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Abstract Estimating the frequency and magnitude of natural hazards largely hinges on stationary models,
which do not account for changes in the climatological, hydrological, and geophysical baseline conditions.
Using five diverse case studies encompassing various natural hazard types, we present advanced statistical and
machine learning methods to analyze and model transient states from long‐term inventory data. A novel
storminess metric reveals increasing European winter windstorm severity from 1950 to 2010. Non‐stationary
extreme value models quantify trends, seasonal shifts, and regional differences in extreme precipitation for
Germany between 1941 and 2021. Utilizing quantile sampling and empirical mode decomposition on 148 years
of daily weather and discharge data in the European Alps, we assess the impacts of changing snow cover,
precipitation, and anthropogenic river network modifications on river runoff. Moreover, a probabilistic
framework estimates return periods of glacier lake outburst floods in the Himalayas, demonstrating large
differences in 100‐year flood levels. Utilizing a Bayesian change point algorithm, we track the onset of
increased seismicity in the southern central United States and find correlation with wastewater injections into
deep wells. In conclusion, data science reveals transient states for very different natural hazard types,
characterized by diverse forms of change, ranging from gradual trends to sudden change points and from altered
seasonality to overall intensity variations. In synergy with the physical understanding of Earth science, we gain
important new insights into the dynamics of the studied hazards and their possible mechanisms.

Plain Language Summary According to global databases on natural hazard events and associated
risks, there has been a noteworthy escalation in the extent of economic losses during past decades. It is important
but difficult to distinguish and disentangle trends due to changing hazard occurrence or damage potential.
Accurately quantifying altered hazards requires high‐quality data sets and robust statistical methodologies.
Here, we present recent progress in earth and data science toward a quantitative assessment of natural hazards in
a changing world. We show that winter storms have become more frequent and more severe in Europe; that
extreme precipitation in Germany shows seasonal shifts and changing intensities with regional variation; that
river runoff in Central Europe is changing due to modifications of the river network, declining snowpacks, and
changes in precipitation; that frequency of glacier lake outburst floods in the Himalayas have remained
unchanged over the past 30 years despite rapid glacier melt and lake growth; and that earthquake activity in
Oklahoma (USA) has increased with the onset of wastewater injection wells. We infer that recent advances in
data science can efficiently provide new knowledge from big data sets, but interpreting these results needs a
solid understanding and rather detailed analysis of the underlying processes.

1. Introduction
1.1. Natural Hazards in a Changing World

Global data bases on natural hazards show an increasing trend in the number of reported events, the number of
affected people, and the amount of economic losses in past decades (CRED & UNISDR, 2020). For instance, the
direct economic losses as a consequence of natural hazard events have almost doubled in the past four decades,
from 1.63 trillion USD in the period 1980–1999 to 2.96 trillion USD in 2000–2019. The bulk of the increasing
damages is due to a growing exposure of people and economic assets in disaster‐prone areas (EEA, 2017;
IPCC, 2014). Exposure has increased the most in urban areas that have been gradually growing in size, popu-
lation, and assets in the private and public sector (Hoeppe, 2016). In light of increasing losses, societies have
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invested in mitigation measures to reduce their vulnerability to impacts from natural hazards. For example,
Thieken et al. (2016, 2022) show that adapted spatial planning, comprehensive property‐level mitigation,
effective flood warnings, and a targeted maintenance of flood defense systems are effective measures to reduce
losses from floods over time. Further, due to improved early warning systems and evacuation plans, the number of
fatalities from natural hazard events has declined and societies have become less vulnerable in recent decades
(CRED & UNISDR, 2018; EEA, 2017; UNISDR, 2011). Nevertheless, events with devastating damage and high
numbers of victims may still occur, even in high‐income countries. For example, the disastrous flood in western
Germany in July 2021 (Dietze et al., 2022; Kron et al., 2022; Vorogushyn et al., 2022) caused damages of 33
billion EUR and killed 189 people (Kron et al., 2022). Despite growing data bases, it remains debated how much
human perturbation of natural systems, and atmospheric warming in particular, has contributed to the increase in
weather‐related events and associated losses (Bronstert et al., 2020; F. E. Otto et al., 2020). The Intergovern-
mental Panel on Climate Change (IPCC) reports changes in the rates, intensities, and spatial extent of natural
hazards with growing evidence (IPCC, 2012; IPCC, 2014, 2019a, 2019b).

The above described dynamics in the natural risk components point out a shortcoming in the widely‐used risk
equation R = H · E · V (B. Merz et al., 2010; Plate, 2002; UNISDR, 2011), which describes risk R as a product
of hazard H, exposure E, and vulnerability V (Peduzzi et al., 2001). A core assumption in this equation is that
all terms are stationary over time. Yet, we know that at least the exposure (Gueneralp et al., 2015; Hallegatte
et al., 2013; Jongman et al., 2012; Rohat, Flacke, Dosio, Dao, & van Maarseveen, 2019) and vulnerability to
several hazards (Byers et al., 2018; Jongman et al., 2015; I. M. Otto et al., 2017; Rohat, Flacke, Dosio, Pedde,
et al., 2019; Thieken et al., 2022) have changed in past decades, as did likely the hazard itself (Blöschl
et al., 2019; IPCC, 2012; Kemter et al., 2020; Kundzewicz et al., 2014; Mueller & Pfister, 2011). Consequently,
a more adequate form of the risk equation needs to account for transient states, where process variables are
subject to change and require a time dependent evaluation of natural hazards H(t) and societal factors E(t) and
V(t):

R(t) = H(t) ⋅E(t) ⋅V(t).

However, identifying and describing transient hazards is challenging. At this point, it is important to note the
difference between the triggering natural hazard event and the damage it causes. The event that is directly related
to the damage caused is often colloquially referred to as a natural disaster. The focus of this manuscript is on the
changing dynamics of the occurrence of natural hazard events, that is, not on the study of the associated losses.
We address the limitations encountered in natural hazard analysis and propose strategies to overcome them. In
addition to presenting novel data evaluation approaches, we emphasize the importance of integrating domain
knowledge to ensure model credibility. Given the inherent complexity of natural hazard events, advanced
evaluation techniques and a thorough understanding of the hazard under study are essential to distinguish tran-
sient states from natural variability across temporal or spatial scales. In addition, an understanding of the hazard is
essential to identify environmental drivers and their potential interactions. Overlapping or counteracting pro-
cesses, coupled with limitations in data quality, can mask or distort change signals. These issues are discussed in
more detail in the following section.

