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Abstract. The design of bridges often overlooks the vertical component of 

earthquakes or considers it of secondary importance, despite compelling evidence 

indicating specific structural damage caused by primary earthquake waves. 

Conversely, during the operational phase, the combined influence of ground motion 

and moving loads from vehicles can significantly impact the structural health 

monitoring (SHM) of bridges. This study aims to evaluate the simultaneous effect of 

vertical earthquake vibrations and moving vehicle loads on simply supported bridges. 

The research employs a practical methodology based on the eigenfunction expansion 

method to analyze change of deflection due to the effect of these concurrent forces 

under seven different earthquake records. It is shown that within a realistic range of 

vehicle mass and velocity, the average of changing the maximum deflection at the 

mid-span of the main beam (denoted as 𝑀𝑛) reaches up to 163% under various 

scenarios. Subsequently, the seismic parameters influencing this phenomenon are 

identified through a statistical analysis of set of 100 different earthquake records with 

unique features. A linear regression equation is presented to predict the 𝑀𝑛 based on 

the earthquake specific properties. Additionally, to control the vertical vibration of 

bridge systems, a novel vibration suppression system utilizing steel pipe dampers is 

introduced, and its reliability is examined across a broad spectrum of bridge flexural 

rigidity. The results indicate that the system's efficiency depends on 𝑀𝑛 and the soil 

type of the bridge construction, enabling a reduction in structural sections (up to 27%) 

while achieving the same maximum target deflection in the initial state. This 

efficiency leads to a more economical design solution, emphasizing the potential 

benefits of the proposed system for practical application.  

 

Keywords: Bridge structures, Vertical earthquakes, Moving vehicles, Suppressing 

vibrations, Health monitoring 
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Introduction  

Modelling bridge structures using various beam theories such as Euler-Bernoulli Beam 

Theory (EBT), Timoshenko Beam Theory (TBT), Higher Order Beam Theory (HOBT), or 

Finite Element Method (FEM) is integral to the analysis of bridge structures [1,2,3,4]. These 

theories account for external loading in both ultimate and operational phases, providing 

critical insights into the behaviour of bridges under different conditions. However, recent 

studies have highlighted the significance of considering the vertical component of 

earthquakes, which has often been overlooked or given secondary attention in design 

processes [5,6]. Reliability analysis plays a crucial role in ensuring the structural integrity of 

bridges. Methods such as First and Second Order of Reliability Methods (FORM and SORM) 

have been instrumental in assessing the reliability of bridge designs [4,7]. Additionally, 

investigations into bridge base excitation, structural frequency content, shape functions, and 

deflections have been prominent in the past two decades, contributing to a deeper 

understanding of bridge behaviour [2,4,5,8]. 

This study focuses on employing Euler-Bernoulli Beam Theory (EBT) and shape 

functions to model continuous parameter structures under external dynamic loading from 

moving vehicles and vertical ground motion during the operational phase of bridge structures. 

Furthermore, the Eigenfunctions Expansion Method (EEM) is utilized to determine the 

maximum deflection of the bridge main beams. Comparing maximum deflections between 

two scenarios, collective loading of earthquakes and moving masses versus single loading 

without earthquakes, highlights the simultaneous effect denoted as 𝑀𝑛. Statistical analysis, 

encompassing various scenarios, has yielded a regression mathematical relationship to 

predict and underscore the importance of considering vertical components in bridge design 

processes. Moreover, this study proposes the implementation of a novel passive steel pipe 

damper (SPD) for the main beams to suppress vibrations. It is demonstrated that section 

dimensions can be reduced through SPDs usage, with their efficiency directly correlated to 

construction soil type (𝑉𝑠30 (𝑚/𝑠)) and the 𝑀𝑛 factor. 

