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Managing aging engineering structures requires damage identifcation, capacity reassessment, and prediction of remaining service
life. Data from structural health monitoring (SHM) systems can be utilized to detect and characterize potential damage. However,
environmental and operational variations impair the identifcation of damages from SHM data. Motivated by this, we introduce
a Bayesian probabilistic framework for building models and identifying damage in monitored structures subject to environmental
variability. Te novelty of our work lies (a) in explicitly considering the efect of environmental infuences and potential structural
damages in the modeling to enable more accurate damage identifcation and (b) in proposing a methodological workfow for
model-based structural health monitoring that leverages model class selection for model building and damage identifcation. Te
framework is applied to a progressively damaged reinforced concrete beam subject to temperature variations in a climate
chamber. Based on defections and inclinations measured during diagnostic load tests of the undamaged structure, the most
appropriate modeling approach for describing the temperature-dependent behavior of the undamaged beam is identifed. In the
damaged state, damage is characterized based on the identifed model parameters. Te location and extent of the identifed
damage are consistent with the cracks observed in the laboratory. A numerical study with synthetic data is used to validate the
parameter identifcation. Te known true parameters lie within the 90% highest density intervals of the posterior distributions of
the model parameters, suggesting that this approach is reliable for parameter identifcation. Our results indicate that the proposed
framework can answer the question of damage identifcation under environmental variations. Tese fndings show a way forward
in integrating SHM data into the management of infrastructures.

1. Introduction

Bridges in road networks are exposed to ever-increasing
heavy goods trafc. At the same time, numerous existing
bridges were designed according to codes and standards that
do not refect the forecasted demands and/or current design
principles. In addition, many bridges are subject to the
efects of (advanced) deterioration. To support decisions on
actions to be taken to ensure the required safety and per-
formance, infrastructure managers are reassessing bridges
with identifed potential defciencies [1].

If an initial structural assessment based on current codes
and standards—possibly in conjunction with supplementary
recommendations concerning the demand and capacity of
existing bridges—fails to demonstrate compliance with
safety and performance requirements, existing reassessment
guidelines allow for the consideration of additional object-
specifc information in the structural assessment [2, 3]. Tis
information can, for example, be derived from load/load
efects monitoring, load tests, vibration measurements, and
nondestructive testing (NDT). In case compliance with the
prescribed requirements can still not be demonstrated,
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infrastructure managers may still be able to safely operate
structurally defcient bridges if they restrict trafc loads and/
or employ global/local structural health monitoring (SHM)
systems to inform near real-time decisions for avoiding
catastrophic failures.

Such SHM systems are typically deployed to (a) identify
potentially critical damages or deterioration processes, or (b)
monitor the development of identifed damages or de-
terioration processes. A special application is the identif-
cation of structural damages from structural response data
(e.g., strains, deformations, and vibrations). To achieve this
goal, it is generally accepted [4–7] that physics-based
methods must be applied, in which structural mod-
els—typically fnite element (FE) models—are updated with
observed data.

Tere are several challenges in building structural
models to infer the structural condition from SHM data
through model updating:

(1) A structure can be modeled with diferent levels of
sophistication regarding the applied mechanical
theories (e.g., Euler–Bernoulli or Timoshenko beam
theory, P-delta efects, and nonlinear material be-
havior), its representation in a fnite element model
(e.g., beam, shell, or solid elements), and the re-
quirement of considering secondary/tertiary and/or
nominally non-load-bearing members/components.

(2) In addition to the level of model sophistication, it is
important to properly choose the model parameters,
which are included in the model updating. Too few
parameters may limit themodel’s ability to refect the
actual physical behavior, but too many parameters
increase the model complexity and may lead to
overftting, in which case the parameters do not
retain any physical meaning.

(3) Uncertainty in the parameters of a model, its ca-
pability to refect the true physical phenomena, and
the uncertainty in the observed data need to be
addressed.

A major challenge in SHM is the infuence of envi-
ronmental and operational variability (EOV) on the struc-
tural behavior [4, 8–12]. Environmental variability includes,
for example, variability in ambient temperatures, wind
conditions, humidity, and sun exposure. Operational vari-
ability exists, for example, due to variable trafc loads on
bridges, variable water levels in reservoirs, and variable
storage loads on ofshore platforms as well as variable op-
erating conditions of structural systems (such as the opened/
closed condition of drawbridges or variable directions/
speeds of wind turbine rotors). For many structural systems
including road bridges, the infuence of variable environ-
mental conditions on the temperature of the structural
system is one of the most relevant infuences because the
system temperature afects the material properties of its
components, its stress-strain/deformation state, and the
behavior of its bearings.

When using model updating, there is a risk of in-
correctly characterizing damages from SHM data or, more

importantly, missing it altogether if the data are simply
normalized in function of the environmental and opera-
tional conditions [4]. Te inherent variability of structural
parameters can be captured with probabilistic parametric
models, which are a function of the environmental and
operational infuences. If there exist models on the nature
of the infuence, dependent structural parameters can be
explicitly described by these models [13, 14]. As an alter-
native, a hierarchical probabilistic model of the relevant
structural parameters with temperature-dependent mean
functions has been applied in the literature, where the
parameters of the mean function are included as additional
hyperparameters in the hierarchical model [15]. More
specifcally, the existing works describe the efect of varying
structural temperatures on material properties with the
help of simplistic empirical models [13, 15]. Tis is a step
forward towards solving the problem of identifying
structural damages in real structural systems based on SHM
data. However, to enhance the damage identifcation
process and to enable a subsequent assessment of the
structural performance, the infuence of EOV should be
described by physics-based models [4].

Motivated by this, we present a Bayesian probabilistic
framework for building models for damage identifcation in
structural systems subject to environmental variability. It
includes a methodological workfow for model-based
structural health monitoring, enables a quantitative evalu-
ation of modeling choices, penalizes overftting, and cap-
tures the governing parametric, model, and observation
uncertainties. Te framework accounts for the efect of
varying environmental conditions on the structural behavior
by explicitly modeling the dependence of structural pa-
rameters on environmental infuences and thus enables
a distinction between the efect of environmental infuences
and structural damages. Te framework is consistent with
the probabilistic and semiprobabilistic modeling and safety
concepts encoded in modern structural codes and standards.
Tus, the probabilistic diagnostic information obtained
using the proposed approach can subsequently be in-
corporated into structural models suitable for assessing the
safety and performance of monitored structural systems.

Tis paper is organized as follows: Section 2 presents the
proposed framework for model building and damage
identifcation. Section 3 applies the framework to a pro-
gressively damaged reinforced concrete beam subject to
varying ambient temperatures in a climate chamber. Te
static response data forming the basis of the case study is
measured in a series of diagnostic load tests. To validate the
approach, an additional numerical study is presented in
Section 4. Finally, Sections 5 and 6 discuss and conclude our
contribution.

2. Methodology

2.1. Bayesian Probabilistic Framework forModel Building and
Damage Identifcation

2.1.1. Stochastic Model Class. Te main conceptual element
of our proposed framework is the stochastic model class
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originally introduced in [16]. We adopt this concept to
formally address the issues related to identifying damage in
structural systems subject to environmental variability.
Within this context, a stochastic model class consists of the
following:

(1) A set of parametrized, deterministic submodels of
the underlying physical phenomena. Tis includes
submodels of the mechanical behavior of the
structure, the efect of EOV, and possible damages in
terms of their location, type, and severity. Te
submodels are coupled to model the underlying
fundamental physics of the system (see Section 2.2
formore details). Note that the submodels describing
structural damages can be extended to represent
time-dependent deterioration processes [13, 17, 18].

(2) A parametrized probabilistic model of the deviations
between the observed data and the corresponding
predictions of the deterministic system model (see
Section 2.3). Tis bridging the gap between a de-
terministic systemmodel and a probabilistic model is
also known as “stochastic embedding” [16]. Based on
the probabilistic model of the prediction errors and
the deterministic model of the physical system,
a likelihood function can be formulated to proba-
bilistically describe the relation between the observed
data and the parameters of the system model. Te
likelihood function describes the plausibility of the
observed data conditional on a certain value of the
parameters of the employed physical and probabi-
listic submodels.

(3) A joint probability distribution—the prior dis-
tribution—of all uncertain parameters of the physical
and probabilistic submodels. Tis distribution re-
fects the relative plausibility of possible parameter
values and their stochastic dependencies (see Section
2.3). It represents the prior knowledge or initial belief
about the model parameters and is derived from all
available information including, for example, engi-
neering judgment and experience, design docu-
ments, codes, standards and guidelines [19], NDT,
and material tests [20].

Within a stochastic model class, the posterior or updated
knowledge of the uncertain model parameters in terms of their
posterior distribution is obtained by combining the prior
knowledge of the model parameters (described by their prior
distribution) and the observed data (described by the likelihood
function) by applying Bayes’ rule (see Section 2.4).Tis process
is commonly referred to as Bayesian inference, Bayesian system
identifcation, Bayesian model updating, or Bayesian updating.

