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Abstract. Non-destructive Testing (NDT) provides valuable data about structural 

elements, supporting the assessment of existing infrastructures without incurring 

additional structural damage from inspections. Simultaneously, the uncertainty in 

measurement, which quantifies the quality of measurement results, plays a crucial role 

in decisions aimed at, e.g., optimizing maintenance strategies, rehabilitation works 

and Structural Health Monitoring (SHM) implementations. The Guide to the 

Expression of Uncertainty in Measurement (GUM) framework has already been 

considered for non-destructive concrete testing. Regarding that, extensive 

measurements with sophisticated scopes need to be conducted by experts as an 

obligatory process.  

This study illustrates how NDT results describing the inner structure of a 

concrete element can effectively support the reassessment of bridges in operation. To 

achieve this, the study considers the various measurable positions of the resisting 

longitudinal tendons of a bridge structure to investigate the displacement change under 

dynamic service loads.  

Furthermore, this study aims to simplify and optimize existing NDT data analysis 

procedures by employing regression analysis, enabling the detection of structural 

features. This regression analysis yields a modifier for determining the correct depth 

of an object within the structural element. The method is validated through laboratory 

experiments, including the use of an ultrasonic measurement system. As a result, it 

provides unbiased and accurately measured results, while ensuring that the 

measurement data can remain uncorrelated. Major advantages include efficient 

computation, a wider scope, and avoiding redundant information about the measuring 

process.  

The findings demonstrate that employing the proposed NDT analysis method, 

with its enhanced practicability, can significantly augment the efficiency of NDT data-

supported structural reassessments across various scenarios. 

 

Keywords: Existing structures, Non-destructive testing, Bridge reassessment, 

Statistical analysis, Practicality measurement. 
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Introduction  

The study of critical transportation infrastructure, namely bridge, has captured researchers' 

attention, particularly in the last two decades [1,2,3,4,5]. Various theoretical approaches, such 

as the Moving Mass/Load/Oscillator theories, have been employed to investigate dynamic 

loading on bridge structures when subjected to moving vehicles [6,7]. Moreover, researchers 

have explored methods to compute deflections, shape functions, and natural frequencies of 

bridges [8,9]. The combination of earthquake phenomena and moving vehicles has also been 

analysed to understand bridge deformations [10]. Additionally, bridge reliability assessment 

has been studied using methods like the First and Second Order Reliability Method (FORM 

and SORM), among others [11,12,13]. Assessing bridges directly depends on their structural 

characteristics, such as bridge type, material properties, section properties, flexural rigidity, 

and slenderness. Creating accurate models of bridges through various approaches like beam 

theories (EBT, TBT, HOBT) [1,8,9,10] or finite element methods (FEM) [11,12] is crucial 

for studying and understanding bridge structures.  

However, more realistic modelling of existing structures can be achieved by knowing 

the specific positioning of resistance elements within the structural elements. The 

measurement process plays a pivotal role in constructing appropriate models, especially in 

cases with construction uncertainties or unknown historical structures. Non-destructive 

testing methods present a significant advantage in this regard, and they do also minimize 

additional damage or disruption caused by bridge inspections [12]. The evaluation and 

reassessment of existing bridge structures based on NDT data have been demonstrated [12], 

and the importance of considering uncertainty in the measurement process is emphasized 

[14]. 

This study focuses on evaluating bridge performance by considering different tendon 

positions within main beams. Numerical modeling employs Euler-Bernoulli beam theory and 

the Eigenfunction Expansion Method (EEM) to analyze maximum deflection at mid-span, a 

key indicator for Displacement Based Control (DBC). Investigation of an existing bridge 

structure shows that there is a performance variation for different tendon duct positions along 

the beam length during operational phases under the effect of traveling vehicles. 

Additionally, regression analysis is utilized to simplify NDT data analysis procedures, 

enabling the detection of structural features. This approach introduces a practical Ultrasonic 

NDT method for on-site measurements by engineers, providing a quick assessment of 

resistance element positioning within structural elements. A statistical study results in a 

regression function dependent on the position of the measuring device (PMD) within the 

structural elements, forming an integral component of a general mathematical constant 

velocity relation.  