1.2. Challenges in Assessing Natural Hazard Changes

1.2.1. Natural Variability on a Temporal Scale

Natural hazards are characterized by temporal variability and random processes that control the occurrence of
individual events. For example, the occurrence of earthquakes is assumed to follow a stochastic Poisson
process (van Stiphout et al., 2012), and climatological data can have an inter‐annual to decadal periodicity
(Frei et al., 2000; Scherrer et al., 2016). Further, temperature or runoff data include characteristics of long
memory processes (Franzke, 2012; Rust, 2007; Rypdal et al., 2013), which means that values measured today
show a long‐range dependence on values measured in the past (Hurst, 1951). This self‐similarity leads to
trends in time series of climatic variables, which are difficult to distinguish from climate change signals. The
differentiation of non‐stationary behavior from stochastic processes requires a careful analysis of reliable
long‐term data.
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1.2.2. Natural Variability on a Spatial Scale

Spatial variability can be observed on different spatial scales not only in the hazard potential, but also in the trends
of natural hazards. Global studies reveal geographical patterns in the development of climate extremes, such as in
temperature, storms, precipitation, or droughts (IPCC, 2014; EEA, 2017; Stott et al., 2016; J. Vogel et al., 2021).
Floods along major European rivers both have increased and decreased in magnitude because of atmospheric
warming and subsequent altered hydrological conditions (Blöschl et al., 2019; Kemter et al., 2020). Geographical
variations limit the spatial transferability of time‐dependent hazard models and usually require the underlying
data to be restricted to a certain area.

1.2.3. Superimposing and Counteracting Factors

Several interacting factors can intensify the occurrence of potentially adverse natural processes. For instance,
landslide activity might be affected by various superimposing impacts of climate change (Öztürk, 2018), such as
altered frequencies of landslide‐triggering precipitation (Gariano & Guzzetti, 2016), glacier retreat, and
permafrost degradation (Knight & Harrison, 2009), as well as shorter snow cover duration (Beniston et al., 2003).
Not only the occurrence, but also the impacts of natural hazards can be either eliminated or enhanced by the
interplay of influencing factors. As an example, for flash‐floods Bronstert et al. (2018) describe the interacting
and amplifying effects of extreme rainfall intensity, runoff formation, soil and river bank erosion, and subsequent
urban‐area inundation and extreme damage. By analyzing large‐scale drought hazard, J. Vogel et al. (2021) detect
an increase in the joint occurrence of droughts and heat waves in the Mediterranean, which exacerbates the
negative consequences of the individual events. The joint or sequential occurrence of hazardous processes
complicates the quantification of changing impacts (Zscheischler et al., 2018).

1.2.4. Limitations in Data Quality and Availability

In many cases, observation periods fall short of robustly tracking changes in the frequency or intensity of
natural hazards. Monitoring processes may be interrupted in regions with disputed borders, for example, in
High Mountain Asia, where data are confidential and physical access to those regions can be limited for non‐
residents. Those regions often provide inconsistently filled and poorly annotated databases, and international
recognition of natural hazards remains scant (Leinss et al., 2020). The Himalayas, for example, still have no
permanently operating weather station above 5,000 m a.s.l., where climate‐driven hazards such as flash floods,
landslides, debris flows, or glacier detachments can develop (Salerno et al., 2015). In other cases, extreme
events can disrupt continuous measurements. Peak discharges, for instance, can damage stream gauges or
exceed their recording capacity (Korup & Tweed, 2007). Historic inventories are usually characterized by
reporting gaps and biases, since only the largest events or those with disastrous consequences are documented
(Wirtz et al., 2014). Reinsurance companies report a more consistent record after 1980 in their catalogs of
disastrous natural events, though such data bases are likely biased towards events with insured losses (Wirtz
et al., 2014). Public interests and political developments may also impact the documentation of natural hazards.
Climate‐related data are studied more intensively nowadays, for example, in the framework of political ini-
tiatives, such as the United Nations Sendai Framework for Disaster Risk Reduction 2015–2030
(UNISDR, 2015) and the EM‐DAT International Disaster Database (CRED & UNISDR, 2020). Rising
awareness and more intense reporting may increase the reported number and related losses of natural hazard
events (CRED & UNISDR, 2018; Gall et al., 2009). Further, technical developments improve the conditions for
data acquisition, storage, and exchange. For example, modern instrumentation and changing station density
impacts on the continuous measurement of atmospheric and hydrological variables, such as air temperatures,
precipitation or river discharge. It is noteworthy that in some regions an increasing density is reported, while in
others the density decreases, see, for example, (Fekete et al., 2012). Yet, changes in instrumentation may result
in inconsistent recordings with changes in precision, resolution, and measurement position. For instance,
changes in data collection of sea surface temperatures led to erroneous warming patterns in the early twentieth
century (Chan et al., 2019). Due to these obstacles in natural hazard recordings, their analysis requires not only
good knowledge of statistics, but also of data acquisition, data processing, and the studied process to avoid
pitfalls in the data evaluation.
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1.3. Data Science for Time‐Dependent Hazard Assessments

1.3.1. Data Science for Natural Hazard Assessments

Despite these limitations, past years have seen a major advance in homogenizing global earth science and climate
data sets. For example, global collections of daily air temperature date back to the 1850s (Brugnara et al., 2019)
and enable more precise analyses of global warming. Reconstructing past events and homogenizing event cat-
alogs have helped to establish continental‐scale databases, for example, for river floods or tropical cyclones
(Blöschl et al., 2017; Gudmundsson et al., 2021; Kossin et al., 2020). Such catalogs have allowed researchers to
trace changing exceedance probabilities, or return levels, over many decades. In addition, remote sensing can help
to independently estimate the timing, spatial extent, and some of the impacts of geomorphological and hydro-
logical natural hazards, at least for the past few decades. As the ability to obtain, store, and analyze data has
increased rapidly in the 21st century (Reichstein et al., 2019), more and more natural hazard assessments can be
based on data‐intensive algorithms. More satellite missions, seismic stations, and automatic river gauges, for
example, have been producing data in amounts that exceed manual or visual interpretation (Gorelick et al., 2017;
Marone, 2018).

Data‐driven algorithms can help to recognize patterns and identify trends of natural processes that would
otherwise have eluded human notice. For instance, the increasing number of seismic networks in combination
with machine learning classifiers enables monitoring systems to go beyond solely detecting Earthquake tremors.
Hammer et al. (2017) apply hidden Markov models, a probability‐based sequential data analysis, to seismic data
for an automatic detection of wet‐snow avalanches in the Swiss Alps and provide information about avalanche
activity which is independent from visual observations. Hibert et al. (2019) apply an automated classifier based on
Random Forests to continuous seismic recordings and detect >5,000 landslides over a 22‐year period in Alaska
that had eluded scientific documentation. Cross‐recurrence plots applied to runoff data helped to determine the
(dis)similarity of rainfall‐runoff events, and to quantify changes in the hydrological regime along the Elbe River,
Germany, between 1901 and 2010 (Wendi et al., 2019). Marwan (2019) tied recurrence plot techniques to other
environmental data, for example, to study transitions in past climates or the influence of external factors on
ecological or climatic systems. The field of data science has brought forth machine learning classifiers such as
random forests, support vector machines or neural networks that efficiently mine for structures in large data sets at
high accuracy.