1. Numerical Modelling   

1.1 Main Beam of Bridge Structure  

Considering a uniform undamped Euler-Bernoulli simply supported beam with the length of 

𝐿 = 60 𝑚, mass per unit length of 𝜌𝐴 = 2956 𝑘𝑔/𝑚 and flexural rigidity of 𝐸𝐼 = 3.467 ∗
 1010 𝑁 𝑚2 [6] leads the equation 1 as follows [8]:  

 

𝜌𝐴 
𝜕2𝐷(𝑥,𝑡)

𝜕𝑡2 + 𝐸𝐼
𝜕4𝐷(𝑥,𝑡)

𝜕𝑥4 = 𝑓(𝑥, 𝑡)                                                                                                 (1) 

 

Where 𝐷(𝑥, 𝑡) indicates the vertical displacement function along the beam length at 

time 𝑡 domain. 

1.2 External Dynamic Loading  

The function 𝑓(𝑥, 𝑡) in equation (1) represents the external dynamic loading, which is 

considered in two different states: i) The effect of 15 traveling vehicles with 𝑚 = 5000 𝑘𝑔  

and 𝑣 = 30 𝑚/𝑠2 which cross at uniform intervals of 𝑑 = 𝐿/2 [5] is denoted as 𝑓(𝑥, 𝑡)𝑖. 

Equation (2) details the single loading considering this fact that the vehicles are not separated 

from the beam during vibration. 
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𝑓(𝑥, 𝑡)𝑖 =  ∑ 𝑚 [ 𝑔 − {
𝜕2𝐷(𝑥,𝑡)

𝜕𝑡2 + 2𝑣
𝜕2𝐷(𝑥,𝑡)

𝜕𝑥𝜕𝑡
+ 𝑣2 𝜕2𝐷(𝑥,𝑡)

𝜕𝑥2 }
𝑥=𝑣(𝑡−𝑡𝑘)

]15
𝑘=1 . (𝛿 [ 𝑥 − 𝑣(𝑡 − 𝑡𝑘)]. 𝛥𝐻(𝑡))               (2) 

 

Where 𝑡𝑘 is the time of arrival of the 𝑘th vehicle and 𝛿 denotes the Dirac delta 

function. The action of 𝑘th mass is considered by the unit step function 𝛥𝐻(𝑡) = 𝐻(𝑡 − 𝑡𝑘) −

 𝐻 (𝑡 − 𝑡𝑘 −
𝐿

𝑣
), when the load enters and departs from the beam, correspondingly. ii) The 

second scenario occurs by applying the vertical ground motion to the bridge structure while 

the moving masses cross simultaneously over the bridge length during the operation phase. 

The bridge response in this scenario termed as simultaneous effect.     

 
𝑓(𝑥, 𝑡)𝑖𝑖 =  𝑓(𝑥, 𝑡)𝑖 −  {𝜌𝐴 + ∑ 𝑚 . 𝛿 [ 𝑥 − 𝑣(𝑡 − 𝑡𝑘)]. 𝛥𝐻(𝑡)𝑁

𝑘=1 }. �̈�𝑔(𝑡)                                                                         (3) 

 

Where �̈�𝑔(𝑡) is the earthquake acceleration at time 𝑡. To investigate the effect of 

different frequency content of earthquakes, the vertical component of seven different near-

field earthquakes based on table 1 is chosen.  

Table 1. Earthquake specifications [5].  

Number 1 2 3 4 5 6 7 

Event 
L'Aquila, 

Italy 

Imperial 

Valley-02 

Kobe, 

Japan 

Mammoth 

Lakes-01 

Loma 

Prieta 

Northridge-

01 

Tabas, 

Iran 

Year 2009 1940 1995 1980 1989 1994 1978 

Station 

GRAN 

SASSO 

(Assergi) 

El Centro 

Array #9 
KJMA 

Convict 

Creek 
Corralitos 

Arleta - 

Nordhoff 

Fire Sta 

Tabas 

Magnitude 6.3 6.95 6.9 6.06 6.93 6.69 7.35 

Soil type  C D D C C D B 

Rjb (km) 6.35 6.09 0.94 1.1 0.16 3.3 1.79 

Vs30 (m/s) 488 213 312 382 462 298 767 

PGA (H) 0.150g 0.281g 0.834 g 0.442g 0.645g 0.345g 0.862g 

PGA (V) 0.110g 0.178g 0.339g 0.387g 0.458g 0.552g 0.641g 

 