1. Displacement Based Control (DBC)  

1.1 Formulation  

Consider a simply supported bridge which is a uniform undamped single-span Euler-

Bernoulli beam. It has a length of 𝐿, flexural rigidity 𝐸𝐼(𝑥), and mass per unit length 𝜌𝐴. As 

shown in the following equation, 𝐷(𝑥, 𝑡) describes the function of vertical displacement 

along the beam length at time 𝑡 [10].   

 

𝜌𝐴 
𝜕2𝐷(𝑥,𝑡)

𝜕𝑡2 + 𝐸𝐼(𝑥)
𝜕4𝐷(𝑥,𝑡)

𝜕𝑥4 = 𝑓(𝑥, 𝑡)                                                                                            (1) 

The dynamic excitation occurs during its operation: a group of traveling vehicles, 

each with a constant velocity 𝑣 and a mass of  𝑚𝑘, crosses the beam at uniformly determined 
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intervals of 𝑑. This dynamic situation is illustrated in Figure 1.  

 

Fig. 1. Schematic view of situation [10].  

To model the external dynamic loading, we employ the moving masses theory, 

expressed as: 

   

𝑓(𝑥, 𝑡) =  ∑ 𝑚𝑘  [ 𝑔 −
𝑑2𝐷0(𝑡)

𝑑𝑡2  ]𝑁
𝑘=1 . (𝛿 [ 𝑥 − 𝑣(𝑡 − 𝑡𝑘)]. 𝛥𝐻(𝑡))                                                          (2) 

Here, 𝑁 represents the total number of vehicles, and 𝐷0(𝑡) signifies the vertical 

displacement of the moving masses. The vehicles remain in contact with the beam throughout 

vibration, meaning 𝐷0(𝑡) = 𝐷(𝑥 = 𝑣(𝑡 − 𝑡𝑘), 𝑡), where 𝑡𝑘 denotes the time of arrival of the 

𝑘th vehicle. 𝛥𝐻(𝑡) = 𝐻(𝑡 − 𝑡𝑘) −  𝐻 (𝑡 − 𝑡𝑘 −
𝐿

𝑣
) acts as a unit step function to describe the 

action of the 𝑘th mass as it enters and departs from the beam, respectively, and 𝛿 represents 

the Dirac delta function. By applying the Eigenfunction Expansion Method (EEM), where 

𝐷(𝑥, 𝑡) =  ∑ 𝜑𝑖(𝑥)𝑎𝑖(𝑡)𝑝
𝑖=1 , and considering Equation (1), we derive the matrix equation 

below. This involves multiplying both sides by 𝜑𝑗(𝑥), integrating over the beam length (𝐿), 

applying the orthogonal perpendicular principle, and calculating the orthogonal shape 

functions 𝜑𝑖(𝑥) through characteristic orthogonal polynomials (COPs) [8] or using the direct 

method for simply supported beams [10]: 

 

𝑴(𝒕)
𝑑2𝑎(𝑡)

𝑑𝑡2 + 𝑪(𝒕)
𝑑𝑎(𝑡)

𝑑𝑡
+ 𝑲(𝒕)𝒂(𝒕) = 𝑭(𝒕)                                                                                   (3) 

Where:    

                                                                      
𝒂(𝒕) = [𝒂𝒊(𝒕)]𝒑×𝟏   

𝑴(𝒕) = [𝝆𝑨𝜹𝒊𝒋 + ∑ 𝑚𝑘𝜙𝑖[𝑣(𝑡 − 𝑡𝑘)]. 𝜙𝑗[𝑣(𝑡 − 𝑡𝑘)]. 𝛥𝐻(𝑡)𝑁
𝑘=1 ]

𝑝×𝑝
  

𝑪(𝒕) = [∑ 2𝑚𝑘𝑣𝜙𝑖,𝑥[𝑣(𝑡 − 𝑡𝑘)]. 𝜙𝑗[𝑣(𝑡 − 𝑡𝑘)]. 𝛥𝐻(𝑡)𝑁
𝑘=1 ]

