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Polymers have become indispensable across fields of application, and understanding their structure-property
relationships and dynamic behaviour is essential for performance optimization. Polymer membranes, partic-
ularly ion exchange membranes, play a crucial role in renewable energy conversion technologies, fuel cells,
solar energy conversion, and energy storage. In this context, broadband dielectric spectroscopy (BDS) offers a
powerful, non-destructive approach to investigate the electrical response and relaxation dynamics of polymers.
These properties are investigated by parametrizing the system’s impedance response in terms of a network
of circuit elements, i.e. the electrical equivalent circuit (EEC), whose impedance resembles the one of the
system under investigation. However, the determination of the EEC from BDS data is challenging due to
system complexity, interdependencies of circuit elements, and researcher biases. In this work, we propose
a novel approach that incorporates a convolutional neural network (CNN) model to predict the EEC topology.
By reducing user bias and enhancing data analysis, this approach aims to make BDS accessible to both
experienced users and those with limited expertise. We show that the combination of machine learning and
BDS provides valuable insights into the dynamic behaviour of polymer membranes, thus facilitating the design
and characterization of tailored polymers for various applications. We also show that our model outperforms
state-of-the-art machine learning methods with a top-5 accuracy of around 80% for predicting the circuit
topology and a parameter fitting error as low as 0.05%.
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1. Introduction passage of electrons, facilitating the controlled flow of ions necessary
for fuel cell operation. The high ion conductivity, excellent chemi-
cal stability, and mechanical flexibility of polymer membranes make
them ideal for such applications, enabling the conversion of renewable

fuels into electricity with minimal environmental impact [1,2]. Solar

Polymers, with their diverse applications ranging from materials
science to engineering and biotechnology, have become indispensable
in our modern world. Understanding the structure-property relation-
ships and dynamic behaviour of polymers is crucial for tailoring their

properties and optimizing their performance. Among the many differ- energy conversion technologies, such as solar fuel production, rely

ent polymer-based materials, polymer membranes have emerged as key
components in various renewable energy conversion technologies, since
they play a crucial role in facilitating the efficient generation, storage,
and utilization of renewable energy, thus supporting new avenues for
a clean and sustainable future. Polymer membranes, commonly known
as ion exchange membranes (IEMs), are at the heart of fuel cells. These
devices convert the chemical energy of a fuel, such as hydrogen or
methanol, into electrical energy through an electrochemical reaction.
IEMs enable the selective transport of protons while blocking the
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on IEMs as well to enhance their efficiency and functionality. Photo-
electrochemical cells convert the energy from sunlight into chemical
energy through electrochemical reactions, such as water splitting or
oxidation of biomass analogs [3,4], resulting in the production of green
hydrogen. In these devices, IEMs are used to separate the electrooxida-
tion and hydrogen evolution half-reactions, allowing for efficient and
cost-effective solar-driven reactions [5]. Similarly, in energy storage
technologies such as batteries and supercapacitors, polymer membranes
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separate and facilitate ion transport between electrodes, ensuring high
energy and power densities [6,7]. Additionally, polymer membranes
find application in emerging energy conversion technologies, such as
electrochemical water desalination, where they enable the selective
transport of ions for water purification [8].

Among the various characterization techniques developed for the
investigation of polymers, broadband dielectric spectroscopy (BDS)
constitutes a powerful tool for probing the electrical response and
relaxation dynamics of polymers over a wide range of frequencies and
temperatures [2]. BDS offers a non-destructive and non-invasive ap-
proach to studying polymers, allowing for in situ measurements under
realistic working conditions. This capability is particularly valuable for
investigating the behaviour of polymers in complex environments, such
as during processing, under mechanical stress, or in the presence of
solvents or additives. By monitoring the dielectric response in these
situations, BDS provides insights into how external factors influence the
molecular dynamics and electrical properties of polymers, facilitating
the development of advanced materials with enhanced functionality
and stability. Moreover, BDS enables capturing the dynamic response
of polymers across multiple frequency scales: the polymers’ dielectric
response is investigated as a function of AC voltage or current signals
from low (typically below a mHz) to high frequencies (up to a few
GHz). If the amplitude of the AC signal is small enough, the input and
output AC signals have the same frequency (within the control theory
the system under investigation is categorized as Linear, Time-Invariant,
or LTI) [9]. Under the linearity and time-invariance conditions, the
output AC signal will be detuned with respect to the input signal, mean-
ing that a phase (time) shift exists between the two AC signals. This
phase shift, known as system transfer function when operating in the
frequency domain, contains information about the response of the poly-
mer to the feeding AC signal and is investigated by parametrizing the
system’s impedance response in terms of a network of circuit elements,
such as resistors, capacitors, and Warburg elements [10]. The topology
and element values of this electrical equivalent circuit (EEC) reveal
information about the response processes occurring in the polymer [2].
By fitting the experimental impedance data to an appropriate EEC [11],
it is possible to extract quantitative parameters that characterize these
properties. Polymeric materials often exhibit multiple relaxation pro-
cesses or contributions from different types of charge carriers. The
electrical equivalent circuit helps in modelling such complex systems
by incorporating different circuit elements to represent the various
relaxation mechanisms or charge transport pathways. This enables a
more accurate representation of the system’s behaviour and facilitates
the analysis of multiple dynamic processes occurring simultaneously.
Additionally, the relaxation processes observed in BDS can provide
insights into the molecular dynamics and intermolecular interactions
within the material. The EEC helps in isolating and characterizing these
relaxation processes by assigning specific circuit elements to represent
the corresponding physical phenomena. By correctly identifying and
quantifying these processes, it becomes possible to study different
phenomena in polymeric materials such as glass transitions, segmental
dynamics, dipolar relaxations, and ion transport [2,12]. Despite the
importance of obtaining the correct EEC, its determination can be
challenging due to several factors [12]:

» Complex systems often exhibit overlapping relaxation processes
or non-ideal behaviours, making it difficult to identify the ap-
propriate circuit elements that represent the underlying physics.
Decoupling the contributions from different relaxation mecha-
nisms and accurately modelling their behaviour requires careful
consideration and expertise;

The available experimental data may be insufficient to fully cap-
ture the system’s complexity or resolve subtle features. Insuffi-
cient frequency range typically makes it challenging to identify
the correct EEC;
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+ Within the EEC, circuit elements usually exhibit interdependen-
cies, leading to correlations between the extracted parameters.
This makes it challenging to uniquely determine the values of
individual circuit elements without ambiguity.

Finally, and perhaps most importantly: researchers may have pre-
conceived notions or biases when selecting the model or circuit
elements for fitting the experimental data. This can inadvertently
influence the interpretation of the results and lead to inaccurate
or oversimplified representations of the system.

