technical Safety at the 

Bundesanstalt für Materialforschung und -prüfung (BAM-TTS). The purpose of the investigations is 

to characterize the flame geometry and the emitted heat radiation. Furthermore, the generated data 

are used to evaluate existing jet flame models with regard to their suitability for hydrogen jet flames. 

2. Experiments 

2.1 Experimental Setup 

To ensure a constant mass flow over several minutes, the test setup is supplied from 6 bundles with 

12 hydrogen bottles each. These 6 bundles contain a total of m=90 kg of hydrogen at a pressure level 

of p=300 bar, so that an average test duration of t = 120 s per test can be realized. The mass flow is 

adjusted via a control valve in conjunction with three orifices (d=1,6 mm, 3,3 mm, 7,7 mm) and 

recorded using a Coriolis mass flow meter (Rheonik Coriolis RHE28).  

The three orifice diameters were used to allow for a same outlet mass flow at different pressure stages, 

enabling an optimal utilization of the gas storage. The test rig is designed for the release of hydrogen 

with mass flows of up to �̇� =0,5 kg/s and pressure levels of up to p=1000 bar. Pressure and 

temperature are measured at several points along the pipe section and at the outlet (cf. Figure 1). 
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Figure 1: Test stand at the BAM TTS Size of test rig 18 m x 5 m x 4 m (Length x Width x Height) (left) and 

flow chart of the test stand with used monitoring equipment (right) 

The flame geometry is determined using infrared (IR) cameras. Two infrared camera systems (a FLIR 

SC4000 with cooled IR sensor wavelength spectrum λ=1,5 µm - 5 µm and a recording frequency of 

f=200 Hz, and a FLIR E96 with λ=7,5 µm - 14 µm and a recording frequency of f=30 Hz) are directed 

at the flame from two different angles. Four thermal radiation sensors (bolometers - Medtherm Series 

64) are used to measure the thermal radiation emitted by the jet flame into the surroundings. 

 

 

Figure 2: Measuring equipment in open field at the test area (left) and schematic illustration of the positions 

of the measuring equipment (right) 

Three of these bolometers (cf. Figure 2 – Heat Radiation (HR) sensors) are positioned at different 

distances from the flame. The fourth is used to measure the background radiation of the environment 

(cf. Figure 2). This background radiation is subtracted as an offset from the measured thermal 

radiation of the three bolometers, which are aligned with the flame. The thermal radiation sensors 

have a spectrum of λ= 0,5 µm – 14,5 µm, a maximum frequency of f=100 Hz and are designed for a 

maximum irradiance of 2,25 kW/m². Each sensor has a view angle of 150°.  

All three sensors directed at the flame are inclined vertically with increasing distance at angles of 𝛾=14,4° (𝐻𝑅1); 10,4°(𝐻𝑅2); 4,3°(𝐻𝑅3). A swivelling 360° IP camera (BASCOM – 1 Dom System 

Plus) is installed for additional test monitoring. An overview of the position of cameras and heat 

radiation sensors placed at the test areas is listed in Table 1. 
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Table 1: Overview of the positions (distance measured to the outlet) of the thermal radiation 

sensors and cameras (cf. Figure 2)  

 

An ultra-sonic anemometer (USA - Metek type USA-1 Scientific) is used to record the wind field. 

The gas mixture is ignited by a propane pilot flame at the outlet with a piezoelectric high-voltage 

ignition. The pilot flame is switched off immediately after ignition of the jet. 

 

2.2 Experimental Program  

To date, a total of 128 jet flame tests have been carried out. Of these, 50 were tests with pure hydrogen 

and 78 tests with pure methane. The methane tests in particular should serve as a “reference”, since 

the available flame models in the literature are largely based on data from tests with hydrocarbons.  

Furthermore, all tests were carried out with a horizontal outlet. Only test series in which there was no 

headwind were used for the evaluation.  

Preliminary tests showed that, for methane, there is no stable burning flame if the outlet velocity is 

too high (small outlet diameter, d=4 mm orifice, �̇� ̇>0,043 kg/s, T=20 °C). For this reason, a pipe 

(l=1 m) with an internal diameter of d=30 mm was placed at the outlet to serve as a diffuser (Figure 

3). This made it possible to reduce the exit momentum and adapt the turbulent flame speed to the 

outlet velocity, allowing for a stable burning flame over the entire mass flow range from �̇�=0,005 

kg/s to �̇�=0,2 kg/s. 