1.3 Problem Solving  

Employing the Characteristic Orthogonal Polynomials (COPs) [1] as well as using the direct 

method for simply supported beams [5], resulted in the computation of the orthogonal shape 

function for the 𝑖th beam vibration mode (𝜑𝑖(𝑥))). On the other hand, the eigenfunction 

expansion method (EEM) in the form of 𝐷(𝑥, 𝑡) =  ∑ 𝜑𝑖(𝑥)𝑎𝑖(𝑡)𝑝
𝑖=1 , is used to solve the 

differential equation. Where p is the total required number of shape functions and 𝑎𝑖(𝑡) is the 

corresponding amplitude for the 𝑖th time-dependent amplitude. The final matrix equation (4) 

is extracted by applying the EEM to the equation (1) along with equation (2) or (3), depending 

on single or the collective scenario, and multiplying both sides by  𝜑𝑗(𝑥), integrating over 

the beam length (𝐿), and applying the orthogonal perpendicular principle. Numerical methods 

can be employed to solve the matrix equation in the 𝑡 domain [3,5]. 

 

 

𝑴(𝒕)
𝑑2𝒂(𝒕)

𝑑𝑡2 + 𝑪(𝒕)
𝑑𝒂(𝒕)

𝑑𝑡
+ 𝑲(𝒕)𝒂(𝒕) = 𝑭(𝒕)                                                                                                                (4) 
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2. Simultaneous Effect  

2.1 Changing the Maximum Deflection (𝑀𝑛) 

To study the simultaneous effect, we compute the maximum deflection at mid-span in single 

and collective type of loading and investigate the variations by the 𝑀𝑛 factor. 

 

𝑀𝑛 =  
𝐷(

𝐿

2
,𝑡)𝑖𝑖−𝐷(

𝐿

2
,𝑡)𝑖

𝐷(
𝐿

2
,𝑡)𝑖

∗ 100                                                                                                                                          (5) 

 

The results in Table 2 imply a 43.4% increase in the average of simultaneous effects 

under the seven different earthquakes. The 𝑀𝑛 in Kobe and Tabas are more prominent, 

showcasing up to twice the values.  

Table 2. Impact of vertical earthquake excitation on maximum deflections at beam’s mid-span [5].  

 

Number 

 

Earthquake Event 

Maximum mid-span beam 

deflection (m) 
Impact of vertical earthquake 

excitation on mid-span 

deflection nM (%) Moving mass 
Moving mass + 

Earthquake 

1 L'Aquila, Italy 0.133 0.138 3.8 

2 Imperial Valley-02 0.133 0.141 6.0 

3 Kobe, Japan 0.133 0.270 103 

4 Mammoth Lakes-01 0.133 0.177 33.1 

5 Loma Prieta 0.133 0.165 24.1 

6 Northridge-01 0.133 0.180 35.3 

7 Tabas, Iran 0.133 0.264 98.5 

Figure 1 shows the mid-span beam deflection time-history response of the case study 

bridge due to moving masses (dash line) and the simultaneous effects (solid line). The seismic 

loads amplify the effects of moving vehicles in most cases, resulting in deflections up to 

twice.   

 

 

Fig. 1. Time-history Deflection of the Beam due to External Excitations. a) L'Aquila, b) Imperial Valley, c) 

Kobe, d) Mammoth Lakes, e) Loma Prieta, f) Northridge, g) Tabas [5].  
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2.2 Parametric Study of Moving Masses 

To investigate the effect of moving masses variation on the bridge responses under the 

simultaneous effect, we study velocity(𝑣), mass(𝑚) and determined distance(𝑑) of moving 

masses through non-dimensionalization by the factors of 𝑀𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝜌𝐴 ∗ 𝐿 and 