𝑝×𝑝
  

𝑲(𝒕) = [∑ {∑ ∫ 𝐸𝐼(𝑥). 𝜙𝑖,𝑥𝑥𝑥𝑥𝜙𝑗(𝑥)𝑑𝑥
𝐿

0

𝑝
𝑗=1 }

𝑝
𝑖=1 + ∑ 𝑚𝑘𝑣2𝜙𝑖,𝑥𝑥[𝑣(𝑡 − 𝑡𝑘)]. 𝜙𝑗[𝑣(𝑡 − 𝑡𝑘)]. 𝛥𝐻(𝑡)𝑁

𝑘=1 ]
𝑝×𝑝

   

𝑭(𝒕) = [[𝑔] ∑ 𝑚𝑘𝜙𝑗[𝑣(𝑡 − 𝑡𝑘)]. 𝛥𝐻(𝑡)𝑁
𝑘=1 ]

𝑝×1
                                                                               (4) 

Various numerical methods can be employed to solve the above equation in the time 

domain.  

1.2 Actual Bridge Structure    

To analyse the vibration and the maximum deflection of the bridge structure under various 

positioning of resistance elements, we investigate an existing bridge structure known as the 

"Amperbruecke," located in Munich, Germany with the total length of 𝐿 = 38.45 𝑚 and 

𝜌𝐴 = 12095 𝑘𝑔/𝑚. Figure 2 a. shows the bridge, and Figure 2 b. provides the number of 

longitudinal tendon ducts and their center of gravity within the main beam length, along with 

section properties at the mid-span based on as-built data. The flexural rigidity (𝐸𝐼(𝑥)) of the 

entire beam is a function of beam length. The center of gravity of tendons at each section 

changes due to the positions and the mount of the longitudinal tendons along the beam length. 

Figure 3.a illustrates changes in moment of inertia along the bridge length for different 
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positions of longitudinal tendons. The centers of gravity of tendons at mid-span (𝑌𝑐𝑔𝑡) could 

vary in the range between 8.2 𝑐𝑚 and 26.06 𝑐𝑚 based on section dimension capacity. 

 

 
Fig. 2. a: “Amperbrücke” bridge structure, b: Positions of longitudinal tendons. 

 

The change of 𝑌𝑐𝑔𝑡 at the middle cross section will be applied to the other cross 

sections along the entire beam length (refer to the red line in Fig2. b.). Moment of inertia is 

calculated using the equivalent section principle at each section, taking into account the 

absence of a crack zone due to the prestressed bridge type. As shown in Fig. 3a, the moment 

of inertia of the entire beam increases by decreasing 𝑌𝑐𝑔𝑡 and vice versa.  

 
Fig. 3.  The effect of different center of gravity of longitudinal tendon ducts in the bridge, a: variation of 

moment of inertia along the bridge length, b: change in maximum deflection at mid-span. 

 

Figure 3.b depicts the maximum deflection at the mid-span of the bridge for various 

positions of the center of gravity of tendon ducts (blue line), along with the corresponding 

linear trend line variations (red line). These results are derived from the solution of equation 

(3) under the influence of a group of 15 traveling vehicles, each with a constant velocity 𝑣 =
30 𝑚/𝑠 and a mass of 𝑚𝑘 = 50000 𝑘𝑔, crossing the bridge at uniformly determined 

intervals of 𝑑 = 𝐿/2 over a total time of 16 seconds [10]. The responses indicate a noticeable 

increase in the maximum deflection at mid-span as the center of gravity of the longitudinal 

tendon ducts (𝑌𝑐𝑔𝑡) increases. The variation in the position of the tendon duct causes 

approximately ±25% response difference compared to the as-built data. These findings 

underscore the significant impact of the placement of resistance elements in the bridge on the 

performance of beam-type structures. Such consequence should be considered in Structural 

Health Monitoring (SHM) processes or reassessing existing structures, which has deviations 

from the original construction plans or historical data.  
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In addition, Non-Destructive Testing (NDT) methods play a crucial role in extracting 

the actual structural properties of infrastructures without causing extra damage. To ensure the 

reliability of NDT results, it is essential having experts knowing signal processing and 

measurement techniques to compute and minimize measurement uncertainties. However, 

despite the necessity of investing sufficient time in these processes, practical constraints such 

as the presence of non-structural elements, architectural limitations, or the interference of 

mechanical facilities often impede optimal measurement processing. In the subsequent 

discussion, we focus on the development of rapid and practical NDT methods that are more 

efficient for addressing measurement uncertainties. This approach aims to enable all 

engineers to conduct NDT assessments effectively and covering the practical constraints, 

even without expertise in the field, by providing step-by-step guidance. 