Another lively branch in data science uses Bayesian methods that solve, and predict from, multi‐dimensional
models under full probabilistic reasoning (Korup, 2021; Viglione et al., 2013). For example, K. Vogel
et al. (2018) apply probabilistic graphical models, such as Bayesian networks, to detailed flood damage survey
data to identify damage‐driving or ‐reducing factors in the hazard component, the exposure, and vulnerability. A
Bayesian treatment could enrich the current practice of natural hazard appraisals, because it informs practitioners
clearly about uncertainties tied to expert judgment or data quality.

1.3.2. Potentials for Time‐Dependent Hazard Models

While data science techniques continue to improve the quality of natural hazard research, the development and
use of time‐dependent hazard models remains relatively rare. In this study, we explore the potential of advanced
statistical and machine learning techniques to identify and quantify changing hazards. To this end, we present five
case studies that use rich databases and modern evaluation methods to analyze and model the evolving intensities
and frequencies of different types of natural hazard events. Our overall goal is to establish the ability to char-
acterize changes in natural hazards and project their shifting intensities under a warming atmosphere. Achieving
this goal requires careful consideration of the inherent challenges, including seasonal and regional variability,
interacting processes, and limited data, as outlined in Section 1.2. Each case study in this paper covers one or more
of these issues and provides tools to address them. The case studies are drawn from recent publications authored
by our team and were selected to show previously unknown aspects of changing hazard across a wide spectrum of
hazard types. For ease of reference, Table 1 provides a brief summary of the hazard types, study regions, expected
changes, methodologies used, challenges encountered, and relevant publications.

For the study at hand the examples have been tailored to adhere to the following guidelines: specify the hazard
type under investigation and its anticipated changes, describe the available data and the applied evaluation
technique, characterize any detected changes in the hazard, and discuss the findings within the broader context of
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the underlying physics. The method descriptions are restricted to the essential aspects, aiming to provide a
fundamental understanding of the utilized concepts. The methodological details, for which we refer to the original
studies, are not the primary focus of this paper. Instead, we approach the case studies from a new perspective to
support two hypothesis:

1. Natural hazards can be subject to dynamic changes that require a time‐dependent assessment of their risk
potential. These changes take many forms, including gradual or abrupt shifts in frequency, intensity or
seasonality.

2. Advanced statistical and machine learning techniques, coupled with increased data availability, are improving
time‐dependent hazard assessments. However, the diverse nature of evolving hazards and their specific re-
quirements underscore the need for close collaboration between earth sciences and data sciences to develop
innovative analytical methods for reliable and comprehensive knowledge acquisition.

The presented case studies demonstrate a dynamic feedback between data science and physically oriented
research branches, involving disciplines such as statistics, machine learning, seismology, hydro‐meteorology and
geomorphology. This interdisciplinary approach significantly enhances the selection of appropriate evaluation
techniques and ensures a robust and high quality study design.

2. Trends in European Winter Windstorms
2.1. Motivation

The European Environment Agency reports an averaged annual economic loss of 4 billion EUR caused by
meteorological events between 1980 and 2020 in EUmember states (EEA, 2022), based on the CATDAT data set.
In 1999 the winter storm Lothar alone inflicted insured losses of approximately 6 billion EUR and caused 110
fatalities (MunichRE, 2015). European winter storms form over the North Atlantic and attain maximum wind
speeds of 140–200 km/hr and even up to 250 km/hr in exposed coastal areas and higher mountains. A sound
understanding of the factors that affect their genesis, trajectory, and evolution can aid in efforts to predict them.
Thus far, M. Donat et al. (2011) have shown a statistically significant positive trend in the frequency of gale days
and extreme wind speed percentiles, but this signal is only present in select parts of Northern Europe. Addi-
tionally, Befort et al. (2016) have found positive trends in European windstorm counts, but not in extreme cy-
clones. With regard to storm magnitudes, Ulbrich et al. (2009) show that parts of Europe can expect to see an
increase in the frequency of extreme storms in warmer climates in the future. Windstorm magnitudes in particular
were first introduced by Leckebusch et al. (2008) and have been used for a number of specific European case
studies such as Pirret et al. (2017), but to date windstorm severities have not been studied systematically across a
large set of storms. Here, we study windstorms which are tracked as persistent synoptic features (Leckebusch
et al., 2008). Although windstorms by definition are “extreme” systems, their severity varies significantly be-
tween storms (Moran, 2021). Thus, to gain a comprehensive grasp of evolving windstorm effects, considering
only their frequency isn't enough. It's crucial to also integrate their strengths, particularly concerning potential
losses. Therefore, our goal is to analyze persistent trends in European winter windstorm severity from 1950 to
2010, using ERA‐20C reanalysis data.

2.2. Data and Method

We use surface wind speeds from the ERA‐20C reanalysis data set (Poli et al., 2016) in the period 1950–2010.
This period is chosen as it is long enough to capture the decadal variability of windstorms, and the methods used to
track them generalize well between data sets, for example, NOAA‐20CR from 1950 onwards (Befort et al., 2016).
The procedure used to build and study windstorm tracks is described in detail in our previous publication by
Moran (2021). All variables are analyzed in the extended winter season of October to March (ONDJFM), and we
only consider windstorms that passed Europe in a region between 35° S–65° N and 10° W–30° E for at least one
day. Windstorms are tracked using the method developed by Leckebusch et al. (2008), which identifies wind-
storms as moving clusters of surface wind speed anomalies over time. This algorithm also offers diagnostics of
windstorm properties, such as their average surface wind speed magnitudes, the location of the windstorm center,
or the area of the windstorm. Together, these properties allow us to compute the dimensionless Storm Severity
Index (SSI) of a storm over its lifetime, defined as
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SSI =∑
t∈T
∑
k∈K

[max(0,vk,t/vk,98 − 1)]3 ×
Ak
A0
,

where k is a rectangular area of interest, t is the 6‐hourly time step, and Ak is the area (in km
2) of the data's grid box

in the T159 spherical‐harmonic grid. Ak is normalized by a reference area A0, which corresponds to an area of
150,000 km2. We only aggregate SSI throughout the windstorm's lifetime T and, at each time step, the total area
covered K. The SSI accounts for scaled surface wind speeds vk,t that exceed the local 98th percentile vk,98, where
the percentile follows the assumption that storm damages occur on 2% of all ONDJFM days of the time period
(Palutikof & Skellern, 1991). From this, we can construct the annual dimensionless storminess metric by sum-
ming up the SSIs of each windstorm in each extended winter season. We choose storminess over windstorm
counts because storminess incorporates the severity of the storms in a given year. As storm severity is expected to
change with a warming climate (Ulbrich et al., 2009), we compare linear trends and R2 values between the counts
of the windstorms and the total integrated storminess.

2.3. Results

In Figure 1, storminess shows a stronger trend compared to windstorm counts, corroborated by their R2 values of
0.13 and 0.05, respectively. Their slopes correspond to 10‐year changes of 9.10 storminess units and 0.94
windstorms, respectively. Moreover, years with peaks in storminess are those where windstorms with high
damages occurred, such as Daria (1989/1990), Anatol (1999/2000), Lothar (1999/2000), Martin (1999/2000), or
Kyrill (2006/2007); each of these storms were responsible for insured losses between 2 and 6 billion EUR and
between 20 and 110 fatalities (MunichRE, 2015).