Overcoming these challenges requires a combination of experimental
expertise, theoretical understanding, and careful data analysis. Iterative
approaches, model comparisons, and validation with independent mea-
surements can help refine the electrical equivalent circuit and improve
its accuracy in representing the electrical behaviour of the system
under investigation in BDS. This comprehensive understanding of the
dynamic behaviour is crucial for designing polymer materials with
tailored properties and predicting their performance under different
conditions.

So far, the standard procedure for retrieving the EEC consists of two
stages: In the first stage an educated guess for the EEC topology is made,
where the topology specifies the types (resistor, capacitor, ...) of the
elementary parts (circuit elements) as well as the way these parts are
connected. In the second stage, the parameters of the circuit elements
are optimized by fitting the corresponding circuit transfer function to
the measured impedance spectra. The fitting is performed by employing
minimization methods such as the least mean square or non-linear
least squares which utilize finite difference methods for gradient es-
timation [13-15]. The goodness of fit and the physical meaning of the
retrieved circuit element values are used to validate the choice of the
particular EEC topology selected in the first stage to interpret and fit
the experimental data. Generally, it is common to iterate multiple times
through the two aforementioned steps modifying each time the guess
in the first stage, until the fitting with the experimental data reaches
a satisfactory degree. Clearly, this procedure strongly relies on the
experience of the experimenter, and it is affected by the biased choice
of the EEC topology. In this work, we describe a new procedure where
we replace the educated guess of the EEC topology in the first stage
with a prediction of a machine learning algorithm. Our aim is to reduce
the user’s bias in the BDS data analysis, thereby helping the expert BDS
users to extract valuable information from their experimental data, and
to make BDS accessible to experimenters with limited experience as
well.

2. Related work
2.1. Experimental setup

The sample cell geometry for BDS investigations reported in the
literature depends on various factors, such as the nature of the sample
and its surrounding environment, measurement requirements [2,16],
and the desired information about the sample’s electrical properties.
Commonly used cell geometries in BDS are the following [2]:

« Parallel Plate Geometry: The parallel plate geometry is the most
straightforward and widely used configuration. It consists of two
flat and parallel electrodes with the sample placed between them.
This geometry is suitable for measuring bulk samples or thin
films. The electrode spacing can be adjusted to control the electric
field strength and focus on specific sample regions.
Interdigitated Electrodes: Interdigitated electrodes (IDE) are de-
signed as an array of closely spaced and alternating fingers. The
sample is placed between these fingers, allowing for a more
localized measurement of the electrical properties. IDE configura-
tions are particularly useful for studying thin films, powders, and
porous materials. They provide a larger surface area and promote
enhanced electric field penetration.
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+ Cylindrical Geometry: In cylindrical geometry, the sample is in
the form of a cylindrical shape. The electrodes can be concentric
cylinders or discs placed at the ends of the sample. This geometry
is suitable for investigating materials with cylindrical symmetry
or when measurements along the radial direction are of interest.
Cylindrical cells are often used for studying liquids, gels, or
biological samples.

Transmission Line Geometry: The transmission line geometry in-
volves embedding the sample within a transmission line structure,
such as a coaxial cable or microstrip line. The electrical proper-
ties of the sample are determined by measuring the impedance
changes along the transmission line. This geometry is advanta-
geous for studying thin films, coatings, or materials with limited
sample volumes.

Microfluidic Cells: Microfluidic cells are designed for BDS mea-
surements on small volumes of liquids or solutions. They often
feature microchannels or microcapillaries where the sample flows
continuously. Microfluidic cells offer precise control of sample
flow, including fast switching of experimental conditions and
sample environment [17], enabling investigations of processes
occurring within a wide dynamic range.

Cells for Local Electrochemical Impedance Spectroscopy (LEIS):
Electrochemical systems may exhibit non-ideal behaviour across
macroscopic samples, making data interpretation difficult for
surface-averaged techniques. To overcome these challenges, scan-
ning techniques utilizing metal microelectrodes have been de-
veloped over the years. LEIS is a powerful tool for exploring
electrode heterogeneity and is rooted in the development of elec-
trochemical techniques employing microelectrode scanning [18,
19]. This technique detects local impedance by measuring the
AC-local current density near the working electrode in a typical
three-electrode cell configuration [18,19]. It utilizes a dual mi-
croelectrode mounted on a three degrees-of-freedom manipulator
to sense the local AC-potential gradient, with the local current
calculated using Ohm’s law. Studies have shown that lateral
resolutions of few tens of mm can be achieved using such an
experimental geometry [19].

2.2. Machine learning approaches in electrochemical impedance spectro-
scopy

All existing machine learning approaches for finding an equivalent
circuit follow a two-stage approach. First, they predict the circuit
topology. Second, they employ an optimization algorithm for finding
the parameters of the electrical elements of the predicted circuit. The
topology prediction task is formulated as a supervised classification
task, therefore the set of all possible topologies, which in principle has
infinitely many members, is restricted to a problem-dependent subset
of candidate typologies.

Collecting a data set of impedance measurements labelled with the
topology is expensive. Therefore, it is common to use simulations for
generating the training dataset [20-23]. To generate the dataset, an
assumption on the distribution of the data must be made. For instance,
some studies rely on a uniform distribution [20,23] due to the lack of
prior on the true distribution of the real data, whereas others choose
a Gaussian distribution [22] for the data generation. However, it was
shown [23] that a uniform distribution helps models achieve better
accuracy on real data.

The heterogeneity of the concrete application domains (corrosion
analysis, batteries, polymers, etc.) leads to different sets of candidate
topologies. This makes it hard to compare the performances of the
different approaches. Most of these different candidate sets include
topologies that contain, in addition to further domain-dependent el-
ements, up to three different RC circuits connected in series [20—
23].
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For certain candidate sets the task of identifying the topology can
be done by visual inspection. For example, in the absence of additional
domain-dependent elements, visually identifying the number of RC ele-
ments, under suitable restriction on the parameters of the RC elements,
is possible: if the products of the resistance R and the capacitance C
(also called time constant) of the distinct RCs are far enough apart,
each RC element corresponds to a semi-circle in the so-called Nyquist
plot. If the time constants of the two RCs are too close, the semi-circles
are overlayed and cannot be distinguished by visual inspection. The
feature of the presence or absence of a semi-circle is an indicator of
the presence or absence of an RC element independent of its location
in the Nyquist plot.

There exists a machine learning approach [25] that mimics this
visual inspection by converting impedance data to images of Nyquist
plots and uses a CNN to predict the topology from the images. The
impedance-to-image approach did not perform as well as methods
(published in the same paper) that processed the data in tabular form.
One reason for this underperformance is the neglect of the impedance’s
magnitude. The magnitudinal progression in temporal sequences of the
impedance data cannot be precisely observed in images. Another reason
that also affects the performance is that frequency-dependent features
cannot be examined visually.