𝑉𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
2∗𝐿

𝑇1
, where 𝑇1 is the period of the first mode of the main beam [1]. Hence, based 

on the bridge specifications [6], 𝑀𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 and 𝑉𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 are equal to 177360 𝑘𝑔 and 179 

𝑚/𝑠2, respectively. The determined distance between two moving vehicles is calculated at 6 

meters per speed per 15 𝑘𝑚/ℎ, following typical driving regulations. Therefore, the distance 

between moving masses can be calculated as  𝑑 = 1.44 ∗ 𝑣. The common non-dimensional 

interval on actual examples for 𝑀/𝑀𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 and 𝑣/𝑣𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 is between 0.05 and 0.35 

[1,8]. Table 2 shows the average and maximum results of  𝑀𝑛 in this interval under different 

earthquake scenarios. The average results increase up to 163% in the Tabas, while they show 

noticeable values also under the other earthquakes. These findings imply the importance of 

consideration vertical components of earthquakes in the bridge design process under different 

types of moving masses loading. 

Table 3. Impact of vertical earthquake excitation on maximum deflections at beam’s mid-span.  

Number Earthquake events Average of 
nM (%) Maximum of 

nM (%) 

1 L'Aquila, Italy 13.04 104.59 

2 Imperial Valley-02 11.13 80.87 

3 Kobe, Japan 147.62 747.69 

4 Mammoth Lakes-01 71.54 401.24 

5 Loma Prieta 80.55 342.80 

6 Northridge-01 28.49 219.50 

7 Tabas, Iran 163 513.80 

2.3 Parametric Study of Earthquake 

Based on previous findings, the response of 𝑀𝑛 is significantly influenced by the phenomena 

of earthquakes and their frequency content. To investigate the effect of different earthquakes 

on the 𝑀𝑛 response, a statistical study on the bridge response under applying 100 different 

near/far-field (𝑅𝑗𝑏<10 or 𝑅𝑗𝑏>10) earthquakes is conducted. Moving masses are assumed 

with the initial modelling (𝑚 = 5000 𝑘𝑔, 𝑣 = 30 𝑚/𝑠2 and 𝑑 = 𝐿/2). Table 4 shows the 

range of different parameters for 100 selected earthquakes.    

Table 4. Range of 100 selected earthquake parameters.  

Number Parameter Minimum Maximum  

1 Magnitude (𝑀𝑤) 5 7.9 

3 Soil type (𝑉𝑠30) < 175 > 750 

4 (𝑃𝐺𝐴𝐻) 0.009 g 1.494 g 

5 (𝑃𝐺𝐴𝑉) 0.004 g 2.281 g 

6 (𝑃𝐺𝐴𝐻/𝑃𝐺𝐴𝑣) 0.509 5.645 

 

Figure 2 displays the histogram of 𝑀𝑛 responses for 100 selected earthquakes on the 

main bridge beam origin. These responses, with a minimal disparity between the standard 

deviation (STDEV) of 23.6 and the average (AVG) of 18.1, are suitable for statistical 

analysis. The bar chart shows an asymmetric right-skewed normal distribution, concentrated 

within the 0 to 40% range. The findings indicate that simultaneous effects are prevalent, with 
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the majority exhibiting a positive 𝑀𝑛 response. The Linear Least Squares Method (LLSM) 

predicts simultaneous effect response statistically, with 𝑃𝐺𝐴𝑉 and Earthquake Magnitude 

(𝑀𝑤) being the most influential contributors based on their "P-value" and "Standardized 

Coefficients Beta." Equation 6 presents a linear regression model for extracting structural 

response, exhibiting a significant correlation (Multiple R = 0.652). while the model explains 

42% of the variances in the 𝑀𝑛 response (Adjusted R Square), indicating a substantial 

mathematical relationship for the responses under the earthquake phenomena. 