Storminess is correlated with windstorm counts, with a value of 0.71 (significant to p < 0.05 using a t‐test), yet,
years with peaks in storminess do not necessarily correspond with peaks in windstorm counts, which we observe,
for example, in 1989, 2004, 2007, and 2008. Thus, storminess provides a different picture of the potential impacts
of windstorms in a given season. While a year might appear to have lower than average numbers of storms, it

Figure 1. Storminess (black) and windstorm counts (blue) in the period 1950–2010, extracted from ERA‐20C data. The dots
correspond to the value of the extended ONDJFM winter in year/year+ 1. Black labels are notable hazardous windstorms in
the respective ONDJFM winter. Both trends (dashed lines) are significant to p < 0.05 using a t‐test.
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could have a high storminess, as a few individual significant windstorms can have a much greater impact. This
demonstrates that storminess is an advantageous metric to use over the conventional windstorm counts. For a
comprehensive results analysis, please see Moran (2021).

2.4. Summary and Conclusion

This study analyzed extreme windstorm events over Europe. Such events are of high relevance in particular for
built‐up areas and forested areas, and have created an enormous economic loss as well as a considerable number
of fatalities across Europe. In the warming climate, it is of high importance whether the number and severity of
such events might increase. In this regard, we analyzed the development of the frequency and strength of such
events. We applied a linear trend analysis, which is the least complex form that can capture gradual monotonic
change. The underlying data set encompasses available meteorological re‐analysis data for Europe and the
Northern Atlantic for the period 1950–2010. We constrained those data to the winter period (October‐March),
because this is the windstorm season over Europe. In general, we found that the winter storms increased over
Europe. This is particularly visible when analyzing ‐ rather than just the storm counts ‐ the storminess index,
which includes the severity of the storms in a given year and integrates the counts with their surface wind speed
anomalies. The storminess shows a stronger trend compared to the windstorm count. Thus, the attribution of
potential windstorm hazards is clearer when using the storminess metric instead of windstorm frequency. This can
be used to give stakeholders in reinsurance or public policy more accurate information in terms of how impactful
windstorms will be today and in the near future. This method can also be adapted to seasonal or decadal time-
scales, as well as to other regions. The method is also applicable to wind information gained from climate model
simulation and therefore applicable for information regarding wind conditions in a future climate.

3. Trends and Seasonality of Daily Extreme Precipitation
3.1. Motivation

Extreme precipitation can have adverse impacts on societies, such as harvest losses or increased accident risk in
road traffic. Furthermore, heavy rainfall can trigger cascading hazards, such as riverine floods, flash floods or
landslides. With ongoing atmospheric warming, extreme precipitation intensity events could become more
frequent and more intense (Bürger et al., 2019; Bürger et al., 2021; IPCC, 2012; M. G. Donat et al., 2016), given
that a warmer atmosphere has a higher storage capacity for water vapor (Vergara‐Temprado et al., 2021). Despite
decades of rainfall measurements, notions of historic trends in extreme rainfall remain vague, possibly due to a
lack of methods to quantify such changes. The IPCC AR5 (IPCC, 2013), for example, concludes that “are pre-
cipitation (such as the highest annual daily precipitation total) events were likely to have increased over regions
with sufficient data since the late nineteenth century” (p.213).

Besides inter‐annual changes in intensities and frequencies, extreme precipitation might also change seasonally
(Konapala et al., 2020). Alexander et al. (2006) found that indices of extreme daily precipitation suggested a
global increase in extreme precipitation from September to May. Yet, there was no trend detectable during
summer (June–August). These results are consistent with the findings from Zolina et al. (2008), who analyzed
seasonal trends in the 95th and 99th percentiles of daily precipitation totals in Germany. They found positive
linear tendencies for winter, spring, and autumn, though summer had mostly negative trends. However, the
trends were in part neither significant nor coherent in space. Looking at sub‐daily time‐steps, that is, hours or
even shorter, analyses in Germany, Austria, and Switzerland have revealed that high‐intensity but short rain
storms have become more frequent in the past 35 years according to rain station data (Bürger et al., 2014,
2019; Mueller & Pfister, 2011). The trends in intensity are increasing the most between July and September.
The frequency of such high‐intensity rainstorms may have doubled or even tripled over a period of a few
decades. A change in the seasonal cycle of extreme rainfall might change flood hazard, such that periods of
extreme precipitation overlap with high water levels in rivers from snow melt (Berghuijs et al., 2019; Vormoor
et al., 2015). Furthermore, a shift in seasonality could also affect crop yields, as plants are sensitive to
changing precipitation during early growing stages (Derbile & Kasei, 2012; Rosenzweig et al., 2002). Un-
derstanding changes in the seasonal cycle of extreme precipitation is thus vital for a better adaptation to the
impact of climate change. Here, we show an approach to quantify temporal and seasonal changes in extreme
precipitation.
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3.2. Data and Methods

We adopt the block maxima approach from extreme value theory (Coles, 2001) to describe the magnitude and
occurrence probability of extreme precipitation. This method extracts the maximum precipitation within a given
block. For this analysis, we use a block size of 1 month. The probability distribution of the block maxima can be
described by the generalized extreme value distribution (GEV)

G(z ∣ μ,σ,ξ) = exp{− [1 + ξ(
z − μ
σ
)]
− 1/ξ

}

with {z: 1+ ξ(z − μ)/σ> 0} and the location parameter μ, the scale parameter σ and the shape parameter ξ. Instead
of fitting a GEV with independent parameters to each month, we model the seasonality using harmonic functions
in the form of linear models within the parameters of the GEV (Maraun et al., 2009; Mínguez et al., 2010; Rust
et al., 2009). This approach offers more reliable monthly return levels and reduces model complexity. Simulations
showed that including the seasonal cycles also offers more robust estimates of annual return levels (Fischer
et al., 2018). To address inter‐annual changes of seasonality, we extend the approach by a seasonal‐temporal
component (Peter et al., 2024). Conceptually, the time‐dependency of the three GEV parameters in our model
is represented by the following equation:

θyear, month = θ0 + f1(month) + f2( year) + f3(month, year),

where θyear, month denotes the location, scale, or shape parameter for a specific year and month. The model in-
cludes a constant offset θ0, followed by three approximating functions, f1, f2, and f3, each containing a different set
of predictors. To capture the seasonal cycle, we utilize a series of harmonic functions for f1. For example, the first
harmonic order can be represented as f1(month) = a ⋅ sin(ωct) + b · cos(ωct), where ω = 2π/365.25 is the angular
frequency, ct the center day of month t = 1, .., 12, and a and b are coefficients to be estimated. The terms sin(ωct)
and cos(ωct) serve as the predictors. To account for the changes in extreme precipitation over time, we employ
Legendre polynomials up to order five on the years for f2. The interaction term f3 captures the change of the
seasonal cycle with the years and is a product of the predictors for intra‐ and inter‐annual variations. This term
helps to account for any joint effects between the monthly and yearly variations. We refer readers to Peter
et al. (2024) for detailed expressions and descriptions of the seasonal‐temporal approach and restrict the paper at
hand on presenting the overarching concept. Analogous to the seasonal‐temporal model, we present a seasonal‐
spatial model in Fischer et al. (2019) to incorporating spatial variability of extreme precipitation. The seasonal‐
spatial approach enables return level estimation at ungauged sites and can further enhance accuracy.