Competing stochastic model classes can be formulated to
refect diferent modeling approaches. Diferent model
classes can include diferent deterministic submodels to
describe the physics of the system. In addition, they can be
based on diferent models of the model and observation
uncertainty or include diferent prior distributions of the
model parameters.

2.1.2. Methodological Workfow. Based on the concept of
stochastic model classes, we defne a series of methodological
steps to formalize the process of building models of structural
systems subject to environmental variability and identifying
possible damages in such structures (see Figure 1).

Te proposed workfow is divided into two main parts.
Te frst part consists of several steps performed in a reference
phase in which observed data from this phase are utilized to
(a) learn the behavior of the undamaged structure subject to
EOV within each defned stochastic model class and (b) select
the most plausible stochastic model class based on these data
[21, 22]. Te most plausible class is subsequently extended
with submodels representing possible damages. Te second
part of the workfow comprises a sequence of steps performed
in a monitoring phase, in which the available data are then
used to identify structural damages.Te basic structure of this
workfow refects Axiom II of the fundamental Axioms of
SHM [23], which states that the assessment of damage re-
quires a comparison between two system states.

Te individual steps in the proposed methodological
workfow are as follows:

(1) We formulate a set of stochastic model classes to
refect the relevant competing hypotheses concern-
ing the physical phenomena and the level of model
sophistication, without submodels for damage. A
thorough and transparent modeling approach calls
for the explicit declaration of theories and as-
sumptions prior to looking at any data.

(2) We perform Bayesian inference within all formu-
lated stochastic model classes based on data from the
reference phase to obtain updated models (see
Section 2.4).

(3) We select the most plausible probabilistic model
class with the help of model quality indicators, which
are introduced in Section 2.5.

(4) We quantify the parametric and prediction un-
certainty, and the prediction errors introduced in
Section 2.3 conditional on the observed data.

(5) For the monitoring phase, we extend the most
plausible probabilistic model class by adding one or
more submodels for possible damages. In this way,
a new set of competing stochastic model classes is
defned to refect all relevant hypotheses regarding
possible damages.

(6) Optionally, we optimize the monitoring setup for the
monitoring phase to enhance the damage identif-
cation process. For example, the sensor placement
can be refned or other types of sensors selected
based on maximizing the information gain or the
value of information [24, 25]. Consequently, the
monitoring system employed in the monitoring
phase can be diferent from the monitoring system
applied in the reference phase.

(7) We perform Bayesian inference within the stochastic
model classes with and without submodels for
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damage based on data from the monitoring phase,
considering the information from the reference
phase. Tere are two possible approaches to account
for the information from the reference phase: either
deterministically fx (some of) the parameters
inferred in the reference phase, for example, at their
most probable values [13], or perform sequential
Bayesian updating with the data from the reference
and monitoring phase [26].

(8) Based on model quality indicators, we determine
whether the undamaged probabilistic model class or
one of the classes including damage is more plausible.

(9) If damage appears to be present, we characterize the
damage based on the posterior distribution of the
corresponding parameters of the damage models.

2.2. Generic Deterministic System Model. A key component
of a stochastic model class described in Section 2.1.1 is the
parameterized deterministic model of the structural system
subject to EOV and damage. A generic representation of this
model is shown in Figure 2. It consists of several coupled
submodels including a set of submodels qE,1(y, θE), . . . ,􏽮

qE,NE
(y, θE)} describing the efect of EOV on the

parametres of the structural model, a set of submodels
qD,1(y, θD), . . . , qD,ND

(y, θD)􏽮 􏽯 representing possible
structural damages, and a submodel qS(y, θS, qE,1 (y, θE),

. . . , qE,NE
(y, θE), qD,1(y, θD), . . . , qD,ND

(y, θD)) describing

the structural response as a function of the efect of EOV and
possible structural damages. In the following, we write
q(y, θp) to designate the overall systemmodel to simplify the
notation. In this generic representation, y are the actions on
the system (input) and θP � [θT

E, θT
D, θT

S ]T are the parameters
of the coupled submodels. Te model parameters and input
infuence the response of the structure and thus the model
output. Within the scope of this contribution, it is assumed
that the input relevant for the model building and damage
identifcation is observed and free from any observation
uncertainty, i.e., the exact value of the input y is assumed to
be known. Note that this is not a limitation, as the proposed
framework can be extended to account for uncertainty in y.

2.3. Uncertainty Quantifcation. To use model updating as
the basis for identifying damage in structural systems, it is
desirable to identify and quantify the governing sources of
uncertainty. In this contribution, uncertainty quantifcation
is understood to comprise three steps: (a) classify un-
certainties according to their sources, (b) model the un-
certainties using probability theory, and (c) describe them.

Based on categorizations from the literature [27, 28], we
distinguish between the following sources of uncertainty:

(i) Model uncertainty—often also referred to as model
form error, model structure uncertainty, or model
inadequacy—is the discrepancy between the model
predictions and the true physical behavior.

assess model qualities
and select model

formulate compe-
ting model classes

run inference within
all model classes

quantify uncertainties
and biases

optimize data
collection

extend with sub-
models for damage

model building damage
identification

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

run inference within
all model classes

model class selection
for damage detection

characterize
possible damage

reference phase

data

monitoring phase

Figure 1: Proposed workfow of methodological steps involved in building models of structural systems subject to EOV in a reference phase
and identifying structural damage in a monitoring phase.
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(ii) Observation uncertainty is the diference between
the true system behavior and the observed system
behavior. Te observed system behavior can, for
example, be measurements or processed data de-
rived from measurements.

(iii) Parameter uncertainty is the uncertainty in the
parameters of all physical submodels of a probabi-
listic model class.

Parameter uncertainty is captured by modeling the
model parameters θp as (correlated) random variables. With
regard to model and observation uncertainties, there are
various ways of probabilistically modeling these un-
certainties [27–29]. Tey can, for example, be described by
introducing additional parameters that are added to or
multiplied with q and subsequently modeled as (correlated)
random variables. As an illustrative example, consider the
following commonly applied additive model [28]:

zi � q yi, θp􏼐 􏼑 + δi + εi. (1)

In this formulation, the ith observation zi of the system
response which corresponds to input yi is predicted as the
sum of the model output q(yi, θp) and two additional pa-
rameters δi and εi, where δi is the diference between the
model predicted and true system response and εi is the
diference between the true and observed system response.
As the actual values of δi and εi are unknown, they are also
modeled as random variables (in addition to the model
parameters θp).

Probabilistic models of the type defned in equation (1)
are commonly referred to as data prediction models, e.g.,
[30]. Such models serve two purposes: (i) by modeling the
parameter, model, and observation uncertainties probabi-
listically and propagating them through such a data pre-
diction model, a probabilistic description of the predicted
observations is obtained. In this way, the prediction un-
certainties are quantifed. (ii) Based on the mathematical
relations encoded in the data prediction model and the
probabilistic model of the model and observation

uncertainties, a likelihood function can be formulated,
which probabilistically relates the observation of the system
response with the model parameters [28, 29, 31] (see also
Section 2.4). Tis function forms the basis for learning the
probability distribution of the model parameters from the
observed data using Bayesian model updating (see Section
2.4). Since the model and observation uncertainties are
included in the data prediction model as additional random
variables, their probability distributions can also be learned
from the data.

Note that the model in equation (1) describes the model
uncertainty at the system level through the additional un-
certain parameter δi. A similar approach can be applied to
quantify model uncertainties at the level of the submodels. In
addition, it should be noted that the model and observation
uncertainties are in the literature often jointly modeled at the
system level by a prediction error representing the overall
diference between the model-predicted and observed system
response [16, 21, 28, 29]. We also apply this approach in the
case study in Section 3. Finally, note that the proposed
framework provides the means for defning competing
models of the model and observation uncertainties within
competing stochastic model classes [29]. In this way, the
most appropriate model of these uncertainties can be
identifed from the observed data jointly with the most
plausible model of the physical system.

2.4. BayesianModel Updating. A large body of the literature
on updating structural models (mostly fnite element
models) based on experimental data has emerged over the
past decades. An overview can, for example, be found in
[1, 32]. According to [32], the prevalent approaches can be
classifed into three categories: deterministic optimization
methods (i.e., residual minimization techniques), Bayesian
methods, and error domain model falsifcation.