 
𝑀𝑛 = −27.353 + 5.566 𝑀𝑎𝑔 + 43.685 𝑃𝐺𝐴𝑉                                                                                                   (6) 

 
Fig. 2. Histogram of 𝑀𝑛 bridges response under 100 selected earthquakes 

3. Vibration Suppression 

3.1 Steel Pipe Dampers (SPDs) 

Steel pipe dampers have been shown to be effective in engineering design due to their ability 

to exhibit stable hysteresis behaviour and absorb significant energy through metallic yielding 

[9]. Therefore, they have been chosen for this study to mitigate the impact of simultaneous 

effect. Figure 3 shows the conceptual representation of steel pipe dampers integrated along 

the primary bridge beam.  

 
Fig. 3. Schematic view of the steel pipe dampers along the main beam [5]. 
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The box comprises multiple pipes with an external diameter of 𝑑𝑝𝑖𝑝𝑒 attached to the 

mid-span of the main bridge beam, where the maximum deflection occurs. It is assumed that 

the rigid box responds independently of the main beam, thus not affecting the beam's 

deformation under external forces. The damping factor of each pipe damper (𝐶𝑝𝑖𝑝𝑒) is 

calculated using 𝐶𝑝𝑖𝑝𝑒 = 2𝜇(𝑀𝑝𝑖𝑝𝑒 ⋅ 𝐾𝑝𝑖𝑝𝑒)0.5, where 𝑀𝑝𝑖𝑝𝑒 is the mass of each pipe in 

kilograms. The external diameter of the pipe dampers, 𝑑𝑝𝑖𝑝𝑒, is set to 119 𝑚𝑚, with a 

damping ratio (𝜇) of 0.4 [9]. The stiffness factor of the pipe, 𝐾𝑝𝑖𝑝𝑒, in elastic and plastic 

deformation zones is given as 0.0034 𝑙 𝑘𝑁/𝑚𝑚 and 0.00017 𝑙 𝑘𝑁/𝑚𝑚, respectively, where 

𝑙 is the length of each pipe in millimetres (mm) [9]. The estimated yield strength (𝐹𝑦) of the 

pipe dampers is 0.0088𝑙 𝑘𝑁, resulting in a deformation of 2.6 mm [5]. To connect the pipes 

to the main beam, an IPE270 section is used, and the length of the pipe box 𝐿′ is chosen to 

be equal to the sitting length of the beam, which is 3 m for a beam length of 60 m. Therefore, 

for this case study, the maximum number of pipe dampers is set to 16, which should be a 

multiple of four as shown in Figure 3. The SPD system (rigid box) response is simulated 

using a spring-dashpot model. During loading phases, the pipe dampers may enter the plastic 

phase, while the beam remains in the elastic regime under design load conditions. The 

stiffness and damping properties of the steel pipes directly affect the vibration of the beam. 

Therefore, the matrix equation (4) is written as follows: 

 
𝒂(𝒕) = [𝒂𝒊(𝒕)]𝒑×𝟏,   

𝑴(𝒕) = [𝜌𝐴𝛿𝑖𝑗 + ∑ 𝑚𝜙𝑖[𝑣(𝑡 − 𝑡𝑘)]. 𝜙𝑗[𝑣(𝑡 − 𝑡𝑘)]. 𝛥𝐻(𝑡)15
𝑘=1 ]

𝑝×𝑝
,  

𝑪(𝒕) = [𝐶𝑝𝑖𝑝𝑒
𝑒 ∫ 𝜙𝑖(𝑥)𝜙𝑗(𝑥)𝑑𝑥.