Overall the existing work shows that also on the tabular data,
more complex models are necessary: AdaBoost has better performance
than Logistic regression [21], an SVM with RBF kernel performs better
than one with linear kernel [21], a fully connected neuronal network
with four layers had a better performance than networks with fewer
layers [20], which can be explained by the nonlinearity of the problem,
in addition to the fact that the data is abundant which allows complex
models to be easily fitted.

Machine learning is also used to speed up the second step, in which
the optimal parameters of the electrical elements are determined. This
step is either completely replaced by a machine learning model [20] or
machine learning is used to predict an initial set of parameters that is
refined by gradient descent methods [23].

However, the problem in these approaches is that the circuit topol-
ogy must be fixed [20] or partly fixed [23], meaning for each circuit
topology an independent model (neural network) is trained to estimate
the parameters of a specific circuit which is expensive. A possible
improvement for this approach was proposed by Buteu et al. [23]
by adding a regularization term to the loss function that penalizes
unnecessary RCs during the fitting procedure. However, elements in
the circuit other than the RCs stay fixed without a penalty term which
makes the topology partly fixed. In our approach, we use a CNN
model for predicting the circuit topology with tabular impedance data.
Subsequently, we use a global optimization algorithm, the multi-start
Trust Region method, for the parameter fitting which turns out to be
sufficient (with a very low fitting error) and has the advantage of being
applicable to any possible topology without the need for training.

3. Experimental section
3.1. Membranes

We investigated two ion exchange membranes in this study: a
commercially available cationic exchange membrane (referred to as
Nafion® N115, Alfa Aesar) and an anionic exchange membrane (re-
ferred to as Fumasep® FAA-3-PK-75, purchased in bromide and dry
form from Fumatech, GmbH). Both types of membranes were received
as 30 x 30 cm? sheets and then cut into (20 +0.5) mm diameter discs
using a stainless steel puncher. Prior to conducting the experiments,
the membranes underwent a cleaning and activation procedure follow-
ing specific protocols, as reported in our previous work.[26] For the
Nafion® N115 membranes, thorough rinsing with Milli-Q® ultrapure
water (resistivity 18.2 MQ-cm at 25 °C, total organic carbon (TOC)
<5 ppb) was performed, followed by sonication in Milli-Q® water for
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Table 1
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Overview of state-of-the-art machine learning applications in EIS for different application domains.

Authors Classification Data type Application Target circuits Accuracy
model domain
Bongiorno et al. FCNN Tabular Corrosion -Three circuits (scenario 1) 95%
[20] -Three circuits (scenario 2) 75%
Zhao et al. [21] RF* Tabullar Batteries Nine circuits 58.2%
and
Supercapacitors
Zhao et al. [24] SVM Tabular Batteries Five circuits 78%
and
Supercapacitors
Al-Ali et al. [22] CNN-LSTM Tabular Batteries —20 single depression circuits 82.8%
—10 double depression circuits 60%
Schaeffer et al. -XGBoost” Tabular Batteries Nine circuits 50%
[25] -CNN Image 32%

2 The authors benchmark multiple models on the same circuits and data, where Random Forest achieves the best accuracy.
b The authors benchmark XGBoost with Random Forest on the tabular data. XGBoost shows better performance.

10 min. Subsequently, the membrane was left in an aqueous solution
of hydrogen peroxide (H,0, : H,O 30%, Carl Roth GmbH + Co. KG)
at room temperature (r. t., 21 °C) with continuous stirring to oxi-
dize and remove potentially remaining metal polymerization starters,
such as Cesium. After rinsing the membrane with Milli-Q® water, it
was immersed in a 1.0 M aqueous solution of sulfuric acid (H,SOy,,
97%, Honeywell, Fluka) and heated to its boiling point under stirring
and reflux for one hour to further remove impurities and activate
the membrane through proton pumping. Following the cooling of the
solution to at least 40 °C, the membranes were removed, washed copi-
ously with Milli-Q® water, and then stored in an aqueous solution of
H,S0, (50 mM). Borosilicate glassware (Schott) was used throughout
the cleaning, activation, and storage processes to handle the Nafion®
N115 membranes. For the Fumasep® FAA-3-PK-75 samples, the same
initial rinsing and sonication with Milli-Q® water were conducted.
The membranes were briefly dipped in an aqueous hydrogen peroxide
solution (H,0, : H,O 30%) at r. t., and then soaked in a 0.5 M aqueous
solution of sodium hydroxide (NaOH, diluted from 1.0 M solution,
Honeywell, Fluka) at r. t. with continuous stirring for one hour (hy-
droxide pumping). The membranes were then removed from the NaOH
solution, thoroughly washed with Milli-Q® water, and stored in an
aqueous solution of NaOH (100 mM) until use. To prevent extensive Si
contamination from silica leaching in base environments, high-density
polyethylene (HDPE) lab ware (Thermo Fisher Scientific Nalgene®)
was utilized for both cleaning/activation and storage of the Fumasep®
FAA-3-PK-75 membranes. Each run of the described protocols allowed
for cleaning, activation, and storage of five membrane discs. Before
their investigation, the membrane samples were removed from their
storing solutions, thoroughly rinsed with Milli-Q® water, and gently
dried between clean, lint-free precision wipes (Precision Lens Cleaning
Wipes, 304 x 304 mm, Science Service).

3.2. Experimental setup

Four-terminal sensing (4T sensing) or 4-point probes method (also
known as Kelvin sensing or connection) is an electrical impedance
measuring technique that uses separate pairs of current-carrying and
voltage-sensing electrodes to make more accurate measurements than
usual two-terminal (2T) sensing. The separation of current and voltage
electrodes eliminates the lead and contact resistance from the measure-
ment. This is an advantage for precise measurement of low resistance
values.

The experimental impedance spectra reported in this work were
taken in a Kelvin-configured setup, in galvanostatic mode (i.e. con-
stant current fixed at a desired setpoint), at a current of 100 pA,
and a current range of 1 mA. The current and potential signals dur-
ing the experiments were generated and monitored using a potentio-
stat/galvanostat/frequency response analyser FRA (VSP-300, Biologic).

The potentiostat’s bandwidth was set to 1 kHz (time constant of 1 ms).
The potentiostat was controlled with the EC-Lab® software (Biologic,
V11.34). The AC amplitude of the current signal was equal to +5pA
(10 pA total amplitude), while the frequency range was 1 MHz-50 mHz.
The current was supplied via a pair of platinum (platinum foil, Alfa
Aesar, 011508.FI Premion, 0.25 mm thick, 99.99%) force connections
(current leads or power electrodes) generating a voltage drop across
the membrane, whose impedance is thus measured according to the
generalized Ohm’s law (V' = I - Z). A second pair of independent
sense connections (voltage drop probes) were brought in contact with
the membrane sample through the circular aperture on the cell cap
(@ = 12.0mm), measuring the voltage drop generated by the current
flowing through the power electrodes. Since almost no current flows
through the sense leads the corresponding voltage drop is negligible,
allowing them to measure the “true” impedance (Z) across the polymer
membrane. The measurements were performed at room temperature
(about 21 °C) and pressure, and at a relative humidity (RH) ranging be-
tween 60 and 70% in order to prevent the membranes from drying. The
temperature and RH values were logged throughout the experiments
using a local probe (TSP01-TH, Thorlabs), placed in close proximity to
the sample under investigation.