In this contribution, we adopt Bayesian methods for two
reasons: (1) in a Bayesian approach, the prior knowledge of
the structural system and the monitoring process including

model output

optional sub-models damage

sub-model D.ND

sub-model D.1
damage

qD,1 (y, θD)

sub-model E.NE

sub-model E.1
EOV

qE,1 (y, θE)

input
y

model of the physical system

sub-model
structure

parameters
θP = [θE

T, θD
T, θS

T]T

qS (y, θS, q (y, θP)
qE,1, ... , qE,NE,

qD,1, ... , qD,ND )

Figure 2: Generic representation of the deterministic model of a structure subject to EOV and damage. It consists of submodels describing
the efect of EOV, submodels representing possible damages, and a submodel describing the structural response. Te individual submodels
are coupled to describe the overall system behavior.
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the associated uncertainties are explicitly quantifed in terms
of the deterministic physics-based model, the data pre-
diction model, and the prior distribution of the model
parameters. Tese are, for example, derived based on codes
and standards, engineering judgment, expert knowledge,
previous measurements, and tests as well as equipment
certifcates. When new data become available, Bayesian
analysis is performed to update the probabilistic distribution
of the model parameters systematically and consistently.
Importantly, Bayesian methods can solve—in addition to
globally identifable inverse problems—locally identifable
problems with multiple possible solutions [33]. (2) Modern
performance-based codes and standards [34, 35] also
quantify uncertainties based on probability theory. Te
probabilistic diagnostic information resulting from Bayesian
model updating can, therefore, be consistently included in
code-based assessments of structural systems, for example,
in terms of characteristic values.

In the following, Bayesian model updating is briefy
described. As a starting point, we consider the following data
prediction model, which predicts the ith observation zi of the
system response as a function of the input yi:

zi � q yi, θp􏼐 􏼑 + εi. (2)

In this model, an overall prediction error εi � zi

− q(yi, θp) is introduced to jointly represent the model and
observation uncertainty (see also Section 2.3). Te vector-
valued prediction error εi is here assumed to follow a mul-
tivariate Gaussian distribution with zero mean and co-
variance matrix Σε(θε) with uncertain parameters θε, i.e.,
εi ∼ N(εi; 0,Σε(θε)). Subsequently, all uncertain parameters
of the problem are collected in the overall parameter vector
θ � [θT

p, θT
ε ]T and the prior distribution p(θ) of θ is assigned

based on the available knowledge.
Now, let Di � 􏽢zi, 􏽢yi􏼈 􏼉 denote the ith dataset, where 􏽢zi is

a vector of nd observation of the system response and 􏽢yi are
the corresponding observations of the input. Based on the
data prediction model and the probability density function
of the prediction error, the likelihood function
L(θ |Di)∝p(Di | θ) describing the plausibility of observing
Di given a certain realization of the model parameters θ can
be formulated. It corresponds here to the probability density
of 􏽢zi conditional on 􏽢yi and θ, which is equal to the prob-
ability density of εi taking the value 􏽢zi − q(􏽢yi, θp), i.e.,

L θ |Di( 􏼁 � N 􏽢zi − q 􏽢yi, θp􏼐 􏼑; 0,Σε θε( 􏼁􏼐 􏼑

�
exp −J θ,Di( 􏼁􏼂 􏼃
���������������
(2π)

nddet Σε θε( 􏼁( 􏼁

􏽱 ,
(3)

with

J θ,Di( 􏼁 �
1
2

􏽢zi − q 􏽢yi, θp􏼐 􏼑􏽨 􏽩
T

􏽘

−1

ε
θε( 􏼁 􏽢zi − q 􏽢yi, θp􏼐 􏼑􏽨 􏽩,

(4)

where J(θ,Di) is commonly referred to as themeasure-of-ft
function [21, 36] of the ith dataset Di.

Diferent prediction errors ε1, . . . , εno
corresponding to

no and diferent datasets D1, . . . ,Dno
are modeled as in-

dependent and identically distributed, conditional on
a certain realization of the hyper parameters θε. Based on this
hierarchical model, the likelihood function describing all
available data D � Di􏼈 􏼉

no
i�1 is simply the product of the

likelihood functions describing the individual observations:

L(θ |D) � 􏽙

no

i�1
L θ |Di( 􏼁. (5)

Te available data D and the prior knowledge on the
uncertain parameters θ can now be combined by applying
Bayes’ rule, which updates the prior distribution p(θ) with
data D to the posterior distribution p(θ |D):

p(θ |D) �
L(θ |D) p(θ)

􏽒θL(θ |D) p(θ) dθ
� c

−1
E L(θ |D) p(θ), (6)

where cE is the evidence of the stochastic model class [16],
which is proportional to the probability density of data D,
i.e., cE∝p(D).

In most cases, p(θ |D) cannot be determined analyti-
cally. Instead, samples from p(θ |D) must be generated
numerically. To this end, we apply the adaptive version of
Bayesian updating with structural reliability methods
(aBUS) [36], which provides an approximation of the evi-
dence cE as a by-product.

Figure 3 illustrates Bayesian model updating based on
a single dataset Di.

2.5. Indicators of Model Quality. Indicators of model quality
cannot be used to assess the absolute quality of a stochastic
model class but can only be utilized to compare diferent
stochastic model classes relative to each other. It is thus
necessary to postulate a set of competing probabilistic model
classes.

All models that are updated with observed data bear the
danger of overftting, i.e., with a growing number of pa-
rameters considered in the model updating the model seems
to ft the data better, but instead of representing the un-
derlying physics, the model parameters compensate the
existing model and observation uncertainty. Several quan-
titative measures have emerged, which reward stochastic
model classes for ftting the data while at the same time
penalizing properties that could lead to overftting. Tey are
presented in the following sections.

2.5.1. Akaike Information Criterion. Te Akaike in-
formation criterion (AIC) was developed in [37] as

AIC � 2k − 2 ln(􏽢L), (7)

where k is the number of parameters and 􏽢L is the value of the
likelihood function at the most probable value (MPV) of the
parameters θ. In this way, this indicator is also available for
methods that yield only a point estimate of the parameters,
such as the maximum likelihood method.

6 Structural Control and Health Monitoring
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Te AIC is no absolute measure but enables a compar-
ison of diferent model classes, whereby the model with the
lowest AIC is the most appropriate. It should be highlighted
that the AIC is a logarithmic measure.

Te AIC can be rescaled after [16]:

AIC∗ � ln(􏽢L) − k, (8)

to facilitate a comparison with the evidence cE or the model
selection factor MSF (see Section 2.5.3).

Tis changes the sign, meaning the higher the AIC∗, the
better. It now resembles the optimal data-ft minus the
number of parameters.

2.5.2. Bayesian Information Criterion. A metric similar to
the AIC is the Bayesian information criterion (BIC), which
was introduced in [38] as

BIC � k ln(n) − 2 ln(􏽢L), (9)

where additionally the number of observations n is
considered.

Like the AIC, it can be rescaled as [16]

BIC∗ � ln(􏽢L) −
k

2
ln(n), (10)

and now represents the optimal data-ft minus the number of
parameters divided by 2 times the logarithm of the number of
observations.

2.5.3. Bayesian Model Class Selection. Let M � M1,􏼈

. . . , Mm} be a set of m competing stochastic model classes,
where each stochastic model class Mi ∈M encodes the

knowledge and assumptions required to formulate the
likelihood function L(θ |D, Mi) and prior distribution
p(θ | Mi). By conditioning on Mi in the following, we ex-
plicitly indicate dependence on the encoded knowledge and
assumptions.

For each stochastic model class Mi, the evidence cE|Mi

can be computed as (see also equation (6))

cE|Mi
∝p D | Mi( 􏼁 � 􏽚

θ
L θ |D, Mi( 􏼁 p θ | Mi( 􏼁 dθ. (11)

If 􏽒
D

L(θ |D, Mi)dD � 1 or equivalently
L(θ |D, Mi) � p(D | θ, Mi), it follows that the model evi-
dence cE|Mi

is equal to p(D | Mi). Note that the likelihood
functions defned in equations (5) and (6) fulfll this
condition.

According to [16], p(D | Mi) can be transformed to
express the average data-ft minus information gain.

ln p D | Mi( 􏼁􏼂 􏼃 � Eθ|D,Mi
ln p D | θ, Mi( 􏼁( 􏼁􏼂 􏼃

− Eθ|D,Mi
ln

p θ |D, Mi( 􏼁

p θ | Mi( 􏼁
􏼢 􏼣,

(12)

in which the expectation is determined with respect to the
posterior distribution p(θ |D,Mi). Te second term in (12)
corresponds to the Kullback–Leibler divergence [39].

Each of the model classes Mi ∈M is assigned a prior
probability Pr(Mi) to quantify the initial belief about their
plausibility, where 􏽐iPr(Mi) � 1. Based on the evidence
cE|Mi,M

� p(D | Mi), the posterior probabilities Pr(Mi |D)

of eachmodel class after observing the dataD are inferred by
applying Bayes’ rule anew [16, 21, 22, 40]:

prediction errorphysical model

likelihood function
L (θ|Di)

L(θ|Di) =

observed output
ẑi

data Di = {ẑi, ŷi}

observed input

Bayes` rule

θ

prior distribution
p (θ)

posterior distribution

θ

ŷi

q (ŷi, θp) ε̂i = ẑi - q (ŷi, θp)

 (ẑi - q (ŷi, θp); 0, Σ (θε))

p (θ|Di)
p (θ|Di) =

L(θ|Di) p(θ)
∫L(θ|Di) p(θ) dθ

Figure 3: Illustration of the Bayesian model updating based on a single dataset. Te prediction error is the diference between the model-
predicted and observed system response, conditional on the observed input. Based on the probabilistic error model, a likelihood function is
formulated to link the data with the model parameters. Tis function is combined with the prior distribution of the parameters using Bayes’
rule to determine the posterior distribution of the parameters.
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Pr Mi |D( 􏼁 �
p D | Mi( 􏼁Pr Mi( 􏼁

􏽐ip D | Mi( 􏼁Pr Mi( 􏼁
. (13)

If there is no prior knowledge on the relative plausibility
of the m competing model classes, their prior probabilities
can be assumed to be equal, i.e., Pr(Mi) � 1/m. If this
noninformative prior is utilized, the posterior probability
Pr(Mi |D) emerging from (13) is also referred to as model
selection factor (MSF) [41]:

MSFi � Pr Mi |D( 􏼁 �
p D | Mi( 􏼁

􏽐ip D | Mi( 􏼁
. (14)

Te MSF explicitly includes all competing model classes
and quantifes their relative plausibility.