2. NDT Measuring Data Analysis   

2.1 Measurement Process 

Consider a measurement process using an ultrasonic measurement device with the objective 

of determining the depth (ℎ𝑇) of a resistance object within a structural element, as illustrated 

in Figure 4. The position of the measurement device (PMD) is determined by coordinates X 

and Y, with an assumed origin at the corner and the center of the measurement device (𝐶𝑑). 

The distance between the center of transducers (𝐶𝑡) and 𝐶𝑑, as well as the distance between 

the center of receivers (𝐶𝑟) and 𝐶𝑑, is denoted as S. The PMD's orientation can be described 

by the angles Ɵ and 𝜑, which represent the PMD's orientation relative to the target of interest. 

Additionally, the boundary conditions in the specimen, with a length of A and width of B, 

are indicated by the angles α and β. The values of D and E are the lengths respective to the x 

and y axes within the specimen. 

 

Fig. 4. General Schematic view of NDT Measurement Process.   

The measurement result (ℎ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) is calculated by eq. (5), which is related to the 

average of the time of flight of back wall (𝑇𝑂𝐹𝐵) and the resistive object (𝑇𝑂𝐹𝑍), the changes 

in pulse shape (𝑇𝑐ℎ𝑝𝑠) and the lead time to determine time zero (𝑇𝑂𝑓𝑓𝑠𝑒𝑡) of A-scan travel 

time in different position of measurement. 

ℎ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = (
𝐻

𝐶𝑇𝑂𝐹𝐵

) ∗ 𝐶𝑇𝑂𝐹𝑍
                                                                                                             (5) 

Where 𝐻 is the specimen height and:  
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𝐶𝑇𝑂𝐹𝐵
=  𝑇𝑂𝐹𝐵 −  𝑇𝑂𝑓𝑓𝑠𝑒𝑡 − 𝑇𝑐ℎ𝑝𝑠                                                                                                           (6) 

𝐶𝑇𝑂𝐹𝑍
=  𝑇𝑂𝐹𝑍 −  𝑇𝑂𝑓𝑓𝑠𝑒𝑡 − 𝑇𝑐ℎ𝑝𝑠                                                                                                   (7) 

Due to the heterogeneous nature of concrete mixtures, a correction is applied to 

account for the assumption of constant velocity in wave propagation along the specimen. This 

correction can be expressed as: 

 

𝐶𝑀ℎ𝑇
 = ℎ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 −  𝛥𝑍                                                                                                                   (8) 

Where  𝛥𝑍 is defined by the PMD description in the form of a function 𝛥𝑍 = 𝑓(Ɵ, 𝜑) 

and 𝐶𝑀ℎ𝑇
 is the correct measurement result. This correction serves as an intercept for 

adjusting the measured depth. 

2.2 Statistical Process  

A series of experimental measurement on laboratory specimen is considered to investigate 

and extract the PMD description function for a modifier on the measurement results. Figure 

5 illustrates the specifications of the experimental specimen, including its dimensions and the 

resistance object. 

 

Fig. 5. The schematic view of laboratory specimen (dimensions in mm).   

An Ultrasonic measurement process employing A1220 device system (with a sensor 

separation distance, 𝑆 = 3 𝑐𝑚) is conducted along four parallel lines (𝑦 = 100,200,300 and 

400 𝑚𝑚) at each segment, with measurement intervals of 20 𝑚𝑚. PMD values for each 

measurement point are calculated based on the angles Ɵ and 𝜑, along with the measured 

depth (ℎ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑).  