The voltage drop probes were Pt tips with a diameter of 1 mm ob-
tained from Pt rods (Goodfellow, PT00-RD-000120, diameter 2.0 mm,
length 10 mm, 99.95%). The contact area between the probes and the
membrane was kept low ( 0.8 mm2) to suppress interfacial resistances,
as shown in Figs. 1 and 2 (reporting digital photographs of the ex-
perimental setup and a schematization of the electrical connections,
respectively). The probes were brought in contact with the membrane
by means of an xyz manipulator (see Fig. 1c).

The z-axis of the manipulator was customized to include a torque
control system, to ensure a reproducible and reliable pressure of the
probes on the membrane under investigation. The applied torque M
was equal to 0.05 N m. Note that M = F-R, where F is the applied force
and R is the radius of the tip (0.5 mm). Hence, the force applied by
one probe to the membrane can be determined as follows: F = M/R
= 100 N ( 10.19 kg-force). The clamping pressure exerted by one
voltage drop probe on the membrane was therefore equal to about 127
MPa. The membrane sample was pressed by a Nylon and a p-metal®
washer (fabricated from a foil, Magnetic Shield Corp., MU012-12,
uncoated, 0.305 mm thick). The latter, grounded to the Earth ground,
ensured a minimization of the electromagnetic interference caused by
the AC current signal fed to the power electrodes on the voltage drop
probes. A second stainless steel Faraday cage encased the overall BDS
experimental setup, providing electromagnetic shielding by blocking
external electromagnetic interference.
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Xyz manipulator with
torque control
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S1 1

Fig. 1. Digital photographs of the broadband dielectric spectroscopy (BDS) setup developed at the Institute for Solar Fuels of the Helmholtz Zentrum Berlin. A, B: details of
the membrane holder; C, D: details of the setup during measurements. It is possible to see the voltage drop probes contacting the top surface of the membrane sample for the
determination of the voltage drop across it, as a function of the fed AC current signal to the power electrodes.

PEEK cap

p-metal washer « \ﬁj

Nylon washer
PE1

Pt electrode Membrane

FFKM O-ring

-
%_/ PEEK spacer

PE2
T

Pt electrode

Fig. 2. Schematic of the Kelvin configuration used to measure the sheet resistance of polymer membranes.

4. Machine learning approach for determining the equivalent
electrical circuit

The goal of our machine learning model is to approximate the
function, which maps impedance data to an electrical circuit that has
an equivalent impedance.

We utilize a two-step methodology to determine the electrical cir-
cuit. In the first step, we employ a neural network to determine the
topology of the electrical circuit. We use supervised learning, which is
an approach in machine learning where a model is trained on labelled
data, meaning it learns the map from provided inputs (impedance)
to their corresponding outputs (topology). In the second step, we
use a global optimization method to determine the parameters of the
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electrical elements of this previously predicted circuit. We describe in
Section 4.1 how the training data is generated. Furthermore, the neural
network model and the global optimization method are detailed in
Section 4.2.

4.1. Data generation

Each entry in the training set corresponds to an electrical circuit.
These entries are pairs consisting of the impedance data (the input
of the learned model) and the description of the electrical circuit
(the desired model output). An electrical circuit can be described by
the topology of the circuit and the parameters, however, for training
the neural network, we only require the topology of the electrical
circuit. To obtain a diverse training set, we pick a set of electrical
circuits randomly. This is done in two steps: first, we generate the
circuit topology and afterwards, we generate the parameters of the
electrical elements. To obtain the corresponding impedance data, we
use Kirchoff’s rules that imply an explicit formula for the impedance
(see Eq. (1)).

Step 1: Generating the topology

As it is common in literature (see Table 1), we select a finite set of
possible candidate topologies. These topologies are certain sub-circuits
of a circuit that we call a universal circuit (see Fig. 3). The set of sub-
circuits of the universal circuit can model most of the EECs encountered
in EIS. To obtain the candidate circuits, certain sets of elements are
removed from the universal circuit: We represent the topology by a
vector of binary variables B,,,,, = [B, . B, . B,. B, . B, ] and the integer-
valued variable Nz € {0, 1,2}, where Ny denotes the number of RCs
in series. B,,,, corresponds to the presence or absence of the electrical
circuit elements highlighted in the coloured boxes in Fig. 3. If a variable
in the binary vector has the value one, it means that the corresponding
element is present in the circuit. Hence, we restrict ourselves to 3x2° =
96 different circuits, since Ny is restricted to three values and there
are five binary variables in B,,,. The smallest possible subcircuit is an
RC circuit connected to the series resistance R;.

To randomly generate a topology, we sample the elements of
B,,,, from a Bernoulli distribution (see Table 2 for parameters of the
Bernoulli distribution) and the number of RCs, Ngc, from a uniform
distribution over {0, 1,2}.

Step 2: Generating the parameters of the elements

Once the topology is specified we randomly choose the parame-
ters of the elements. These parameters are generated from a uniform
distribution over the intervals specified in Table 2. These intervals
represent practical values that can be experimentally explored when
performing EIS on energy-related systems (i.e. not only on polymer
membranes, but also on metal/, oxide/, and semiconductor/liquid
electrolyte interfaces). These values and their variability ranges have
been selected based on the practical experience in EIS experiments and
from data reported in the literature, in particular in the works of Bredar
et al. [27], Vivier et al. [10], and Lazanas et al. [12].

Generating the impedance data

To generate the impedance data, we use Kirchhoff’s rules. The
impedance of the universal circuit (and its sub-circuits) is determined
by the impedance of each element:

Ngrc
Z=Zy +B. Z, +B Z +Zrc,+ D Zre,- @
k=1
where,
1
Zge, . ®)
N i B
Zey ZR1+]B+'|+B,A,ZW ZrpytZLy
zc, "7,

The frequency dependence of the impedance of the single electrical
elements is not explicitly highlighted in the notation. To obtain the
impedance spectra, Eq. (1) is applied for multiple frequencies.
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Table 2

Parameter distribution during data generation. This table presents the distribution
of parameters employed in shaping the circuit impedance model (Eq. (1)), with the
associated binary values displayed in the ’Random Variables’ column, along with
their respective probabilities on the right side. The table also shows the parameter
distribution of the electrical elements sampled from a uniform distribution with the
lower and upper bounds specified in the table.