2.6.Damage Identifcation. Te goal of damage identifcation
is to (1) detect and (2) characterize possible damage in terms of
location, type, and severity [23]. Tis corresponds to steps (8)
and (9) of the proposed workfow in Section 2.1.2.

As a frst step in damage detection, a single stochastic
model class M0 is chosen, which best represents the
structure in the reference phase. Tis model class is then
extended to represent the possibly damaged structural
system in the monitoring phase. To this end, probabilistic
parameterized submodels of damage may be assigned to
each potentially damaged structural component within one
stochastic model class M1, e.g., [15] or diferent stochastic
model classes M1, . . . , Mn may be proposed to model dif-
ferent potential damage scenarios, e.g., [21].

Ten, model quality indicators including the evidence
p(D | Mi) are determined for each stochastic model class
Mi ∈ M0, . . . , Mn􏼈 􏼉, conditional on the data from the ref-
erence and monitoring phase. Finally, the posterior odds
(the posterior ratio of relative plausibility) in favor of each
stochastic model class representing the damaged structure
Mi ∈ M1, . . . , Mn􏼈 􏼉, Pr(Mi |D)/Pr(M0 |D), is computed
as [42, 43]

Pr Mi |D( 􏼁

Pr M0 |D( 􏼁
􏽼√√√√√􏽻􏽺√√√√√􏽽
posterior odds

�
p D | Mi( 􏼁

p D | M0( 􏼁
􏽼√√√√􏽻􏽺√√√√􏽽
Bayes factorBFi

×
Pr Mi( 􏼁

Pr M0( 􏼁
􏽼√√√􏽻􏽺√√√􏽽
prior odds

,
(15)

where Pr(Mi)/ Pr(M0) is the prior odds in favor of each
damaged model class Mi ∈ M1, . . . , Mn􏼈 􏼉 and p(D | Mi)

/p(D | M0) is the Bayes factor BFi. Note that (15) is only
a reformulation of the model class selection presented in
Section 2.5.3.

With the help of the Bayes factor BFi, each stochastic
model class representing the damaged structure
Mi ∈ M1, . . . , Mn􏼈 􏼉 can be compared to the stochastic
model class representing the undamaged structure M0 solely
based on the data, independently of the prior belief. Damage
detection based on the Bayes factor is thus explicitly sepa-
rated from the prior judgment of the user, who can then
adjust her belief about the health status of the structure.

Te Bayes factor BFi assesses the strength of evidence
provided by the data in supporting the likelihood that the
analyzed structure is indeed damaged, as opposed to being

undamaged. A common interpretation of the magnitude of
the Bayes factor was proposed by Jefreys (see, e.g., Table 1 of
[29]), where BFi ≥ 10 is regarded as strong and BFi ≥ 100 as
decisive evidence.

In the special case, where the prior probabilities of all
stochastic model classes Pr(Mi) are assumed to be equal, the
Bayes factor becomes the ratio of the model selection factors.
We will apply this approach in the remainder of this
contribution.

To characterize damage conditional on the available
data, the posterior distributions of the uncertain parameters
of the damage models are examined. Damage character-
ization is, therefore, included in the parameter identifcation.

3. Case Study

In the current contribution, a simply supported reinforced
concrete (RC) beam serves as a model of a bridge subject to
environmental variations and damage. Te case study does
not include operational variations, and environmental
variations are limited to variations in the ambient tem-
peratures. As an additional limitation, the case study only
considers the efect of varying ambient temperatures on the
mechanical properties of the concrete material. Tis limi-
tation excludes the efects of varying temperatures on other
members, such as the bearings, for example.

Te RC beam is subject to varying ambient temperatures
in a climate chamber. In addition, it is progressively dam-
aged in two consecutive three-point bending tests. In
analogy to diagnostic load tests of bridges, the static response
of the undamaged and damaged beam is measured in a series
of load tests at the prescribed temperatures.

Te case study has two main objectives:

(1) We implement the proposed framework for model
building based on data obtained in the undamaged
(reference) state. Tis includes a quantitative as-
sessment of the quality of the proposed models and
a quantifcation of the governing uncertainties
conditional on the load test data.

(2) We evaluate the capabilities of damage character-
ization, i.e., we identify the location and severity of
damage. Tis is achieved by comparing the posterior
marginal distributions of the model parameters
describing the damage to the damage observed in the
real structural system.

Te case study starts out by describing the experimental
setup and diagnostic load tests in Sections 3.1 and 3.2. Te
model building is then presented in Sections 3.3 to 3.5.
Finally, the damage characterization is described in
Section 3.6.

3.1.Experimental Setup. TeRC beam is 2.96m long and has
a 40 cm wide and 20 cm high cross section (see Figure 4). It
consists of reference concrete C (0.45) [44], and Young’s
modulus of the concrete is 33.3GPa [45]. Te beam is
reinforced with two steel rebars with 16mm diameter as
shown in Figure 4. In the climate chamber, the beam is

8 Structural Control and Health Monitoring
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placed on a substructure such that it is simply supported
with a span of 2.72m (see Figure 4). Te experimental setup
is shown in Figure 5.

Tree diferent states of the beam are considered:

(1) Te uncracked beam in the initial (reference)
condition.

(2) Te cracked_1 state, which resulted from an initial
three-point bending test with a maximum load of
20 kN. Te test led to the formation of the frst cracks.

(3) Te cracked_2 state, which occurred after applying
a maximum load of 28 kN in a second three-point
bending test. Te applied load corresponds to the
ultimate load capacity of the beam.

3.2. Diagnostic Load Tests. A trolley with suspended weights
shown in Figure 5 serves as a moveable vertical point load.
Te resulting point load of 3 kN is placed at three pre-
determined positions, as indicated on the left-hand side of
Figure 6. In each load position, displacements and in-
clinations of the beam are measured for 1minute with three
displacement sensors (W1, W2, and W3) positioned at the
quarter points of the beam and two inclination sensors (N1
and N2) located at the supports of the beam. Te sensor
setup is also shown at the top of Figure 6.

Te data were averaged over the measured time, and the
mean values of the displacements and inclinations were
applied in the model building and damage diagnosis.

For each state of the beam, load tests are conducted at
−25°C, −5°C, 5°C, 25°C, and 40°C. Before the static response
of the beam is measured, it is ensured that the beam reaches
a stationary temperature feld within bounds of ±1K. Tis
condition is verifed with two temperature sensors located
inside the beam. In each test series, the frst test of the series
yielded implausible data and thus was identifed as an outlier
and removed.

Figure 6 presents the postprocessed data obtained during
the diferent load tests.

3.3. Proposed Deterministic and Probabilistic Submodels.
As a basis of the model building and damage identifcation,
we consider several diferent deterministic and probabilistic
submodels from which we construct diferent stochastic
model classes of the RC beam. Each class contains a de-
terministic system model of the beam consisting of de-
terministic submodels describing (a) the efect of the beam
temperature on the concrete material properties, (b) the
damage induced by the three-point bending tests, and (c) the
deformation response of the beam subject to the point load.
Te deterministic system model is illustrated in Figure 7.

Te deterministic system model q(y, θp) predicts the
rotations and defections of the beam at the locations of the
sensors W1, W2, W3, N1, and N2 as a function of the pa-
rameters θp and the input y � [xF, F, T]T, whereF is the point
load, xF is the load position, and T is the beam temperature:

q y, θp􏼐 􏼑 � [W1, W2, W3, N1, N2]
T
. (16)

In the following, the considered variants of the sub-
models of the deterministic system model, the probabilistic
model of the model and observation uncertainties, the
likelihood function derived on their basis, and the prior
probabilistic model of the model parameters are presented.

3.3.1. Deterministic Submodels of the Structure. Te de-
formation response of the beam subject to a point load is
described by a linear-elastic FE model in the open-source
framework OpenSEES [46, 47]. Two competing approaches
are taken: the beam is modeled according to (a) classical
Euler–Bernoulli beam theory and (b) Timoshenko beam
theory, which includes shear deformation. A close spacing of
the nodes of 1 cm is chosen. Te only parameter of the
Euler–Bernoulli beam model is the bending stifness EI,
where E is Young’s modulus and I is the area moment of
inertia. Te latter is considered constant with a value of
26667 cm4. Te Timoshenko beam model includes Poisson’s
ratio ]c as an additional parameter.