We apply the seasonal‐temporal model to monthly maxima from 519 long time series of daily precipitation sums
in Germany obtained from the GermanWeather Service (Deutscher Wetterdienst, DWD (2022)). The stations are
roughly equally distributed in space across the country and each of it covers at least the period 1941–2021. To
select appropriate seasonal‐interannual models for each station, we employ a step‐wise forward regression
approach using the Bayesian Information Criterion (BIC). This method allows us to identify the necessary
predictors that best explain the variations in the data. After determining the final model setup, we estimate the
coefficients for the model. Once the model is established, we use it to calculate return levels (quantiles of the GEV
distribution for a given non‐exceedance probability p) for different return periods. The return levels represent the
expected precipitation magnitude that is exceeded, on average, once within a specific return period T, where
T = 1/(1 − p).

3.3. Results

Implementing the aforementioned method uncovers that 65% (n = 338) of all evaluated stations encountered a
historic change in daily extreme precipitation, as we comprehensively elaborate in Peter et al. (2024). Most of
these stations show a change in the seasonality ( f3), in the form of an altered amplitude or a shifted phase, rather
than a long‐term change in heavy rain over time ( f2) with a consistent change for all months. Analyzed linear
trends are in general weak, only 15%–35% (depending on return period and month) show changes of more than
5% from 1941 to 2021. A rise in return levels dominates especially in June. The changed seasonality is mainly
characterized by an increased amplitude, later extreme precipitation events for shorter return periods (<10 years),
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and earlier extreme events for longer return periods (>10 years). Although changes are spatially very different,
regions with similar and more pronounced properties stand out: one in southern Germany exemplified by the
station Rain am Lech and one in the center of Germany represented by the stationWesertal‐Lippoldsberg. Those
observations and 100‐year return levels are shown in Figure 2 (left and mid). The stationMühlhausen/Oberpfalz‐
Weihersdorf, as well located in the south of Germany, illustrates a phase shift to earlier times in the year (Figure 2,
right).

We refer to Peter et al. (2024) for a more comprehensive and detailed analysis of the data evaluation. For the
current paper, we focus on the stations presented in Figure 2, to illustrate different forms of changing extreme
precipitation in Germany. At Rain am Lech the threat due to rare extreme daily precipitation has increased in all
months of the year. The 100‐year return level has risen about 58% from 1899 to 2021. The seasonal cycle at the
station Wesertal‐Lippoldsberg shows a changing amplitude with intensified events in summer and moderated in
winter. This record benefits from the inter‐annual modeling (see Peter et al. (2024) for model verification),
although summerly return levels for the recent years are overestimated. Altered return levels in winter could be
attributed to changes in large‐scale atmospheric circulations (Willems, 2013) or changed temperature and block
situations (Fauer & Rust, 2023), while a rise of return levels in summer may indicate more intense convective
thunderstorms (Zeder & Fischer, 2020), accompanied by lightning, hail, and high rainfall intensity. We call for
adapting hydraulic structures in all regions with increasing return levels, regardless of whether these changes are
only seasonal or occur throughout the entire year. The Mühlhausen/Oberpfalz‐Weihersdorf station shows a shift
in the peak of the seasonal cycle by about 35 days from early August (1931) to the end of June (2021). Shifts in
seasonality to more vulnerable times (e.g., coincidence with snow melt or growing stages of plants) can lead to
potentially increased impacts on society.

3.4. Summary and Conclusion

This study analyzed extreme precipitation data regarding precipitation intensity. High‐intensity rainstorms are of
great relevance for a variety of hazards, such as local‐scale flash floods, where they cause great damage
particularly in urban areas or destroy crops and erode fertile soils in agricultural fields. We have analyzed

Figure 2. Monthly maxima of daily precipitation sums shown as Box‐Whisker‐Plots at three different stations in Germany and the 100‐year return level of the first
(dotted) and the last year (solid) of the observation period as well as for 1941 (dashed) (top row). The bottom row shows the temporal course of the monthly 100‐year
return levels.
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temporal ‐ including seasonal ‐ changes of extreme precipitation in Germany. We used a non‐stationary gener-
alized extreme value model to analyze the magnitude and occurrence probability of daily extreme precipitation
intensity over Germany. The seasonal cycle was modeled with harmonic functions. Based on daily rainfall data
obtained from the German Weather Service (DWD) from 519 rainfall stations, we processed a comprehensive
data set for Germany of daily rainfall data for 80 years (1941–2021) or more. To summarize, we found in 65% of
all stations a historic change in extreme precipitation. Most of these stations show a change in the seasonality and
an intensification dominates especially in summer. However, trends are seasonally and spatially different, which
is why a detailed spatial and seasonal analysis is recommended. For the time being, the detected trends are still
weak, but the method gives consistent results and can be applied in the same manner for data, including the
observations of the current years, and for higher resolved duration (e.g., hourly sums). The given approach needs
an adaptation so that future return levels can be predicted in a meaningful way, since those are highly relevant for
adaptation measures to climate change in urban hydrology and agriculture. Additionally, implementing other
atmospheric covariates such as the global mean temperature or the North Atlantic Oscillation could offer a more
physically motivated explanation of the changes in extreme precipitation.

4. Long‐Term Changes in River Runoff
4.1. Motivation

Rivers spill over their banks occasionally, posing a threat to residential areas and cities. Floods account for large
numbers of casualties and economic losses amounting to billions of US$ each year (UNDRR, 2019). The 2002
Elbe flood (Kreibich et al., 2005; Ulbrich et al., 2003), the rain‐on‐snow flood in the Bernese Alps, Switzerland, in
October 2011 (Rössler et al., 2014), and the devastating flood in western Germany and Belgium in July 2021
(Kron et al., 2022; Thieken et al., 2022; Vorogushyn et al., 2022) are only three recent examples of extremely
damaging and costly floods in Central Europe. In general, extreme precipitation, excess soil moisture, and
snowmelt largely control the timing, magnitude, and frequency of riverine floods (Berghuijs et al., 2019; Frei
et al., 2000; R. Merz & Blöschl, 2003; Vormoor et al., 2016; Wetter et al., 2011). Changes in characteristics of
river floods have been studied intensively in the past years. For example, Petrow andMerz (2009) found that flood
hazard along large German rivers increased in winter, though not in summer, between 1951 and 2002. A larger
sample of 4,262 hydrometric stations installed in Europe between 1960 and 2010 showed that atmospheric
warming has been affecting the timing and magnitudes of river floods (Blöschl et al., 2017, 2019). Regional
warming causes earlier snowmelt‐induced floods across northeastern Europe in spring, and increasing autumn
and winter precipitation has generated increasing flood magnitudes in northwestern Europe. Vormoor
et al. (2015) project that flood seasonality in Norway could change such that rainfall replaces snowmelt as the
dominant flood‐generating process. In general, rising temperatures have been depleting seasonal snowpacks in
recent decades (Laternser & Schneebeli, 2003; Marty, 2008; Scherrer et al., 2004). Projected warming is expected
to further diminish alpine snow cover and reduce the seasonal redistribution of water from winter to summer via
the build‐up and melt of seasonal snowpacks (Hanzer et al., 2018; Marty et al., 2017). Furthermore, thinner
snowpacks lower the potential of meltwater floods (Musselman et al., 2017). In addition, changes in the sea-
sonality and peak values of extreme precipitation (see Section 3) could cause seasonal shifts in flood hazard.