Element Lower bound Upper bound Random variable Probability
R, 1x 10! 1x 109 - 1
C, 1% 1077 1x107* B, 0.2
L, 1x107 2% 107 B, 0.2
w 80 160 B, 0.5
R, 1x 10! 1% 10° Npe =0 .
c 1x107 1% 107 Npe =0 .
R, 1x 10! 1x10° B, 0.5
c, 1% 1077 1% 1074 B, 0.5
R, 1% 10! 1% 10° B, 0.5
L, 1x 107 2% 107 B, 0.5
1 6 _ 1
R, 1x10 1x 10 Nge =1 :
7 4 _ 1
C, 1x10 1x10 Nge =1 :
1 6 - !
R, 1x10 1x 10 Npe =2 :
7 4 _ 1
G, 1x10 1x10 Npe =2 :

While Eq. (1) allows us to determine the impedance for any fre-
quency, the measurements are only done for a discrete set of frequen-
cies. In the training set, the spectra consist of n = 200 frequency points,
where the corresponding 200 frequencies are taken at equally spaced
(on the logarithmic scale) points within the interval [1073, 108].

The impedance spectrum is represented by a 2 x 200 dimensional
matrix, where the rows correspond to the real and imaginary part of
the impedance. The choice of the number » of measurement points for
the frequency is based on two criteria. The first criterion is the mea-
surement time. For example, measuring the impedance at the frequency
1073 Hz, leads to a measurement time of 10%3 = 1000 seconds. Therefore
the lower bound of the frequency interval should not be too small. The
second criterion is the loss of information. The smaller the number of
measurement points the more features we lose.

4.2. Model

4.2.1. Classification model: neural network

We represent the impedance spectra by a 2 x n dimensional matrix
Z, where the two rows correspond to the real and the imaginary parts
Z = [ZrT,—Z,.T]T, and the columns correspond to the frequency infor-
mation. The frequency vector is not explicitly passed to the network as
an input since the frequency grid is fixed. Therefore, the network learns
features related to the frequency based on the positions of the inputs.
We employ a 2D CNN for the classification task. In contrast to 1D CNN,
where the imaginary part and real part are passed to the input layer in
the form of two different channels, we pass them as 2D input to a 2D
CNN with shared kernels. This is because the real and imaginary parts
of the impedance are in fact interdependent as shown in the Kramers—
Kronig equations [28]. The architecture of the developed CNN can be
seen in Fig. 4.

The impedance data has multi-scale features: For instance, when
the capacitor in series (C,) is present, it results in an exponential
impedance curve which has a larger order of magnitude compared to
the impedance of the other elements of the circuit. Such multi-scale
features can affect the performance of the neural network negatively
when directly standardizing the data due to the loss of some features
at these frequencies. To avoid this, we transform the impedance data
in a nonlinear manner by taking the logarithm of the data, and subse-
quently, we standardize the data. The standardization function can be
seen in Eq. (3). This function was applied to the real and the imaginary
part independently. We define the function as:

f(Z)=H(G(2)), 3
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Fig. 3. The universal circuit is used to define the set of all circuits that we consider to be candidates for being the topology of an equivalent circuit: This circuit consists of 3

RCs in series, a series resistor R,, a series capacitor Cg, a series inductor L, a Warburg element W, a parallel RC Ry, —C,, and a parallel RL R — L,. An electrical circuit is
an element of the candidate set if it can be derived from the universal circuit by dropping one or more of the mentioned elements (the ones that are highlighted by the dashed

boxes) and/or by limiting the number of RCs to one, two or three.
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Fig. 4. Convolutional neural network architecture. The neural network is structured with two branches, each processing input data at different scales. This design allows learning

features at different scales (scaled and non-scaled data).

where,
G(Z) =log(Z + C) 4
Hx) =% (5)

and C is a constant added to whole impedance data to shift it such
that we only have non-negative values. 4 and ¢ are the mean and the
standard deviation of the impedance after applying the logarithm. This
pre-processing step is then done for any data point that we input to the
neural network.

However, scaling the data might cause difficulties in learning some
features. Therefore, we propose a multi-branch CNN, where one branch
takes the scaled data as input and another takes the non-scaled data
as input. This approach is motivated by the observation that there
are patterns that can be detected with simple kernels in the scaled
data and only with more complex kernels in the non-scaled data and
vice versa. For example, the impedance of a Resistance is a constant
function in the non-scaled data, which can be identified with a kernel
that is sensitive to constant inputs. On the other hand, the real part of
the impedance of a Warburg element is proportional to 1/y/(w), which
cannot be identified by a single kernel defined for the whole range
of frequencies (instead we need a different kernel for each frequency
range). Since the standard deviation of the real and imaginary part
of the impedance is not constant over all frequencies, it is a function
of the frequency, where the real part of this function has an inverse
proportionality to the frequency o similar to Warburg. Hence, scaling
turns the data of the Warburg element into an approximately constant,
and hence simple to identify the function. For the Resistance, scaling
has the reverse effect.

Each branch consists of six 2D convolutional layers with kernel sizes
of 1 x 3 and 1 x 7 on the input for branches 1 and 2 respectively.
Moreover, each convolutional layer is followed by a pooling layer. The
pooling layer is applied on each dimension separately. At the end of
convolutional layers, the output of each branch is flattened and stacked
to one vector to be passed to a dense layer and subsequently passed to
the final output.

The output consists of two different layers. The first layer outputs a
prediction By, for the number of the RCs in series, Nzc. By has the
form of a probability distribution over {0, 1,2}, which represents the
probabilities for each possible value of Ni.. To obtain this prediction
we use a softmax layer. To find the predicted value of Ny, we take
the argmax of By (the index with the highest probability).

The second layer predicts the binary vector B,,,,. This prediction,
B, is a vector of probabilities of the corresponding variable being
equal to one, which is implemented by a Sigmoid layer.

For the hidden layers of the neural network, we use a Tanh activa-
tion function, which in our case shows a better performance than the
ReLU activation.

To optimize the parameters of the neural network we minimize the
cross-entropy loss,

3
1 N
Loss =-3 ,Zf Bpc, - log Bp,

RC Degree

. ®)
1 A ~
- g 2 Belem, -log Belem,» + (1 - Belem,») -log (1 - Belem,» )’
i=1

Binary Elements
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where the number of RCs, Ny, is encoded as a one-hot vector Bgc
taking values {[1,0,0]7,[0,1,0]7,[0,0,1]17}.