𝑥𝑞

𝑥1
𝛥𝐻(𝑥) + ∑ 2𝑚𝑣𝜙𝑖,𝑥[𝑣(𝑡 − 𝑡𝑘)]. 𝜙𝑗[𝑣(𝑡 − 𝑡𝑘)]. 𝛥𝐻(𝑡)15

𝑘=1 ]
𝑝×𝑝

,  

𝑲(𝒕) = [∑ {∑ ∫ 𝐸𝐼. 𝜙𝑖,𝑥𝑥𝑥𝑥𝜙𝑗(𝑥)𝑑𝑥
𝐿

0

𝑝
𝑗=1 }

𝑝
𝑖=1 +𝐾𝑝𝑖𝑝𝑒

𝑒 ∫ 𝜙𝑖(𝑥)𝜙𝑗(𝑥)𝑑𝑥.
𝑥𝑞

𝑥1
𝛥𝐻(𝑥)+ ∑ 𝑚𝑣2𝜙𝑖,𝑥𝑥[𝑣(𝑡 −15

𝑘=1

𝑡𝑘)]. 𝜙𝑗[𝑣(𝑡 − 𝑡𝑘)]. 𝛥𝐻(𝑡)]
𝑝×𝑝

,   

𝑭(𝒕) = [[𝑔 −
𝑑2𝑈𝑔(𝑡)

𝑑𝑡2 ] ∑ 𝑚𝜙𝑗[𝑣(𝑡 − 𝑡𝑘)]. 𝛥𝐻(𝑡) − 𝜌𝐴15
𝑘=1

𝑑2𝑈𝑔(𝑡)

𝑑𝑡2 ∫ 𝜙𝑗(𝑥)𝑑𝑥
𝐿

0
]

𝑝×1

.                                 (7) 

 

In this setup, the equivalent stiffness (𝐾𝑝𝑖𝑝𝑒
𝑒 ) and damping (𝐶𝑝𝑖𝑝𝑒

𝑒 ) factors of the steel 

pipe system are determined by 𝐾𝑝𝑖𝑝𝑒
𝑒 = (𝑛𝑝𝑖𝑝𝑒 . 𝐾𝑝𝑖𝑝𝑒)/(𝐿′ − ℎ𝐼𝑃𝐸) and 𝐶𝑝𝑖𝑝𝑒

𝑒 =

(𝑛𝑝𝑖𝑝𝑒. 𝐶𝑝𝑖𝑝𝑒)/(𝐿′ − ℎ𝐼𝑃𝐸), respectively, where 𝑛𝑝𝑖𝑝𝑒 is the total number of SPDs. The 

stiffness factor of each pipe (𝐾𝑝𝑖𝑝𝑒) and accordingly its damping factor (𝐶𝑝𝑖𝑝𝑒) varies in 

proportion to the pipe selected and its elastic and plastic deformation zones. Besides, The 

effect of pipes is considered by the unit step function of 𝛥𝐻(𝑥) = 𝐻(𝑥 − 𝑥1) −  𝐻(𝑥 − 𝑥𝑞), 

where 𝑥1 and 𝑥𝑞 are the distance between centre of the first and last pipe-couple from the 

assumed origin, respectively (see Figure 3).  

3.2 Efficiency of Steel Pipe Dampers (SPDs) in Vibration Suppression 

In Figure 4, the graphs illustrate how the maximum mid-span deflection of the main bridge 

beam varies with respect to its initial flexural rigidity factor (𝐾𝑛 = [0.5, 0.6, . . . , 1] ∗ 𝐸𝐼) 

under different seismic scenarios. This comparison is made both for a single-span bridge 

without dampers (𝑛𝑝𝑖𝑝𝑒 = 0) and for the same bridge equipped with steel pipe dampers 

(𝑛𝑝𝑖𝑝𝑒 = 4, 8, 12, 16). Interestingly, the maximum deflection of bridge systems with steel 

pipe dampers remains largely unaffected by the initial flexural rigidity factor of the bridge. 

Remarkably, employing 16 pipe dampers, covering only 5% of the total beam length, results 

in a significant reduction up to 75% in the maximum deflection of the bridge, especially 

noticeable in systems with low initial flexural rigidity factors. The baseline in Figure 4 

represents the maximum deflection at the mid-span of the initial beam without pipe dampers 
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(i.e., 𝐾𝑛 = 1 and 𝑛𝑝𝑖𝑝𝑒 = 0). The aim is to determine the flexural rigidity factor (𝐾𝑛) at which 

the maximum deflection of the beam with pipe dampers matches with the baseline level. This 

reduction in 𝐾𝑛 primarily arises from reducing the size of beam sections, assuming the 

slenderness of the base beam remains constant.  