Figure 8 shows the FE model of the beam together with
an illustration of both competing beam theories and the
submodel for the cracked region. Te fexural cracks in the
RC beam resulting from the three-point bending test are not
modeled explicitly, but their efect is implicitly integrated
into the bending stifness at the cross-sectional level. Te
damage model is discussed in more detail in Section 3.3.3.

3.3.2. Deterministic Submodel of the Temperature Efect.
Te laboratory experiment is designed such that the tem-
perature variations only afect the mechanical properties of
the RC beam. Te relevant temperature-dependent material
property of concrete is Young’s modulus E. As described in
the literature [34, 48–50], this property changes linearly with
temperature.

Possible damage is modeled as a reduction of the
bending stifness EI (see Section 3.3.3), and the area moment
of inertia I of the RC section in the uncracked state is
considered constant (see Section 3.3.1). Terefore, the
temperature-dependent bending stifness EI is the only
parameter that the EOV submodel provides as input to the
submodel of the structure and can be modeled as a linear
function of the beam temperature T:

EI(T) � EI0 + αT, (17)

where EI0 is the bending stifness at 0°C and α is the
temperature sensitivity of the bending stifness.

3.3.3. Deterministic Submodel of Damage. A three-point
bending test produces approximately uniformly spaced
fexural cracks symmetrically distributed around the mid-
span of the beam. As indicated in Figure 8, the location and
extent of the cracked region are defned by the distance xD

from the bearings. Te reduction of the bending stifness EI
in the cracked region is modeled by the reduction factor D,
i.e., the bending stifness in this region is D × EI(T). In this
way, both the location and severity of the damage induced by
the three-point bending test are quantifed (the “classic”
higher levels of damage identifcation [23]).

Structural Control and Health Monitoring 9
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Damage is captured in the FE model by assigning the
reduced bending stifness of D × EI(T) to all FE elements
that are within the cracked region, i.e.,

EIFEM,i �
D × EI(T) if xD ≤x1,i ≤ l − xD ∧xD ≤ x2,i ≤ l − xD,

EI(T) else,
􏼨 (18)

where EIFEM,i is the bending stifness of the ith beam element
and x1,i and x2,i are the coordinates of the corresponding
start and end node.

3.3.4. Probabilistic Submodel of Model and Observation
Uncertainty. In the present case study, model and obser-
vation uncertainties associated with the ith observation are

400
60 60280

20
0

48
15

2

Concrete C (0.45)
E = 33.3 GPa

Reinforcement bars
2Ø16

2.72 m

2.96 m

0.12 m0.12 m

cross-sectionelevation

dimensions in (mm)

Figure 4: Elevation and cross section of the concrete beam.

Figure 5: RC beam inside the climate chamber together with the substructure and moveable trolley with suspended weights.

10 Structural Control and Health Monitoring

 schm
, 2024, 1, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1155/2024/4204316 by Fak - B
am

 B
erlin, W

iley O
nline L

ibrary on [29/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



–25 0 25

0.15
0.20
0.25
0.30

N1 (mrad)

–25 0 25

0.10
0.15
0.20

W1 (mm)

–25 0 25

0.2
0.3
0.4
0.5

W2 (mm)

–25 0 25
0.05
0.10
0.15
0.20

W3 (mm)

–25 0 25

–25 0 25 –25 0 25 –25 0 25 –25 0 25 –25 0 25

–25 0 25 –25 0 25 –25 0 25 –25 0 25 –25 0 25

–0.3

–0.2

–0.1
N2 (mrad)

0.15
0.20
0.25
0.30

0.10
0.15
0.20

0.2
0.3
0.4
0.5

0.05
0.10
0.15
0.20

–0.3

–0.2

–0.1

Temperature (°C)

0.15
0.20
0.25
0.30

Temperature (°C)

0.10
0.15
0.20

Temperature (°C)

0.2
0.3
0.4
0.5

Temperature (°C)

0.05
0.10
0.15
0.20

Temperature (°C)

–0.3

–0.2

–0.1

x = 0.68 m

Pos. 1
F = 3.0 kN

Pos. 2
F = 3.0 kN

Pos. 3
F = 3.0 kN

x = 1.36 m

x = 1.69 m

N1

W1 W2

N2

W3

0.68 m 1.36 m 2.04 m 2.72 mx = 0.0 m 

undamaged
cracked_1
cracked_2

Figure 6: Sensor setup (top), load positions (left), and postprocessed data (center). Each subplot consists of observed defections or
inclinations as a function of temperature. Each column corresponds to a sensor (N1, W1, W2,W3, and N2) and each row to a load position.

model of the physical system

optional sub-model damage

sub-model E
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qE (y, θE)

T

E
E (T)

model prediction
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F
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T, θD
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T]T

sub-model D
damage

qD (y, θD)

sub-model S
structure
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Figure 7: Deterministic system model of the RC beam.
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jointly represented by uncertain prediction errors εi � [εW1,i,

εW2,i, εW3,i, εN1,i, εN2,i]
T (see also Section 2.3). We assume

that the prediction errors εi are Gaussian-distributed with
mean b � [bW1, bW2, bW3, bN1, bN2]

T and covariance matrix
Σε, i.e.,

εi ∼ N εi; b,Σε( 􏼁. (19)

Te mean b can be interpreted as a bias representing
systematic deviations of the model predictions from the
observations. Te covariance matrix Σε describing the de-
pendence among the diferent components of εi can be
constructed as follows:

Σε � D × R × D, (20)

where

D � diag σW1, σW2, σW3, σN1, σN2( 􏼁, (21)

is the diagonal matrix of the standard deviation
σ � [σW1, σW2, σW3, σN1, σN2]

T of the diferent components
of εi and R is the symmetrical correlation matrix. To de-
termine the components of R, we adopt an exponential
correlation function [29]:

r x1, x2( 􏼁 � exp −
x1 − x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

lρ
􏼠 􏼡, (22)

in which |x1 − x2| is the distance between two sensors, and lρ
is the correlation length.

We assume that there is no cross-correlation between
prediction errors εi and εj, which are associated with two
separate observations i and j.

Te bias b, the standard deviation σ, and the correlation
length lρ are the uncertain parameters of the prediction error
model. Tese parameters are collected in the parameter
vector θε.

3.3.5. Likelihood Function. Te likelihood function L(θ |Di)

describing the relation between the ith dataset Di � 􏽢zi, 􏽢yi􏼈 􏼉

and the uncertain parameters θ � [θT
p, θT

ε ]T is formulated
according to Section 2.4. Since the prediction errors εi are
here modeled with a mean b instead of a zero mean, the
measure-of-ft function J(θ, Di) defned in equation (4)
becomes

J θ, Di( 􏼁 �
1
2

􏽢zi − q 􏽢yi, θp􏼐 􏼑 − b􏽨 􏽩
T
Σ−1ε θε( 􏼁 􏽢zi − q 􏽢yi, θp􏼐 􏼑 − b􏽨 􏽩.

(23)

Te joint likelihood function L(θ |D) describing all
available data D is constructed according to equation (5).
Tis modeling approach is applied for each stochastic model
class considered in the current case study.

3.3.6. Prior Probabilistic Model of the Model Parameters.
Troughout this case study, the uncertain model parameters
θ � [θT

p, θT
ε ]T of each stochastic model class are a priori

modeled as independent random variables. Consequently,
their joint prior distribution is simply the product of their
prior marginal distributions, which are defned based on the
existing literature [19, 34] and engineering judgment (see
Table 1).Te prior distributions of the damage parameters D

and xD are estimated through an analytical analysis of the
properties of the cracked section. A choice of large standard
deviations ensures these priors are weakly informative.

Following [19], Young’s modulus of concrete is assumed
to follow a log-normal distribution with a coefcient of
variation (CV) of 0.15. Te mean value for the bending
stifness of the uncracked section at 0°C is EI0 � 33.3GPa×

26667 cm � 8.8MNm2.
According to the existing literature [34], Poisson’s ratio

of concrete ]c varies from the lower bound of 0.14 to the
upper bound of 0.26. As a prior distribution for ]c, we, thus,
select a truncated normal distribution within these bounds
with a mean of 0.2 and a coefcient of variation of 0.15.

A preliminary analysis of the data shown in Figure 6
reveals that there is a 0.1mm ofset between the observed
defections at the position of the displacement transducerW2
and the corresponding defections predicted by a simple hand
calculation. Terefore, a prior distribution of the mean of the
prediction error εW2,i is chosen to account for this ofset.