4.2.2. Regression model: multi-start trust region optimization
We acquire a predicted circuit topology from the classifier (the
neural network). To find its parameters, we optimize the circuit pa-
rameters such that the impedance spectrum of the optimized cir-
cuit fits as good as possible to the observed one, (Z((J';)m)ke(1 ‘‘‘‘‘ n =
((fo;)a . Zi,kd)atu))ke (1...n}- During this optimization, we make sure that
the fitted parameters are still within the bounds defined in Table 2. In
other words, we have to solve the constrained optimization problem
given by:
LN 0 (k)
: 2
min zk:[(z Y+ (2

i,model

(0.0) - 2%

(k)
(wk’ H-2 idata (7)

r.model r.data

st 6, <0 <0,

where 0 refers to the circuit parameters and o is the angular
frequency.

To solve the optimization problem shown in Eq. (7), we use the
Trust Region method [13-15] as implemented in the SciPy library [29].

However, since the optimization problem is a non-convex problem,
the Trust Region method is at risk of falling into a bad local minimum.
To avoid this, we use the multi-start method: we solve the Trust Region
optimizer at multiple random starting points (initiations).

Subsequently, we choose the parameters set with the lowest fitting
error from the sets of parameters found at different initiations. In
Section 5, we will show that this approach gives sufficiently good
solutions and parameterization.

5. Results and discussion

We evaluate the performance of our model with regard to its
performance in identifying the circuit topology and with regard to its
ability to find an equivalent circuit (which includes not only finding
the topology but also the parameters of the elements). A dataset of
size 3 x 10° was generated. The dataset was split into 70% training,
20% validation, and 10% test dataset. The impedance spectra were
generated at 200 frequencies within the interval f € [1073,10%].
The neural network was trained with Adam optimizer for around 300
epochs with a batch size of 512 on a scheduled learning rate ranging
from 10~ to 10°.

5.1. Classification results

The classification results of the neural network for the presence or
absence of each element of the universal circuit are given in Table 3.

Making the assumption that the Bernoulli variables are indepen-
dent, we use the product of their likelihoods, which are given by By,
and B,,,,,, as the likelihood of the complete circuit. The chance that the
circuit with the highest predicted likelihood is equal to the one that was
used to generate the impedance spectra is around 40%. Fig. 5 shows
the top-k accuracy, which is the chance that the circuit that was used
to generate the topology is among the k circuits that have the highest
predicted likelihood. We can see that the top-k accuracy grows very
quickly (for increasing k) to 90%.

The low top-1 classification accuracy is explained by the fact that,
for appropriately chosen parameters, two different circuit topologies
can have highly similar or equal (this case is also known as non-
identifiability) impedance spectra. The chance of observing such a
problematic similarity is promoted by the large parameter space. Ad-
ditionally, the accuracy is affected by the overlapping relaxation pro-
cesses as mentioned in Section 1. For example, about 52% of the time,
the neural network misclassifies the presence or absence of Warburg
when the series capacitor is present. This is primarily due to the
large exponential function that accompanies the series capacitor, which
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Table 3
Results table showing the performance of the neural network in the circuit prediction
task on the test dataset.

Output Recall Precision Accuracy
RC Degree 82% (averaged) 81% (averaged) 82%

C, 100% 100% 100%

L, 100% 100% 100%
w 68% 70% 69%

R, -C, 80% 81% 80%
R,-L 79% 72% 75%

Accuracy given Top-K

90

80

~
o

Accuracy %
(o2}
o

(%4
o

40

1 2 3 4 5 6 7 8 9 10
Top-k

Fig. 5. The top-k accuracy for the top ten predictions. Top-k accuracy measures
whether the true class is among the model’s top-k predicted classes. The top ten
predictions are the predictions of the neural network with the highest probability
scores. The top-1 accuracy has a score of around 40% which is primarily due to non-
identifiability in addition to the large number of target circuits. Conversely, the neural
network has a top-5 accuracy of around 80%.

could override the impedance of the Warburg element and makes it
difficult to detect. On the other hand, when there is no series capacitor
the neural network fails to identify Warburg around 26% of the time.
This is due to feature loss caused by large time constants and limited
frequency range.

We benchmark our neural network model against some of the
machine learning models mentioned in the related work section (Sec-
tion 5.3). The models we chose to benchmark, are the models which
have similar circuit models to our circuit model (Fig. 3). For this
benchmarking, we train our model on the set of circuits that were
used in the corresponding publication. The results are summarized
in Table 4. Our model outperforms the proposed methods on top-1
prediction.

5.2. Regression results

By determining the goodness of fit we study two aspects of our
model: we get an indication if the low top-1 prediction accuracy
is caused by mathematical equivalence, and on the other hand we
assess the predicted circuit (its topology and parameters). To assess
the goodness of fit of the predicted circuit, we measure the distance
between the impedance spectrum of the true circuit and the impedance
spectrum of the predicted circuit. To measure the distance we use the
mean absolute percentage error (MAPE) which is the relative version
of the loss of the constraint optimization problem given in Eq. (7).

In the fitting problem in Eq. (7), we consider the spectra in the
interval f € [107%, 10%], which extends the frequency range [1073, 10%]
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Table 4
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Benchmark results of our neural network model on different classification tasks and circuit models proposed in the literature.
We show that our model outperforms other machine learning models on their classification task.

Classification task Author’s model Author’s accuracy Our model’s
accuracy

5 Circuits [24] Support Vector Machine 78% 98.8%

9 Circuits [21] AdaBoost and Random Forest 58% 87.5%

3 Circuits, Scenario 1 [20] Fully Connected Neural Network 95% 100%

3 Circuits, Scenario 2 [20] Fully Connected Neural Network 75% 87%

Table 5
Regression and parameter fitting results for the true circuit impedance model and top
3 predicted circuit models from the neural network.

Method Mean relative Max relative
error [%] error [%]

True Circuit 0.005% 1.57%

Predicted Circuit (1st) 0.05% 2.88%

Predicted Circuit (2nd) 1.16% 177%

Predicted Circuit (3rd) 4.7% 554%

Top-3 Prediction 0.005% 0.37%

that was used for predicting the topology by the neural network. By
using this extended interval our metric is sensitive to circuit elements
that only show significant effects in this smaller frequency range such
as Warburg; if we would ignore the frequency range [107%,103] some
mathematically not equivalent circuits can still have a small error,
which gives false indication on the neural network’s performance.

Although the frequency range f € [107°,108] is not practical due
to the measurement time, the fitting error of a given circuit on the
frequency f € [107°, 10%] acts as an upper bound for the fitting error of
frequency range f € [1073, 10%].

Table 5 summarizes the mean relative errors. It shows that the
fitting error of the 1st predicted circuit is low compared to the fitting
error of the true circuit, which is in contrast to the bad top-1 accuracy
of approximately 40%. A reason for this contrast is that the definition
of accuracy ignores that different topologies can still be mathematically
equivalent and thus have spectra with the same features.