Besides the possible impacts of climate change, the consequences or land‐use change, modifications of the river
network, or water resource management may significantly alter river runoff and hydro‐extremes (Bronstert
et al., 2007, 2023; Niehoff et al., 2002; Pfister et al., 2004). Particularly in high mountain regions, reservoirs for
hydropower production affect river runoff, redistributing river runoff from summer to winter and thus decreasing
runoff seasonality (Arheimer et al., 2017; Bosshard et al., 2013; Meile et al., 2011; Pérez Ciria et al., 2019;
Verbunt et al., 2005). Throughout the twentieth century, and since the 1950s in particular, most rivers spawning
from the Swiss and Austrian Alps have been interrupted by hydropower dams (Wildenhahn & Klaholz, 1996).

4.2. Data and Methods

The existing knowledge on the timing and magnitudes of floods in river basins largely hinges on time series of
gauged discharge. River discharge data offer the longest available hydro‐climatological record, for some loca-
tions dating back to the nineteenth century. Distinguishing between natural variability and long‐term climate
trends demands very long and high‐quality recordings (Auer et al., 2005; Begert et al., 2005; Rottler et al., 2019;
Scherrer et al., 2013; Vincent et al., 2002). Previous investigations have mostly resorted to linear trends for
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estimating climate‐driven changes in flood magnitudes. However, we call for analytical tools that can resolve
non‐linear responses in flood discharges to understand long‐term changes in river runoff and underlying
mechanisms.

We investigate discharge time series from four gauging stations located in Central Europe. The stations are part
of the hydrometric observation networks managed by the water authorities in Germany and Switzerland. Their
recordings are regularly checked to ensure high quality and reliability. The selected gauges offer a wealth of
daily‐resolution discharge data dating back to at least 1869, which can be obtained from the Global Runoff Data
Centre (GRDC, 2020). The depicted gauges stand out for the exceptional length of their records and represent
different types of flow regimes: nival, pluvial, and complex. Specifically, the Wasserburg gauge, situated on the
Inn River (a Danube tributary) in Upper Bavaria, Germany, and three other gauges located in the Rhine River
basin ‐ Basel (Switzerland, representing the nival regime), Würzburg on the Main river (a Rhine tributary,
typical of a pluvial regime), and Cologne (on the Lower Rhine, exhibiting complex regime). For the purpose of
this paper, we exemplarily focus on the Basel gauge, which represents the alpine‐dominated part of the Rhine
catchment. This region experiences seasonal snow cover, making it particularly relevant for assessing climate‐
induced changes in snowmelt, which could significantly impact river runoff (Addor et al., 2014; Hanzer
et al., 2018; Stewart, 2009; Viviroli et al., 2011). Comprehensive investigations of the other river gauges, along
with high‐quality temperature and precipitation data from nine Swiss climate stations can be found in our
preceding study (Rottler, Francke, et al., 2020). The inclusion of temperature and precipitation records in our
analysis not only supports the evaluation of the presented methodology but also aids in attributing detected
changes in runoff to relevant climatic factors.

We provide a comprehensive description of the applied methodology in Rottler, Francke, et al. (2020), while
in this paper we focus on presenting the general concept of the methods employed. Specifically, we utilize a
complete ensemble empirical mode decomposition (EMD) with additive noise to our data. EMD decomposes
a time series into oscillatory modes, effectively separating short‐term signals from underlying (non‐linear)
trends (Huang et al., 1998; Luukko et al., 2016; Wu et al., 2007). This approach offers distinct advantages
over commonly used linear methods, which often lack physical justification. By employing EMD, we attain a
more flexible characterization of trend signals, as it does not require a predetermined basis function. In
Rottler, Francke, et al. (2020) we provide a quantifiable comparison between the non‐linear signals detected
through EMD and the commonly used linear trend analysis. To ensure a highly resolved examination of long‐
term changes in daily resolution hydro‐climatic data, we couple EMD to quantile sampling and moving time
windows. Our investigation spans the time frame from 1869 to 2016. Extracting quantiles from discharge time
series on a daily basis provides valuable insights into the seasonal distribution of river runoff (runoff sea-
sonality). Runoff seasonality specifies the difference in mean runoff between seasons. Hence, low runoff
seasonality describes a relatively even distribution of runoff throughout the year. High runoff seasonality
points to significant variations, such as low runoff in winter and high runoff in summer. In order to assess the
onset and evolution of changes, we apply EMD on a daily basis and use the resulting residuals to represent
the underlying signal of change in the data (Luukko et al., 2016; Rottler, Francke, et al., 2020). To make
results of different days comparable, each residual is centered by subtracting its mean. Consequently,
negative/positive values indicate lower/higher runoff values compared to the average during the period from
1869 to 2016. We extend the approach to annual quantiles of discharge to investigate changes in low or high
runoff characteristics (changes in quantiles).

4.3. Results

Results for the High Rhine demonstrate that in snow‐dominated river basins, runoff is low in winter, when most of
the precipitation is solid and stored in temporary snowpacks.Most runoff is generated inwarm seasons, when snow
melts and precipitation is liquid, even at rather high elevations (Figure 3a). In general, snow‐dominated river basins
show a strong runoff seasonality. In recent decades, runoff has increased during winter and spring and decreased
from July to October (Figure 3b). Consequently, the runoff seasonality is decreasing. Accordingly, quantile values
of low probability levels (<0.6) are increasing and quantiles of high probability levels (0.6–0.85) are decreasing.
However, values from the highest quantiles (>0.85) have increased again in recent decades (Figure 3c).