 

Figure 3: Diffuser pipe DN30 (l=1 m) attached on orifice DN1/DN3/DN7 (l=0,2 m) 

 

 

 

 

Position IR Cam 

E96 

IR Cam 

SC4000 
IP Cam HR1 HR2 HR3 HR4 

x in m 15 4,5 3,5 4,05 4,05 4,05 8,5 

y in m 0 12,32 7 8,23 10,32 12,31 11 

z in m 1,6 1,65 1,8 0,74 1,04 1,34 0,74 
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3. Results and discussion 

The focus of the experiments is the investigation the flame geometry and the emitted thermal 

radiation. The procedure used here is illustrated in the following example. Figure 4 shows a snapshot 

of a hydrogen jet flame (outlet diameter of d=30 mm, outlet mass flow �̇�=0,172 kg/s, T=20 °C) in 

the visible and IR range. From Figure 4 it can be seen that hydrogen jet flames do not emit any 

radiation in the visible wavelength range. This could be observed not only in all hydrogen 

experiments, but also in the experiments carried out here with methane. The flame geometry can 

therefore only be determined using an IR camera, which requires the specification of a temperature 

range and an emissivity. 

 
Figure 4: Comparison of the Diffusion Hydrogen Jet Flame monitored with IP Cam (left) and IR-Cam 

(right)  

The emissivity ε of IR absorbing gases depends on many parameters such as the species 

concentration, the layer thickness, the temperature of the flame, the ambient pressure and the 

wavelength (Gore et al., 1987; Hottel et al., 1936) and is much more complex compared to 

measurements on solids.  

Furthermore, a jet flame is a diffusion flame that does not have a homogeneous species distribution 

across the layer thickness and is additionally influenced by the wind speed, direction and turbulence 

(Coelho, 2012). For the IR measurements, the emissivity was set to ε=1 and a temperature range of 

T=850 °C to T=2000 °C was used.  

To determine the flame geometry, an algorithm was developed that averages each individual frame 

from the IR image over the duration of the experiment. With a recording frequency of f=200 Hz and 

a test duration of t=120 s, this results in averaging over 24000 frames. Figure 5 shows exemplarily 

the averaging procedure and result. 

 
Figure 5: Numerical calculation and determination of mean flame shape over test duration  

 

All flame parameters (flame length, mean diameter and view factor) are calculated on the basis of the 

generated time-averaged (stationary) flame geometry.  
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The flame shape (contour) is then defined via a RBG value, manually specified so that only the flame 

surface and no reflections from the test apparatus or the floor are visible in the image. The 

experimental non-dimensional flame lengths and diameters are shown in Figure 6. 

The comparison of the flame geometry of hydrogen and methane in Figure 6 shows that hydrogen 

flames are longer and thinner compared to methane flames, which are more compressed (shorter with 

wider diameters). In a mass-specific comparison, this is due to the difference in density and 

consequently higher outlet velocity. Due to the lower density, a higher volume flow and consequently 

a greater outlet momentum are available with the same mass flow for hydrogen. This allows the 

hydrogen jet flame to spread more easily into the surrounding medium, resulting in longer flames. 

 

 

Figure 6: Comparison of hydrogen and methane regarding to non-dimensional parameter flame 

diameter/outlet diameter (d/D) over nominated parameter mass flow/outlet diameter (�̇�𝐷)1/2 (left) and non-

dimensional parameter of flame length/outlet diameter (l/D) over nominated parameter mass flow/outlet 

diameter (�̇�𝐷)1/2 

 

From the geometric data of the flame and the heat radiation intensity 𝑄𝑟𝑎𝑑_𝑆𝑒𝑛𝑠𝑜𝑟 in W/m² measured 

by the bolometers (cf. Figure 7), the SEP of the flame can be determined using Eq. 1 

SEP = Qrad_Sensorτ1_2 φ1_2  

 

Eq. 1 
 

 

with the view factor 𝜑1_2 (unitless) and the transmittance 𝜏1_2 (unitless) of the air are required (index 

"1_2" refers to the path between emitter "1" and receiver "2").   
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The transmittance τ of the air was calculated according to Wayne et al. using Eq. 2 (Wayne, 1991). 