In Fig. 6 we compare the top-3 fitting error (the minimum fitting
error for the top-3 predictions) with the fitting error obtained for the
circuit that was used for generating the spectra. The figure shows that
the fitting error of the predicted and ground truth circuit are mostly
close to the diagonal, or in other words, these errors are comparable.
Since the fitting error of the true circuit is a quality metric for the
optimization method, the comparability of the errors implies that the
error of top-3 predicted circuit is to a large part explained by the
optimization error. We can see in Fig. 6, that in a few cases, the fitting
of the predicted circuit can have a lower error than that of fitting the
ground truth circuit. This is, however, strictly an optimization error,
where sometimes bad convergence occurs.

5.3. Validation on measurement data

To validate the model against actual impedance experimental data,
BDS was performed on two different polymer membranes (Nafion® 115
and Fumasep® FAA-3-PK-75, as reported in our previous work [26]).
These two membranes were selected for their significance in the en-
ergy field, owing to their diverse mechanical, physical, and chem-
ical properties, as well as their versatile applications. Nafion® 115
and Fumasep® FAA-3-PK-75 polymers, being widely used as cation-
and anion-exchange membranes, contribute significantly to the per-
formance and efficiency of (photo) electrolyzers, electrodialysis cells,
and fuel cells operating in acidic and base environments, respectively.
Hence, understanding the dielectric response of such polymer mate-
rials when subjected to electric fields is pivotal for optimizing the
performance of various energy conversion technologies.

The measurement was done for both membranes over the frequency
range f € [2 x 1071,10°] with 70 measurement points each. Before
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Fig. 6. Parameter fitting results of the top 3 predictions (the minimum fitting error
of the top-3 predictions) of the neural network compared with the parameter fitting
results of the true circuit evaluated on a data set of size 300. The fitting error is
quantified as the mean absolute percentage error (MAPE). Note that, the fitting error
of the ground-truth circuit is not exactly zero due to a limited amount of initial points
in the multi-start optimization and limitations in floating-point precision.

identifying the equivalent electrical circuit with the impedance data
obtained by the EIS measurement, it is essential to clean the data in
order to minimize measurement errors and inaccuracies. Inaccuracies,
especially at low frequencies, can result from different factors. Elec-
trode polarization, for instance, can significantly impact the impedance
measured at low frequencies, where the charge builds up at the elec-
trode. Another important reason is Non-stationarity with respect to
time, where measurements are not time-invariant anymore. This hap-
pens at low frequencies, where longer periods are required and thus
changes in the system can happen within this time, for example, a rise
in the system’s temperature.

For instance, if the system being measured was non-stationary
during the data collection process, large residuals could appear at lower
frequencies [30].

For this reason, we are only interested in reliable frequency points
and therefore the measurement data should comply with the principles
of stationarity and time-invariance.

A reliable method that is often used in literature [30,31] for detect-
ing irregularity in the measurement data is the Kramers—Kronig trans-
formation [28]. This technique verifies that the EIS measurement points
are stable and causal by analysing the relationship between the real and
imaginary parts of the data. Conducting the Kramers-Kronig validation
test shows that frequencies below 2 Hz are not reliable for both
measurements for the reasons mentioned before. For this reason, we
consider the frequencies down to 2 Hz only.

The neural network is then retrained on the newly generated data
on the frequency range f € [2,10°].
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Fumasep® FAA-3-PK-75
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Fig. 7. The top-5 predictions of the neural network for Nafion® N115 (left) and Fumasep® FAA-3-PK-75 (right). The predicted circuits are ordered according to their probabilities.
Moreover, beside each circuit, we show the fitting error, namely MAPE and R?, in addition to their likelihood P (over the 96 possible circuits) predicted by the neural network.

In order to find the equivalent circuit we investigate the top five
predictions of the neural network for each membrane. In Fig. 7 we
show these predicted circuits ordered by their probabilities outputted
by the neural network. Noteworthy, the R? for the five statistically most
probable EECs for both membranes are very similar, if not identical.
Therefore, selecting the final EEC is not trivial. Rather than providing
a single EEC, we want to emphasize that our model should be used to
predict a class of possible (and similar) EECs based on a statistical anal-
ysis conducted by the neural network. This will help the experimenter
in minimizing the bias in the selection of the final EEC for the system
under investigation. This selection should always be done by physically
interpreting the EEC topology.

The selected EEC for both membranes from the five predictions can
be seen in Fig. 8. The selection of the EEC has been conducted on the
basis of the reported results in the literature [32]. To determine the pa-
rameters of the electrical elements for both membranes, we utilize the
multi-start Trust Region method we introduced before. Additionally,
to examine the uniqueness of the acquired minimas (parameters) by
the optimizer, we repeat the fitting process multiple times. This yields
three different parameter sets for Nafion® N115 and two different
parameter sets for Fumasep® FAA-3-PK-75, which deliver the same
fitting error values, 1.49% and 11.42%. The found sets of parameters
for both membranes can be seen in Table 6. In Fig. 9, we show the mean
impedance spectra resulting from the different sets of the parameters
(Table 6) for both membranes, where the standard deviation for the
different fits resulting from each set of parameters is 0.022 for Nafion®
N115 and 0.033 for Fumasep® FAA-3-PK-75.

The error values obtained by fitting the selected EEC (Fig. 8), 1.49%
and 11.42%, are larger compared with the error values that were
acquired on the simulated data on the frequency range f € [1073,10%].
The main reason for these error values is the fact that the mean absolute
percentage error (MAPE) is very sensitive to variations at small values.
For instance, high mean relative error values result when a small
mismatch between the fit and the true curve at high frequencies where
the values are small. It is also important to mention that if we consider
another metric to measure the goodness of fit, namely the coefficient of

10

Table 6
Sets of parameters results from the fitting algorithm for the predicted circuit (Fig. 8)
for both membranes Nafion® N115 and Fumasep® FAA-3-PK-75. The different sets of
parameters found deliver the same error values and also the same impedance spectra
(Fig. 9).

Nafion® 115 Fumasep® FAA-3-PK-75

set 1 set 2 set 3 set 1 set 2

R [Q] 2.4 x10? 2.4 x 107 2.4 x 107 2.8 x 107 2.8 x 107
R, [Q] 5.8 x 10 70 2.2 % 10? 1.15x 10% 1.95 x 10*
R, [Q] 77 1.08 x 10% 3.9x 107 2.01 x 10* 8.03 x 10°
C, [F] 6.2x107° 44x107° 1.18 x 107° 2.8%x1076 9.1x1076
C, [F] 1.4x10°° 1.3x10°° 7.1x 1077 2.6x 107 2.57x 1076
R, [Q] 66 5.5x% 10? 1.1x10? 6.6 x 10° 2.9 % 107
C, [F] 1.38x 107° 1.47 x 1076 445x107° 5% 107 5.23x 107

determination R2, we get a fit as good as 0.998 and 0.999 for Nafion®
N115 and Fumasep® FAA-3-PK-75, respectively.