One factor potentially altering the seasonality of alpine rivers is the construction and management of res-
ervoirs for hydropower. In Switzerland, first hydropower stations were built in the nineteenth century and
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almost all storage volume currently in use in the High Rhine has been made available until the mid‐1970s. In
accordance with Pérez Ciria et al. (2019); Brunner and Naveau (2023), our results indicate that the con-
struction of reservoirs for hydropower productions need to be considered to explain decreasing runoff sea-
sonality in the High Rhine over the time frame investigated (Figure 3). Building upon the weather data
analyzed in (Rottler, Francke, et al., 2020), we further suspect that the increase in high quantiles of river
discharge in the High Rhine (Figure 3c) predominantly results from higher precipitation rates, and less so
from reservoir constructions or changes in snowmelt rates. Recent studies show that heavy precipitation
events have become more intense and that precipitation has increased on average, particularly during winter
(Frei et al., 2000; Lehmann et al., 2015; Mueller & Pfister, 2011; Rottler, Francke, et al., 2020; Schmidli &
Frei, 2005). In addition, an upward shift of the snowline suggests that a larger area of the basin receives liquid
instead of solid precipitation (Allamano et al., 2009a, 2009b; Barnett et al., 2005; Beniston et al., 2018;
Gobiet et al., 2014; Rottler, Bronstert, et al., 2020; Zubler et al., 2014).

4.4. Summary and Conclusion

This study analyzed long‐term changes in the runoff of rainfall‐ and snowmelt‐dominated river basins. As both
the seasonal timing and severity of either rainfall‐ or snowmelt‐induced floods depends on the air temperature in
the river basin, changes to floods in such hydro‐climatological environments might occur as a consequence of
regional warming. We used publicly available observations of river runoff, temperature and precipitation
covering almost 150 years to quantify changes and assess underlying forcing mechanisms. In this chapter, we
present results for gauge Basel. The full analysis and further details are available in (Rottler, Francke, et al., 2020).
Our approach's novelty lies in the combination of non‐linear trend detection, moving average trend statistics, and
quantile sampling, enabling us to separate short time signals from underlying trends in highly resolved (daily),
very long, and high‐quality hydro‐climatic data. A sequence of analytical steps extracts high‐resolution signals of
long‐term changes and provides a comprehensive picture of existing trends. The consideration of non‐linearity in
changes over time facilitates the attribution of changes.

Drawing on the findings of Pérez Ciria et al. (2019); Brunner and Naveau (2023) we propose that the construction
and operation of reservoirs for hydropower production might be a contributing factor to the altered streamflow
characteristics in the High Rhine region, leading to a control effect on river runoff and a reduction in runoff
seasonality. This aspect is discussed in more detail in Rottler, Francke, et al. (2020). The cited study also includes
detailed investigations of precipitation patterns and indicates an increase in (intense) rainfall, which might
contribute to the observed increase in high river discharge quantiles. Furthermore, we suspect that an upward
movement of the snowline, driven by rising temperatures, results in larger areas of the basin to receive rainfall
instead of snowfall. As a consequence, the importance of snowmelt as a flood‐generating process will further
decrease, while rainfall‐triggered flood events could become more severe and frequent. The investigation of
downstream river gauges (i.e., Cologne) suggests that alpine signals can propagate downstream and affect runoff
in river segments far beyond the alpine area.

Figure 3. Discharge of the High Rhine measured at the gauge in Basel, Switzerland, for the period 1869–2016: (a) seasonality of river runoff investigated by estimating
discharge quantiles [m3 s− 1] on a daily basis, (b) onset and evolution of changes assessed by applying EMD on a daily basis and displaying the residuals [m3 s− 1] of the
decomposition, and (c) changes in quantiles (determined on an annual level) using EMD and displaying the centered residuals [m3 s− 1] of the composition (adapted after
Rottler, Francke, et al. (2020)).
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5. Hazard From Himalayan Glacier Lake Outburst Floods (GLOFs)
5.1. Motivation

The Himalayas host the largest reservoir of ice outside the polar regions. Yet, glaciers in the Himalayas have
thinned, retreated, and lost mass since at least the 1970s (Bolch et al., 2019), and rates of ice loss have accelerated
since the 2000s (Maurer et al., 2019). Ongoing glacier retreat has created space for new glacier lakes, and existing
lakes have been growing from sustained meltwater supply. Glacier lake abundance and area in the Himalayas
increased by 11% and 15%, respectively, between 1990 and 2018 (Wang et al., 2020). Lakes dammed by
abandoned moraine dams account for one quarter of all (n = 8,300) Himalayan lakes (Maharjan et al., 2018), yet
they had some of the highest growth rates in this period (Nie et al., 2017). Moraine dams are prone to failure
because they are made of loose, poorly sorted sediment, possibly accommodating ice cores (Clague &
Evans, 2000; Richardson & Reynolds, 2000). Steep slopes adjacent to moraine‐dammed lakes could also trigger
ice avalanches, rockfalls, and landslides, which could impact lakes and produce splash waves that overtop the
lakes (Haeberli et al., 2017). When glacier lakes fail, several million cubic meters of meltwater and sediment can
drain in devastating glacier lake outburst floods (GLOFs) (Osti & Egashira, 2009; Watanbe & Rothacher, 1996;
Xu, 1988). Given ongoing atmospheric warming, glacier retreat, and lake growth, GLOFs are projected to become
more frequent (Harrison et al., 2018). Yet, trends in the historic activity of GLOFs remain controversial (Carrivick
& Tweed, 2016; Harrison et al., 2018; Nie et al., 2018; Richardson & Reynolds, 2000). Many outbursts may have
gone unnoticed in Himalayan headwaters, limiting our knowledge on GLOFs to larger, destructive cases (Komori
et al., 2012). Such inconsistencies in GLOF databases call for a more complete GLOF inventory to estimate
changes in GLOF frequency, and hazard, eventually.

5.2. Data and Methods

We developed a processing chain in Veh et al. (2018) to detect previously unrecorded GLOFs from time series
of Landsat satellite images. To systematically fill the GLOF inventory in the Himalayas, we first trained a
Random Forest classifier (Breiman, 2001) that predicts land cover for >8,000 post‐monsoon images
(September to November) between 1988 and 2017. Random Forest is a popular ensemble learning classifier in
remote sensing because this method combines many hundreds of independent decision trees by using boot-
strapped samples of land cover classes (Belgiu & Drăguţ, 2016). Random feature selection within the model
reduces overfitting, while improving accuracy. We defined five land cover classes, manually labeled 12,500
training pixels with one of these classes, and trained the Random Forest model. We aggregated the votes of the
individual trees and obtained an overall accuracy of 90% of the model. This high accuracy is suitable to predict
the land cover for each pixel of each Landsat image in our time series. The Landsat mission has a short revisit
time of 16 days, and thus allows us to detect lakes that shrank between two successive land cover maps. The
partial or complete loss of water bodies is one of two key diagnostics for outbursts, judging from the 17
previously reported cases that we collated in this period. Based on this observation, we developed an automated
change point algorithm that explores the stack of land cover maps for pixels that shifted from water to land
(Veh et al., 2018). A second key diagnostic for GLOFs are sediment fans below shrunken lakes. We visually
assessed all sites of predicted water loss for downstream sediment aggradation to complete our search for
previously unrecorded GLOFs.