3.4. Model Building. Te frst goal of this case study is to
identify the most suitable modeling approach for the RC
beam based on the data from the reference phase, i.e., the
data collected from the uncracked beam. To this end, several
modeling choices are considered. Each of these modeling
choices addresses a context- and problem-specifc question.
In the current case study, the following four questions arise.

x = 0 l

Timoshenko

γ
dx
dw

dx
dw

Euler-Bernoulli

or

D×EI (T)

1 cm 1 cm

EI (T)

xD (l - xD)

Figure 8: FE model of the RC beam together with illustrations of the Euler–Bernoulli and Timoshenko beam theory and the cracked region
resulting from the three-point bending test.
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3.4.1. Should the RC Beam be Modeled According to
Euler–Bernoulli or Timoshenko Beam Teory? A funda-
mental question in modeling structures is whether the ap-
plied mechanical theory is appropriate to describe the
relevant structural behavior. In the current case, the most
prominent question is whether the RC beam can be modeled
as an Euler–Bernoulli beam or a Timoshenko beam.

3.4.2. Should Poisson’s Ratio be Modeled as a Random
Variable? Te fexural stifness EI0 at 0°C and the
temperature-sensitivity of the fexural stifness α are pa-
rameters of the system model describing the temperature-
dependent structural behavior of the RC beam. Tese pa-
rameters are modeled as random variables in each stochastic
model class. If the beam is modeled according to Timo-
shenko beam theory, Poisson’s ratio ]c is an additional
parameter of the structural system model, which is typically
deterministically set to 0.2 for hardened concrete. Te
question is whether ]c should be included in the model
updating by modeling it as a random variable with a prior
distribution that explicitly quantifes the prior assumptions
about its plausible values.

3.4.3. Are All Bias Terms Required? Modeling the prediction
errors εi with a nonzero mean—as discussed in Section
3.3.4—introduces additional and possibly unnecessary
model parameters. Tis approach could lead to overftting,
and it is thus reasonable to compare stochastic model classes
with andwithout these biases. It seems plausible to include at
least the bias of the prediction error associated with the
defection W2 at the mid-span of the beam. However, the
biases of the prediction errors corresponding to the
remaining four observable quantities (i.e., the rotations at

the bearings and the defections at the quarter-span of the
beam) may not be required.

3.4.4. Is a Submodel for the Temperature-Dependent Material
Behavior Required? Te broader question of overftting
concerns the inclusion of a submodel of the environmental
and operational variability (EOV). In this case study, the
question is whether themodel of the temperature-dependent
fexural stifness of the RC beam is required.

3.4.5. Model Class Selection. Among the set of possible
stochastic model classes, the most suitable one is found with
the help of model quality indicators defned in Section 2.5.
While the evidence cE and the model class selection factor
MSF are considered the most appropriate indicators in the
Bayesian context, the AIC∗ and BIC∗ are also evaluated.

A total number of 2n stochastic model classes can be
formulated if n “binary” modeling choices (with two al-
ternatives each) are available. Even for a small number of
such modeling choices, an exhaustive comparison of all
possible stochastic model classes is unfeasible. For this
reason, it is necessary to reduce the number of stochastic
model classes considered in the model building. To this end,
an iterative strategy is applied, in which—starting from the
most complex stochastic model class—two stochastic model
classes are defned for a given modeling choice and com-
pared. Te one indicating a higher model quality is sub-
sequently used as a starting point for identifying the next
best modeling choice, and so on. Tis approach led to a total
of 5 combinations of modeling choices considered in the
current case study, which are summarized in Table 2. Te
most plausible stochastic model class is, henceforth, referred
to as base model class.

Table 1: Prior marginal distributions of the model parameters θ � [θT
p, θT

ε ]T defned in terms of the distribution type, mean, and standard
deviation (SD).

Parameter Distribution Mean SD
Bending stifness at 0°C (EI0) Log-normal 8.8MNm2 0.15× 8.8MNm2

Temperature-sensitivity (α) Normal −0.01MNm2/K 0.25× −0.01MNm2/K
Poisson’s ratio (]c) Truncated normal1 0.2 0.15× 0.2
Stifness reduction due to damage (D) Beta2 0.29 0.16
Extent of cracked region (xD) Truncated normal3 0.68m 0.20× 0.68m
SD of pred. error at W1 (σW1) Log-normal 0.01mm 0.50× 0.01mm
SD of pred. error at W2 (σW2) Log-normal 0.01mm 0.50× 0.01mm
SD of pred. error at W3 (σW3) Log-normal 0.01mm 0.50× 0.01mm
SD of pred. error at N1 (σN1) Log-normal 0.015mrad 0.50× 0.015mrad
SD of pred. error at N2 (σN2) Log-normal 0.015mrad 0.50× 0.015mrad
Correlation length of errors (lρ) Log-normal 1.4m 1.00×1.4m
Mean of pred. error at W1 (bW1) Normal 0.0mm 0.15× 0.001mm
Mean of pred. error at W2 (bW2) Normal 0.1mm 0.50× 0.1mm
Mean of pred. error at W3 (bW3) Normal 0.0mm 0.15× 0.001mm
Mean of pred. error at N1 (bN1) Normal 0.0mrad 0.15× 0.0015mrad
Mean of pred. error at N2 (bN2) Normal 0.0mrad 0.15× 0.0015mrad
1Limited to values between 0.14 and 0.26, as indicated in [4]. 2Defned for values between 0.0 and 1.0, with amode of 0.2. 3Limited to values between 0.0m and
1.36m.
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In Table 3, the model quality indicators introduced in
Section 2.5 for all stochastic model classes are provided. It
confrms that the base model class is themost plausible class,
conditional on the data from the reference phase.

3.5. Uncertainty Quantifcation. Te various uncertainties
described in Section 2.3—the model and observation un-
certainties (which are here jointly represented by a pre-
diction error model), parameter uncertainties, and the
resulting prediction uncertainties—are quantifed for the
base model class conditional on the load test data from the
uncracked beam.

In the following, the information gain resulting from the
model updating is measured in terms of the Kull-
back–Leibler divergence [39] of the posterior from the prior
distribution and expressed in Shannon (Sh)—also known as
bit. Note that an information gain of one Sh reduces the
uncertainty by a factor of 2.

Te prior and posterior marginal distributions of the
parameters with physical meaning—i.e., EI0 and α—are
shown in Figure 9. Tey quantify the initial and updated
parameter uncertainties. A signifcant amount of in-
formation is gained on EI0 (1.5 Sh). In this case, the CV
reduces from 0.15 to 0.01. Only a moderate amount of in-
formation is gained on the parameter α (0.3 Sh).

Te prior and posterior marginal distributions of the
mean of the prediction errors associated with each observed
quantity are shown in Figure 10. 2.7 Sh and 1.2 Sh of in-
formation are gained on the biases bW1 and bW2 of the
prediction errors corresponding to displacements W1 and
W2. 0.93 Sh of information are gained on the bias bN1 of the
prediction errors associated with rotation N1. Notably, the
prior estimate of the ofset of the displacement transducer
W2 at the mid-span of the beam is confrmed to be plausible
and updated from centering around 0.1mm to centering
around 0.09mm.

Te prior and posterior marginal distributions of the
parameters representing the standard deviation and corre-
lation of the prediction errors associated with each observed
quantity are shown in Figure 11. In this case, the un-
certainties are reduced by a moderate amount, i.e., the CV of
these parameters reduces from 0.5 to values ranging between
0.37 and 0.19. Most information is gained on the standard
deviation of the prediction errors corresponding to the
displacementW1 (1.1 Sh). Note that the posterior CV of σW1
and σW2 are similar (0.19), but the information gain is
diferent (1.1 Sh vs. 0.58 Sh) because the posterior marginal
distribution of σW1 difers more from the corresponding
prior marginal distribution compared to σW2.

For each considered beam temperature and load posi-
tion, 3000 samples from the prior and posterior distribution
of the model parameters are propagated through the data
prediction model considered in the base model class. Tese
evaluations result in probabilistic predictions of the ob-
servable quantities, i.e., the observable displacements and
rotations. In Figure 12, the prior and posterior mean and the
90% highest density interval (HDI [51]) of the predictions of
the observable quantities together with the actual observed
data. In addition, the prior and posterior CV is estimated for
each predicted observable quantity conditional on the beam
temperature and load position. Te average of all CVs re-
duces from 0.1 to 0.032 due to the model updating.

3.6. Damage Identifcation. In Section 3.4, the proposed
Bayesian probabilistic framework was implemented to
identify a suitable stochastic model class of the temperature-
dependent behavior of the RC beam based on the data from

Table 2: Overview of the modeling choices associated with each considered stochastic model class.

Stochastic model class Beam theory ]c Biases SM EOV

Base model class Timoshenko 0.2 All ✓
Euler–Bernoulli Euler–Bernoulli 0.2 All ✓
Probabilistic ]c Timoshenko Random var. All ✓
Only one bias Timoshenko 0.2 Only W2 ✓
Excl. EOV Timoshenko 0.2 All ✕

Table 3: Model class selection with model quality indicators of all
considered stochastic model classes.