Many other reasons influence the accuracy of predicting the equiv-
alent circuit and its fitting. For instance, the frequency range of the
measurement data f € [2, 107] is small and hence essential features are
lost, which can worsen the performance of the neural network since the
neural network was designed (including hyperparameters optimization)
for impedance data that belongs to the frequency range f € [1073, 10%].

Additionally, measurements are prone to noise and not ideal. This
inherent factor introduces some deviation between the fit and the
measurement since we are fitting an ideal function to the data.

Another critical reason for this deviation is the common practice of
using the constant phase element for fitting equivalent circuits in EIS
instead of capacitors. The constant phase element behaves similarly to
a capacitor, however, it is still different. In this work, capacitors are
used as proof of concept. Another important aspect that we want to
highlight is the mutual correlation of the circuit elements, which is
often overlooked. Thus, it is difficult to provide an unambiguous set
of values for a given topology, independently of how the data analysis
is conducted.
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Nafion® N115

Measurement
— Fit

# \
/ \
\
4 \
/

/ \

300 —————
- N
250

200

150

~Zimag

100

50

0

200 300 400 500 600

Zreal

700 800 900

1000

—Zimag

Fumasep(R) FAA-3-PK-75

Measurement

12000 AT

10000

8000

6000

4000

2000

0 2000 4000 6000

Zreal

8000 10000 12000 14000

Fig. 9. The resulting mean spectra resulting from curve-fitting from the different sets of parameters found (Table 6) for both membranes with standard deviation values of 0.022
for Nafion® N115 and 0.033 for Fumasep® FAA-3-PK-75 for the spectra acquired by the different parameters sets. The mean curve-fitting of the different sets delivers the MAPE
values of 1.49% and 11.42% and R? of 0.998 and 0.999 for Nafion® N115 (left) and Fumasep® FAA-3-PK-75 (right), respectively.

Regarding the physical interpretation of the EEC reported in Fig. 8,
the presence of two main RC circuits can be observed: the first network,
characterized by the presence of an RC in parallel with a capacitor,
is ascribed to the mixed dielectric response of the membrane and
the cell itself, as also reported previously [32]. Namely, the R,,/C,
parallel describes the resistive/capacitive response of the membrane.
Soboleva et al. [33] and Yadav et al. [34] have shown that the dielectric
response of Nafion membranes can be described with a capacitance in
parallel to a resistor that parametrizes the sheet or the bulk resistance
of the polymer film, depending on the position of the probe electrodes.
The origin of the membrane’s capacitance has been described as the
polarization of water in close proximity to the sulfonate groups inside
the membrane’s nanopores. Our neural network model showed that
such a parameterization is valid for the Fumasep membrane as well.
Hence, we propose that the capacitance exhibited by both polymer
films (C,) arises from the polarization of water in close proximity to
the ionized functional groups present in the polymer’s structure. The
resistor R, in our experimental setup, represents the polymer’s sheet
resistance. The R,/C, parallel is instead due to the voltage probes
contacting the sample under investigation, namely their interfacial
resistance (R;, similar values for both polymer samples) and double
layer capacitance (C,;). The origin of the R,/C, parallel is not clear.
Interestingly, this parallel is present on all the five statistically relevant
EECs, and for both membranes. The physical origin of this parallel is
currently under investigation to determine if it can be attributed to
eventual dielectric responses in the membranes neglected up to now
in the literature. An alternative explanation is that the presence of this
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additional RC parallel could be due to the fact that ideal capacitors
are used in the EEC, instead of constant phase elements (CPE). Finally,
the serial resistance R, originates partly from the contact between
electrodes and probes and partly from the wire resistance [32].

6. Conclusion

In this work, we proposed a new neural network model that out-
performs other machine learning models. By reducing user bias and
enhancing data analysis, this approach aims to make BDS accessible
to both experienced users and those with limited expertise. The combi-
nation of machine learning and BDS provides valuable insights into the
dynamic behaviour of polymers and facilitates the design of tailored
polymers for various applications. The proposed model achieves state-
of-the-art results compared to other models and benchmarks, scoring
a top-5 accuracy of around 80%. This model allows researchers to
distinguish electrochemical processes in polymers that are difficult
to identify through conventional data analysis of the experimental
impedance data. Importantly, the model can also extrapolate beyond
the measured frequencies, particularly for low frequencies where cer-
tain electrochemical processes, such as Warburg diffusion, become
recognizable but are challenging or impractical to measure.

This approach significantly reduces the fitting time since researchers
are not required to fit multiple circuits selected from an arbitrarily
large search space. Instead, they can focus on the top predictions
provided by the CNN. The proposed methodology not only delivers
good results in terms of circuit search and fitting but also provides
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a unified framework that addresses the issue of non-identifiability in
material characterization, where circuit models are not unique [35].
This is due to the constrained search space of the universal circuit in
addition to constraints on the regression problem (curve fitting). We
also allow users to identify the most adequate circuit from the top-5
predictions when unique solutions are not available.

To further improve the neural network, hyperparameter optimiza-
tion methods such as Bayesian optimization [36] can be conducted in
addition to a CNN kernel size optimization methods [37], since the
choice of the kernel size plays a major role in the overall performance
of the model.

To validate the neural network performance on the actual experi-
mental dielectric response of Nafion® N115 and Fumasep® FAA-3-PK-
75 membranes, the neural network needed to be retrained. To address
this issue, the frequency vector can be provided as an additional input
to the CNN, and data can be generated on different frequency vectors
to build a more flexible and adaptable model. Additionally, we have
demonstrated that our model based on a CNN scores better than fully
connected neural network models. This superiority arises from the
ability of the CNN to exploit temporal features effectively, unlike fully
connected models.

We want to highlight that, within our CNN model, it is important to
regularize the optimization problem for parameter fitting to eliminate
correlations between parameters and achieve physically meaningful
results. Regularizing the neural network can also help address the issue
of non-identifiability.

As an outlook of this work, we believe that investigating a Lasso
regularized optimization method [23] for the regression part is worth-
while. This approach would introduce a Lasso regularization term
(sparse regression) to the optimization algorithm for fitting the univer-
sal circuit. Such regularization would guide the optimization algorithm
to parameterize the universal circuit to deliver the target topology by
setting certain elements of the universal circuit to zero.

Another important step in building the proposed model is generat-
ing the impedance data. The data was generated on parameters sampled
from a uniform distribution due to the lack of prior information on
the true distribution. Conducting further studies on the distribution of
parameters in dielectric spectroscopy can help achieve more accurate
models that generalize well to real-life impedance measurements.

Finally, we want to highlight that our approach, although devel-
oped for dielectric spectroscopy of polymers, has broad applicability
and can be effectively used in different fields of applications where
dielectric spectroscopy is employed to characterize and understand the
impedance response of the system under investigation.
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