 

 
Fig. 4. Effect of Initial Flexural Rigidity Factor 𝐾𝑛 

on the variations of the beam deflection with and without 

steel pipe dampers a) L'Aquila, b) Imperial Valley, c) Kobe, d) Mammoth Lakes, e) Loma Prieta,                    

f) Northridge, g) Tabas [5]. 

 

For easier comparison, Table 5 lists the necessary 𝐾𝑛 Factor required for bridge 

systems equipped with 16 pipe dampers to achieve the same maximum mid-span deflection 

as the baseline over seven seismic records. It should be noted that the use of 16 pipe dampers 

allows for a reduction in the flexural rigidity of the main beams by up to 27%, with an average 

reduction of around 16%. According to Table 5, the efficiency of pipe dampers depends on 
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two main parameters: the factor of 𝑉𝑠30 (𝑚/𝑠) which is related to the type of construction 

soil, and the simultaneous effect (𝑀𝑛), which has been fully investigated. In general, the 

efficiency of the SPDs increases with the influence of the vertical seismic excitation with the 

high value of 𝑀𝑛 as well as in rocky soils associated with high 𝑉𝑠30 (𝑚/𝑠) factor.   

 
Table 5. Effects of using Steel Pipe Dampers and Different Initial Flexural Rigidity 𝐾𝑛 on the Maximum 

Bridge Deflection under Seven Selected Earthquakes [5]. 

Number Event Vs30 (m/s) Mn (%) 𝐾𝑛 𝑛𝑝𝑖𝑝𝑒 Maximum mid-span deflection (m) 

1 L'Aquila, Italy 488 3.8 
1 0 

0.138 
0.86 16 

2 Imperial Valley 213 6.0 
1 0 

0.141 
0.95 16 

3 Kobe, Japan 312 103 
1 0 

0.270 
0.83 16 

4 Mammoth Lakes 382 33.1 
1 0 

0.177 
0.83 16 

5 Loma Prieta 462 24.1 
1 0 

0.165 
0.9 16 

6 Northridge 298 35.3 
1 0 

0.180 
0.8 16 

7 Tabas, Iran 766 98.5 
1 0 

0.264 
0.73 16 

4. Conclusion  

This study underscores the pivotal role of vertical earthquake components in the structural 

behaviour of bridges. Through numerical modelling, we observed a significant increase in 

maximum deflections under seismic excitation during bridge operation, as indicated by the 

𝑀𝑛 factor. Across seven near-field earthquake scenarios, simultaneous effects ranged from a 

3.8% to a 103% increase, with notable peaks in Kobe and Tabas, reaching up to a 103% and 

a 98.5% increase, respectively. On the other hand, the average increase of simultaneous 

effects under all seven earthquakes shows a 73.6% rise in the realistic ratios of moving masses 

velocity and their masses ([0.05-0.35]), alongside a maximum value showcasing a 513.8% 

increase in this zone during the Tabas earthquake. 

Additionally, statistical analysis was conducted to discern the variability of 

earthquake effects on bridge structures. Utilizing data from 100 selected earthquakes, 

regression analysis identified 𝑃𝐺𝐴𝑉 and Earthquake Magnitude (𝑀𝑤) as prominent 

influencers. This analysis facilitated the development of a linear regression model (Equation 

6) for predicting structural responses under seismic conditions. 

Furthermore, a novel vibration suppression method using steel pipe dampers (SPDs) 

was introduced, showcasing significant reductions in maximum deflections. Employing 16 

pipe dampers at the mid-span of main beams resulted in noteworthy section reductions, 

underscoring their efficacy in mitigating vibrations. The efficiency of SPDs varied based on 

soil type (𝑉𝑠30 (𝑚/𝑠)) and simultaneous effects (𝑀𝑛), with notable enhancements observed 

in regions with high 𝑉𝑠30 (𝑚/𝑠) and 𝑀𝑛 values. In summary, our findings offer valuable 

insights for reassessing and designing bridge structures under dynamic loading conditions for 

structural health monitoring (SHM). 
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