Probabilistic model class AIC∗ BIC∗ lncE MSF

Base model class 220.1 216.9 206.0 0.515
Euler–Bernoulli 218.5 215.3 205.3 0.274
Probabilistic ]c 219.9 216.5 205.1 0.212
Only one bias 178.0 175.8 164.2 3.5×10−19

Excluding EOV 205.2 202.3 196.9 2.4×10−5

Te model quality indicators are determined based on the data obtained
during the diagnostic load tests of the uncracked beam. AIC∗, BIC∗, cE, and
MSF are calculated according to equations (8), (10), (11), and (14).
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Figure 9: Prior and (empirical) posterior marginal distributions of
the physical parameters EI0 and α considered in the base model
class. Te posterior marginal distributions are conditional on the
data from the uncracked beam.
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the uncracked RC beam or reference phase.Temost plausible
modeling approach—the base model class—is now chosen as
a basis for identifying damage in the monitoring phase.

To this end, an additional FE model is frst constructed
by extending the FE model contained in the base model class
with the parameterized submodel describing damage (see

Section 3.3.3). Subsequently, two competing stochastic
model classes are formulated based on the base model class,
in which—as illustrated in Figure 13— the beam is assumed
to be undamaged in the reference phase and, depending on
the model class, either undamaged or damaged in the
monitoring phase.
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Figure 10: Prior and (empirical) posterior marginal distributions of the means of the prediction errors considered in the base model class.
Te posterior marginal distributions are conditional on the data from the uncracked beam.
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Figure 11: Prior and (empirical) posterior marginal distributions of the parameters representing the standard deviation and correlation of
the prediction errors considered in the base model class. Te posterior marginal distributions are conditional on the data from the
uncracked beam.
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In both stochastic model classes, the FE model of the
undamaged beam is applied to relate the data from the
reference phase to the model parameters. Te same FE
model is also utilized to relate the data from the monitoring
phase to the model parameters in the stochastic model class
representing the undamaged beam. In contrast, the FE
model of the damaged beam is used to link the data from the
monitoring phase with the model parameters in the sto-
chastic model class representing the damaged beam. Within
both stochastic model classes, the data from the reference
and monitoring phase are sequentially applied to update the
probabilistic distributions of the model parameters using the
Bayesian analysis. Based on this analysis, damage detection
and characterization are performed as discussed in
Section 2.6.

3.6.1. Damage Detection. Table 4 summarizes the model
quality indicators for both stochastic model classes repre-
senting the undamaged and damaged state in themonitoring
phase. Te indicators are estimated by applying (a) the data
from the uncracked beam in the reference phase and (b) the
data from the beam in either the uncracked, cracked_1, or
cracked_2 state in the monitoring phase.

Te results show that the damaged model class is sig-
nifcantly more plausible if the beam is damaged in the
monitoring phase, i.e., data from the damaged RC beam are
applied in this phase. Te opposite is the case if the beam is
undamaged in the monitoring phase.

In addition to the MSF, the Bayes factor (BF) is also
computed as described in Section 2.6:

BFuncracked �
MSFdamaged|uncracked

MSFundamaged|uncracked
�

2.0 × 10−5

1 − 2.0 × 10−5
􏼐 􏼑

≈ 2.0 × 10−5
, (24)

BFcracked 1 �
MSFdamaged|cracked 1

MSFundamaged|cracked 1
�
1 − 3.0 × 10−46

􏼐 􏼑

3.0 × 10−46 ≈ 3.3 × 1045, (25)

0.10

0.15

0.20
Po

s. 
1

N1 (mrad)

0.075
0.100
0.125

W1 (mm)

0.20

0.25

0.30
W2 (mm)

0.050
0.075
0.100
0.125

W3 (mm)

−0.20

−0.15

−0.10

N2 (mrad)

0.10

0.15

0.20

Po
s. 

2

0.075
0.100
0.125

0.20

0.25

0.30

0.050
0.075
0.100
0.125

−0.20

−0.15

−0.10

Temperature (°C)

0.10

0.15

0.20

Po
s. 

3

Temperature (°C)

0.075
0.100
0.125

Temperature (°C)

0.20

0.25

0.30

Temperature (°C)

0.050
0.075
0.100
0.125

−25 0 25−25 0 25−25 0 25−25 0 25−25 0 25
Temperature (°C)

−0.20

−0.15

−0.10

prior mean
prior 90% HDI
CV = 0.1 CV = 0.032

post. mean
post. 90% HDI

measured

Figure 12: Prior and (empirical) posterior mean and the 90% highest density interval of the defections and inclinations predicted based on
the base model class. Each column corresponds to an observable quantity, and each row corresponds to a load position. Each subplot also
contains the observed data.
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Figure 13: Illustration of the two competing stochastic model classes formulated for damage identifcation in the monitoring phase. Both
classes are formulated based on the most plausible stochastic model class identifed in the reference phase (see Section 3.4).
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BFcracked 2 �
MSFdamaged|cracked 2

MSFundamaged|cracked 2
�
1 − 1.4 × 10−71

􏼐 􏼑

1.4 × 10−71 ≈ 7.1 × 1070. (26)

BFcracked 1 and BFcracked 2 provide a strong indication of
damage when the RC beam is in the cracked_1 or cracked_2
state in the monitoring phase. BFuncracked confrms that the
beam is undamaged when it is in the uncracked state in the
monitoring phase.

3.6.2. Damage Characterization. With the proposed
method, the location and severity of the damage in the beam
can be characterized based on the posterior marginal dis-
tributions of the model parameters xD and D. As an il-
lustration, consider the case in which data obtained from the
RC beam in the cracked_2 state are applied in themonitoring
phase. For this case, the prior and posterior marginal dis-
tributions of xD and D are shown in Figure 14 together with
the prior and posterior marginal distributions of EI0 and α.

Te cracked region of the RC beam has an average
fexural stifness of 9.1MNm2 × 0.32 � 2.9MNm2 and is
predicted to start approximately 1.0m away from both
supports. Te predicted extent of the cracked region is
consistent with the cracks observed after the three-point-
bending test. Conditional on the considered data, the pa-
rameters D and xF are highly correlated with a correlation
factor ρ � −0.91 as confrmed by their posterior distribution
shown in Figure 15.

4. Numerical Validation

Te case study described in the previous section demon-
strates the capabilities of the proposed framework for model
building and damage identifcation. However, the question
remains how valid the results are since the true values of the
model parameters θ � [θT

p, θT
ε ]T are unknown. To validate

the proposed approach, a numerical study is performed.
First, synthetic data of the observable deformation response
of the undamaged and damaged RC beam are generated
using fxed values of the parameters θ � [θT

p, θT
ε ]T as de-

scribed in Section 4.1. Tese parameter values represent the
true parameter values in this numerical study. Subsequently,
the workfow for damage identifcation is implemented
based on the synthetic data as described in Section 4.2. In

this way, we seek to determine how well the updated
probabilistic distributions of the model parameters agree
with the true parameter values.

4.1. Synthetic Data. Synthetic data of the observable struc-
tural response are generated for fve beam temperatures in
(a) the reference and (b) the monitoring phase, based on the
data prediction model (see also equation (2)) contained in
the base model class. In this process, the FE model of the
undamaged RC beam with parameters EI0 and α and the FE
model of the damaged RC beam parameters EI0, α, D, and
xD are, respectively, embedded in the data prediction model.
Te applied values of the parameters of the FE models and
probabilistic error model are compared to the posterior
marginal distributions of the parameters in Section 4.3.

4.2. Damage Identifcation

4.2.1. Damage Detection. To demonstrate the damage de-
tection capability, two competing stochastic model classes
are defned in the same way as described in Section 3.6 and
illustrated in Figure 13. Subsequently, the synthetic data
generated based on the undamaged beam model are applied
in the reference phase and the data generated based on the
damaged beam model are utilized in the monitoring phase.
Te model quality indicators computed based on the syn-
thetic data are listed in Table 5. Tey clearly indicate that the
damaged model class is more plausible. Te Bayes factor of
BF ≈ 1.9 × 1036 also supports this assessment.

4.2.2. Damage Characterization. After selecting the most
likely model class, the posterior marginal distributions of the
correspondingmodel parameters are compared with the true
parameter values used for data simulation. Te posterior
marginal distributions of the parameters of the physical
models are shown in Figure 16. Tere appears to be a good
agreement between the respective posterior mean values and
the known true values. More importantly, all posterior
marginal distributions contain the true values of the physical
parameters.

Table 4: Model class selection considering the stochastic model classes representing the undamaged and damaged in the monitoring phase.
Te analysis considers data from the undamaged RC beam in the reference state and data obtained from all diferent states of the beam in the
monitoring phase.

Data applied
in the
monitoring phase

Stochastic model
class AIC∗ BIC∗ lncE MSF

Uncracked Undamaged 460.4 457.3 437.5 1.0− (2.0×10−5)
Damaged 455.6 451.9 426.6 2.0×10−5

cracked_1 Undamaged 274.3 271.2 261.5 3.0×10−46

Damaged 376.9 373.2 366.4 1.0− (3.0×10−46)

cracked_2 Undamaged 185.2 182.0 149.1 1.4×10−71

Damaged 321.6 318.0 312.3 1.0− (1.4×10−71)
AIC∗, BIC∗, cE, and MSF are calculated according to equations (8), (10), (11), and (14).
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Figure 14: Prior and (empirical) posterior marginal distributions of the physical parameters of the base model class with additional
submodel for damage: (a) bending stifness EI0 at 0°C, (b) stifness reduction D, (c) temperature-sensitivity α, and (e) symmetrical start and
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4.3. Results of All Parameters. To assess the quality of the
updated distributions of all model parameters, their true
parameter values are compared with the 90% highest density
interval (HDI [51]) of the corresponding posterior marginal
distributions in Table 6.