 τ1_2 = 1,006 − 0,01171(log10XH2O) − 0,02368(log10XH2O)2 − 0,03188(log10XCO2)  + 0,001164(log10XCO2)2 

 

with       XH2O = RHLSmm2,88651∗102T   and   XCO2 = 273LT  

Eq. 2 

 

where 𝝉𝟏_𝟐  is the transmittance (unitless), 𝑿𝑯𝟐𝑶  parameter for water vapor in the atmosphere 

(unitless), 𝑿𝑪𝑶𝟐 parameter for CO2 in the atmosphere (unitless), 𝑹𝑯 relative humidity (unitless), L 

the path length between emitter and absorber (in m), 𝑺𝒎𝒎 vapor pressure of water (in mmHg) and T 

the air temperature (in K). 

The view factor 𝜑1_2  is calculated numerically, based on the determined flame geometry (cf. Figure 5, right). Assuming a radially symmetrical flame, the flame geometry is divided into vertical 

slices with the width of one pixel of the IR image. The view factor is calculated as a function of the 

distance of the slice from the bolometer according to the relationships given in (VDI, 2010). The 

overall view factor of the flame is then calculated from the sum of the individual view factors of each 

section. Thus, the SEP of the flame can be determined from the temporal average of the measured 

thermal radiation of the individual bolometers. Ideally, the SEP values of the flame calculated from 

the different bolometer signals should be identical. Under atmospheric conditions, this is only 

achieved within a certain accuracy limit, but with satisfactory agreement. 

Figure 7 shows a comparison of the SEP values determined from the measurements for methane and 

hydrogen. A trend can be seen here that hydrogen jet flames have higher SEPs than methane jet 

flames. For methane, SEPs in the range of 7 kW/m² - 9,5 kW/m² and for hydrogen SEPs between 10 

kW/m² - 15 kW/m² were determined. 
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Figure 7: Comparison of Surface Emissive Power for hydrogen and methane drawn over mass flow 

 

In the literature (Chamberlain, 1987; Fishburne & Pergament, 1979; Mogi et al., 2005; Proust et al., 

2011; Schefer et al., 2006; Schefer et al., 2007) the radiant heat fraction of the flame is derived from 

the measured heat radiation of the flame and the total energy (heat release rate) produced during 

combustion which can be calculated from Eq. 3: 𝑄𝐶𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 = �̇�𝛥𝐻𝑐 

 

Eq. 3 
 

with the mass flow (�̇�) and the lower heating value (Δ𝐻𝑐). The lower heating value is 𝛥𝐻𝑐_𝐻2 =120 

MJ/kg for hydrogen and 𝛥𝐻𝑐_𝐶𝐻4 =50,3 MJ/kg for methane (Uwe Riedel, 2018).  

The radiative fraction can only be calculated indirectly via the measured thermal radiation and the 

flame area. Here, 𝑥𝑟𝑎𝑑 is calculated according to Eq. 4, where 𝐴𝑓𝑙𝑎𝑚𝑒 is the flame area. The product 

of 𝑥𝑟𝑎𝑑 and ∆𝐻𝑐 can be understood as the radiant heat energy that is converted into thermal radiation 

during combustion. 

 

𝑥𝑟𝑎𝑑 = 𝑆𝐸𝑃𝑒𝑥𝑝 𝐴𝐹𝑙𝑎𝑚𝑒 �̇�𝛥𝐻𝑐  

Eq. 4 
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This could be due to the fact that mainly visible (luminous) methane flames have been examined in 

the literature. In contrast, in the present work only non-visible (non-luminous) flames have occurred 

so far. Studies on the differences between luminous and non-luminous flames with regard to thermal 

radiation have only been examined sporadically in the literature. One of the early investigations 

performed by (Hottel et al., 1936; Sherman, 1934) with natural gas showed a lower thermal radiation 

for non-luminous flames in comparison to luminous flames due to differences in the radical species 

and emissivity of the flame.  

4. Conclusion 

 

From the test results presented here, initial findings regarding flame geometry and heat radiation have 

been made. 

1. Hydrogen jet flames have a longer and thinner flame than methane jet flames for the same mass 

flow. 

2. Hydrogen jet flames show higher thermal radiation values for the same mass flow rate compared 

to methane jet flames. 

3. The radiant heat fractions of the hydrogen jet flames determined so far correspond to the values 

given in the literature, whereas those for methane are significantly lower than the values given in the 

literature (rather at the lower limit), which may be due to the non-luminescence of the flames in this 

work. 

Outlook: The difference of heat radiation between luminous and non-luminous flames will be 

investigated further as well as releases with different outlet angles and outlet diameters. The results 

obtained will be used to check the applicability and accuracy of jet flames models and, if necessary, 

the further development of these. 
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