 

Ɵ = 𝐴𝑟𝑐𝑡𝑔 (
|𝐷−𝑥|

ℎ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑+𝑟
)                                                                                                                   (9) 

𝜑 = 𝐴𝑟𝑐𝑡𝑔 (
ℎ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑+𝑟

𝐷−𝑥−𝑆
) − 𝐴𝑟𝑐𝑡𝑔 (

ℎ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑+𝑟

𝐷−𝑥+𝑆
)                                                                           (10) 

In the specimen, the accurate depth of tendon ducts (ℎ𝑇) is known. However, the 

variance between the measured depth (ℎ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) and ℎ𝑇 is calculated at each measurement 

point to derive the parameter  𝛥𝑍. Figure 6 illustrates the scattering points of independent 

variations of PMD describing against 𝛥𝑍, along with the best fit line in each data set cloud.  

The Linear Least Square Method (LLSM) provides a comprehensive understanding of the 

input dataset, covering all measurement points, and its ability to reveal the modifier function 

of 𝛥𝑍. Additionally, it introduces the notion of lower and upper bands within a 95% 

confidence interval to mitigate uncertainties in the measurement process. This statistical 

approach entails analyzing the independent parameters of the PMD describer (Ɵ and 𝜑) and 

their associated best-fit line interpreters (Ɵ2and 𝜑3) in a mathematical regression model 

against the dependent modifier function of 𝛥𝑍.      
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𝛥𝑍 = 43.682 + 0.9008 Ɵ + 0.0114 Ɵ2 − 5.0653 𝜑 + 0.0032 𝜑3                                                             (11) 

 

Fig. 6. Scattering diagram and best fit line for independent PMD variables against 𝛥𝑍, a) Parameter of 

Ɵ(degree), b) Parameter of 𝜑(degree).   

Equation (11) represents the calculation of the modifier function by averaging the 

PMD describer values across all measurement points. The high values of R square (0.943) 

and adjusted R square (0.941) indicate that the function adeptly explains 94.3% of the 

observed variability in 𝛥𝑍. The low significance F-value (6.181 E-115) of the regression 

equation emphasizes the strength of our model, indicating that the results are not merely 

coincidental. This instils confidence in engineers that our approach is robust for on-site 

inspections.  

Table 1. Regression analysis summary output.  

Variation P-Value Lower 95% Upper 95% 

Intercept 7.581E-17 34.305 53.059 

    Ɵ 3.964E-09 0.6132 1.1885 

           Ɵ2 4.493E-07 0.0071 0.0157 

    𝜑 4.701E-32 -5.7603 -4.3703 

     𝜑3 2.289E-24 0.0027 0.0037 

 

Table 1 shows the regression equation's significance by demonstrating the meaningful 

relationship between independent and dependent variables, as evidenced by the low P-values. 

It also displays the lower and upper 95% confidence intervals to account for uncertainties in 

the measurement results.  

3. Conclusion  

In this study, we explore the maximum deflection at the mid-span of a main beam of a bridge. 

We utilize Euler beam theories (EBT) and take into account the impact of dynamic loading 

from traveling vehicles, by the moving masses theory. Our findings show the response of the 

bridge varies with the different placement of resistance elements within the bridge. We 

emphasize the significant influence of changes in the center of gravity of tendon ducts within 

the bridge structure. Our findings illustrate potential changes in bridge vibration response up 

to ±25%. It shows the critical role of understanding resistance element placement in the 

structural health monitoring (SHM) process. Such insights are crucial for extending the life 

cycle of bridge structures. To achieve these objectives, we investigate the suitability of Non-

Destructive Testing (NDT) methods, which provide the benefit of inspecting structures 

without causing additional harm.  However, the practical constraints and the work to reduce 
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measurement uncertainties demand substantial investments in both time and expertise.  Our 

study addresses this challenge by examining the impact of measurement device positioning 

on data accuracy, introducing an adjustable term to enhance measurement precision. By 

applying statistical analysis and regression techniques, we establish robust mathematical 

relationships to modify measured depth in experimental measurements. Furthermore, we 

developed the step-by-step flowchart depicted in Figure 7, outlining a systematic approach 

to attain reliable measurement results. This framework not only simplifies the process but 

also facilitates the accurate determination of the positions of inner structural elements. This 

reduces the time needed by non-specialized personnel for NDT measurements. Such 

advancements are especially vital in structural on-site inspections, since prompt and accurate 

decisions, which are made without doing complex mathematical computations, are essential. 

 

 

Fig. 7. Measurement process and calculation flowchart with PMD consideration.   
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