Te true values of all and one parameter (bW1) lie within
the corresponding the 90% HDI of the posterior distribu-
tion. Tese results indicate that the results of the case study
presented in Section 3 are credible.

5. Discussion

To address the need for damage detection and especially
characterization in structural health monitoring under en-
vironmental and operational variability, we introduce
a model-building framework for damage identifcation. It
enables the inclusion of efects of environmental and op-
erational conditions based on physical principles.Te formal
model-building procedure addresses the problems of
choosing the most appropriate model sophistication as well
as parametrization by leveraging indicators of model quality.
Tese indicators are also used for the detection of damage by
comparing probabilistic model classes with and without
submodels for damage. Tese submodels for damage are
parameterized, thus enabling further characterization of
damage.

Te proposed framework was applied in an experimental
case study. Te challenges of working with real data (which
were even corrupted by a faulty sensor) and fnding the most
appropriate model sophistication and parametrization could
be addressed.Te characterization of the damage in terms of
size and location was congruent with the observed cracks in
the concrete beam. However, the damage introduced in the
specimen was relatively large. In practice, it has to be en-
sured that the potential structural damage defned in terms
of type, location, and severity can be identifed from the
monitoring data.Tus, the design of an SHM system and the
type of monitoring data are governed by the potential
structural damages that need to be identifed.

Te damage characterization relies on the identifcation
of parameters, which in laboratory or real-world structures
cannot be known with certainty. Terefore, a numerical
study was conducted to validate the parameter identifcation.
All known true parameters lay within the 90% highest
density interval of the posterior distributions of the pa-
rameters. Tis can be interpreted as a confrmation of the
damage characterization capability.

To search the space of modeling choices for the most
appropriate probabilistic model class, a heuristic method
was proposed, iteratively comparing two model classes for
each choice, and taking the more probable model class as
the basis for the assessment of the next modeling choice.

Table 5: Model class selection of the damaged and undamaged stochastic model classes based on the synthetic data.

Stochastic model class AIC∗ BIC∗ lncE MSF

Undamaged 388.2 383.6 377.7 5.4×10−37

Damaged 469.1 463.8 461.2 1.0− (5.4×10−37)
AIC∗, BIC∗, cE, and MSF are calculated according to equations (8), (10), (11), and (14).
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Figure 16: Prior and (empirical) posterior marginal distributions of the physical parameters of the damaged model class together with the
true parameter values.
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Tere is no proof that this strategy guarantees fnding the
most appropriate probabilistic model class. Other strat-
egies are possible—an example of a strategy for hierar-
chical model class selection for damage represented by
substructuring is introduced in [52]. Tis shortcoming
can be alleviated by searching the whole space of modeling
choices.

In this contribution, we merged model uncertainty and
observation uncertainty in the prediction error. Tis im-
pedes the full separation of sources of uncertainty. However,
interpreting the contribution of diferent sources of un-
certainty is still possible to some extent by examining the
parameters for the mean and standard deviation of the
prediction errors of the individual measured quantities.

6. Concluding Remarks

Tis contribution introduces a formal procedure for the
inclusion of model updating in damage identifcation. Tis
procedure constitutes an approach to build structural
models for structural health monitoring considering envi-
ronmental variability. Te novelty of this procedure is
twofold: First, structural models are extended by submodels
to explicitly capture the efect of environmental variability
and potential structural damages. Second, a methodological
workfow is proposed to identify the most suitable model to
represent a structural system subject to environmental
variability and to identify damage in this structural system.
Te intended use case is to apply observed data in con-
junction with models and prior engineering knowledge for
the characterization of damage. Tis is a steppingstone for
the performance assessment of monitored structures and
a path to optimizing inspection and maintenance. Quanti-
fying uncertainties in the damage state of structural systems
is paramount for a reliability-based and code-based per-
formance assessment. Te approach can be extended to
capture time-dependent deterioration processes.

Te case study shows the potential of this approach, but
the assessed limitations highlight areas where further re-
search is needed:

(i) Real-world structures–benchmark: Te case study
presented in this contribution rests on laboratory
experiments and simulations with synthetic mon-
itoring data. As with all SHM frameworks, a case
study considering a real-world structure would be
desirable, ideally with damage occurring during the
monitoring phase [8, 11, 14, 29].

(ii) Real-world structures–algorithmic improvements:
For real-world structures, which can be orders of
magnitude larger than the specimen in this case study,
performance is an issue in sampling-based Bayesian
model updating since the evaluation of the likelihood
function for a given sample usually requires the so-
lution of a large fnite-element model. Te paralle-
lization of sampling algorithms [53] or the use of
surrogate models [14] are possible solutions.

(iii) Smaller damages and more complex temperature-
dependent structural behavior: Tis case study
considered a relatively simple structural system with
a relatively simple temperature-dependent structural
behavior and relatively large structural damage. Te
next step in the performance assessment of the
proposed framework should consider more complex
temperature-dependent structural behavior in
combination with smaller damages. Ideally, it would
be applied in a real-world scenario [42].

(iv) Optimization of data collection: Te probabilistic
model-building framework introduced in Section 2
includes the (optional) optimization of the data-
collecting process considering the postulated
probabilistic model classes and the data from the
reference phase. For example, the sensor placement
can be optimized, or measurement campaigns can
be planned accordingly. Te procedures and ap-
plied methods for this step need to be developed
and investigated [25].

(v) Modeling choices concerning model and observa-
tion uncertainties: Te choices of modeling the
model and observation uncertainties infuence the

Table 6: Comparison of true parameter values with the 90% highest density interval (HDI) of their posterior distributions.

Parameter True value Post mean 90% HDI
Bending stifness at 0°C (EI0) 9.00MNm2 9.03MNm2 (8.83; 9.19)MNm2

Temperature-sensitivity (α) −0.009MNm2/K −0.00847MNm2/K (−0.0104; −0.00645)MNm2/K
Stifness reduction due to damage (D) 0.6 0.627 (0.555; 0.683)
Extent of cracked region (xD) 1.03m 0.956m (0.86; 1.11)m
SD of pred. error at W1 (σW1) 0.009mm 0.0105mm (0.00819; 0.013)mm
SD of pred. error at W2 (σW2) 0.008mm 0.00837mm (0.0069; 0.00977)mm
SD of pred. error at W3 (σW3) 0.012mm 0.0117mm (0.00903; 0.0139)mm
SD of pred. error at N1 (σN1) 0.013mrad 0.0123mrad (0.0095; 0.0148)mrad
SD of pred. error at N2 (σN2) 0.016mrad 0.015mrad (0.0125; 0.0174)mrad
Correlation length of errors (lρ) 0.9m 1.1m (0.0765; 1.4)m
Mean of pred. error at W1 (bW1) 0.003mm 0.00128mm (−5.54×10−5; 0.00256)mm
Mean of pred. error at W2 (bW2) 0.112mm 0.110mm (0.107; 0.112)mm
Mean of pred. error at W3 (bW3) −0.002mm −0.0017mm (−0.00297; −0.000782) mm
Mean of pred. error at N1 (bN1) −0.001mrad −0.000414mrad (−0.00179; 0.00201)mrad
Mean of pred. error at N2 (bN2) 0.002mrad 0.00109mrad (−0.000913; 0.0033)mrad

20 Structural Control and Health Monitoring

 schm
, 2024, 1, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1155/2024/4204316 by Fak - B
am

 B
erlin, W

iley O
nline L

ibrary on [29/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



inference [28] and thus the posterior prediction
uncertainty. More work is needed to catalog the
possible modeling approaches and investigate
them. First research concerning diferent temporal
and spatial correlations has already been conducted
[29]. Hierarchical modeling of structural parame-
ters [15, 42] could also be considered.

(vi) Improved model class selection: In our contribu-
tion, model class selection is purely based on the
observed data and the model classes themselves.
Considering other factors such as maintenance
decisions based on forecasted data and predictions
from updated model classes or the computational
expense of evaluating the models [54] could im-
prove the model selection. However, adopting such
strategies may require the use of alternative ap-
proaches, such as decision-theoretic methods [54].

(vii) Further efects of environmental and operational
variability: Temperature efects are a major infuence
on the environmental variability in structural systems
[6, 10]. However, there are additional infuences that
may have to be considered, such as variable support
conditions, and varying mass, wind, and trafc loads
[8, 9, 11]. Further studies can include submodels of
these efects. Tis also includes heteroscedasticity of
the measured data induced by environmental efects,
e.g., due to variable typhoon conditions [11].
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