We then merged the inventory of previously reported cases with our newly detected GLOFs (see Tables S1 and S2
in Veh, Korup, von Specht, et al. (2019)). We tested whether this updated inventory shows a trend in GLOF
frequency over time using a Bayesian linear regression. The noise model for our target variable annual GLOF
frequency follows a student‐t distribution. This distribution allows for heavier tails than the Gaussian distribution
that is conventionally used as the likelihood function in linear regression models. The robustness is achieved by
accounting for a low number in the degrees of freedom ν in the student‐t distribution (here ν = 4), which controls
the shape, and thus the probability mass, in the tails of the distribution (Kruschke, 2015). Our estimates of trends
in mean GLOF rates can thus account for potential effects of outliers in the response, that is, balancing years that
had many or no GLOFs. We also binned the Himalayan arc into swaths of 50‐km width to assess whether regional
GLOF abundance correlates with glacier area (Arendt et al., 2017), glacier mass change (Brun et al., 2017), or
changes in surface water (Pekel et al., 2016).

We chose the 100‐year return level of outburst volume V0 or peak discharge Qp as an objective metric of GLOF
hazard. Return levels can be interpreted as the exceedance probabilities in an extreme value distribution. To
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determine the 100‐year GLOF discharge, we chose the Generalized Pareto (GP) model fitted to time series of
GLOF discharges. We simulated such GLOF discharge time series by assuming randomly occurring events. The
parameter of the respective Poisson distribution corresponds to the observed regional GLOF frequency λ (i.e.,
number of GLOFs per year). Outburst volume and peak discharge are based on empirical estimates of V0 and Qp
for each lake in a given region (Cook & Quincey, 2015; Maharjan et al., 2018; Walder & O’Connor, 1997). The
GP model then takes as input all values of simulated V0 or Qp above a high threshold in a given time series of
regional discharges. We showed in Veh et al. (2020) that our GP models are robust for the 20% highest simulated
discharges and used this threshold to eventually estimate GLOF return periods. Accordingly, the 100‐year GLOF
is the value of V0 or Qp that has a 1% chance to be reached or exceeded in the GP model, which is a widely used
characteristic in river flood hydrology (Katz et al., 2002).

5.3. Results

Our automated search in Landsat images reveals 22 newly detected GLOFs, as detailed in our publication by Veh,
Korup, von Specht, et al. (2019). We thus more than doubled the previously known GLOF count in the Himalayas
since 1988 (Figure 4a). Yet, the total of 38 GLOFs shows no change in the annual frequency (Veh, Korup, von
Specht, et al., 2019): the trend in our study period is − 0.0006+0.0415/− 0.0394 GLOFs yr

− 1 (mean and 95% highest
density interval). Given increases in lake size and abundance, the activity of GLOFs per unit of glacial lake area
has even decreased in the past 30 years. This finding could point at some resilience of glacier lakes to sudden

Figure 4. Distribution and return periods from moraine‐dammed glacier lake outburst floods (GLOFs) in the Himalayas.
(a) Bubbles show the size and abundance of moraine‐dammed lakes in 1° × 1° bins. Triangles are previously known GLOFs,
and red dots are GLOFs detected from Landsat images between 1988 and 2017. (b) Estimated return periods of GLOFs in all
regions, and in the Eastern (Western) Himalayas, where regional GLOF hazard is highest (lowest). Blue numbers are the
mean 100‐year return level of peak discharge Qp including the 95% highest density interval; brown numbers are the mean
GLOF rate in this region. Brown ticks are historical GLOFs. The GLOF from lake Zhangzangbo in 1981 had a peak
discharge of ∼16,000 m3s− 1 (Xu, 1988) and a 100‐year return period, accordingly. Figure adapted from Veh et al. (2020).
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outbursts. For example, lakes could have decoupled from their retreating parent glaciers and thus could have
become less prone to impacts from their calving tongues.

A spatial cluster of GLOFs has formed in the Central and Eastern Himalayas (Bhutan and Eastern Nepal), in
contrast to the less frequently affected regions in the northern Hindu Kush‐Karakoram ranges. We provide a
detailed presentation of our swath analysis in Veh, Korup, von Specht, et al. (2019). It suggests that the regional
GLOF clusters correlate with both the abundance of meltwater areas (Spearman's correlation coefficient ρ= 0.87;
Figure 4a) and the change in lake areas, calculated as the difference between two epochs before and after the year
2000 (ρ= 0.77). Glacier cover (ρ= − 0.18) and changes in mass balance (ρ= 0.26) have little association with the
number of observed GLOFs. We infer that a higher abundance and variability of glacier lakes warrants a higher
GLOF count, but not necessarily an increasing rate of lake outbursts.

We chose a stationary extreme‐value model to estimate GLOF return periods, given that the GLOF frequency
has remained constant over our study period. As explicated in Veh et al. (2020), our investigation yielded a
contemporary 100‐year GLOF volume V0 of 33.5

+3.7/− 3.7 × 106 m3 (mean and 95% highest density interval),
along with a 100‐year GLOF peak discharge Qp of 15, 600

+2,000/− 1,800 m
3 s− 1 across the entire Himalayas

(Figure 4b). The regional variations of GLOF frequency and lake sizes are key determinants in our hazard
appraisal. The 100‐year return level of Qp in the Eastern Himalayas is at least triple that of any other Hi-
malayan region, because the Eastern Himalayas have the largest lakes and the most historic GLOFs.
Accordingly, GLOF hazard is smallest in the western Himalayas, where GLOFs are rare and lake cover is
smallest (Figure 4b).

5.4. Summary and Conclusion

GLOFs are extreme floods triggered by a geophysical process, such as a landslide, earthquake or dam failure.
These floods transport large amounts of water and debris, and may have severe consequences for the river
reaches and population downstream. It has been argued that the occurrence of GLOFs may increase because of
regional warming, due to a rising number of glacial lakes, reduced stability of slopes above such lakes and
dams forming the lake, and more frequent ice avalanches discharging into such lakes (Haeberli et al., 2017).
Yet, quantifying trends in GLOF occurrence has been challenging as these floods are rarely reported, while
others may drain without reporting in uninhabited valleys. This study more than doubled the number of known
GLOFs in the Himalayas using an automated processing chain of optical satellite images (more than 8,000
images between 1988 and 2017). Potential GLOFs were identified by applying a Random Forest classifier for
the land cover prediction and a change point algorithm to detect shifts from water to land. Yet, a Bayesian
robust linear regression applied to the total of 38 previously recorded and newly detected cases did not reveal a
change in the annual GLOF frequency. GLOFs occurred in regional clusters, which correlate with the abun-
dance of meltwater areas and the change in lake areas over the last decades (1988–2017). This spatial clustering
leads to large regional differences in the calculated GLOF return periods. The three stages of GLOF analysis
proposed here (from GLOF detection to analyzing their frequency and estimating regional GLOF return pe-
riods) present a suitable framework for modern GLOF hazard assessment. Given a rapidly growing population,
infrastructure, and hydropower projects in the Himalayas, this approach complements local expert‐based hazard
and risk appraisals.

6. Transient States in Seismicity
6.1. Motivation

Earthquakes and co‐seismic events such as tsunamis or landslides rank among the most devastating natural
hazards worldwide. Earthquakes have caused a cumulative economic loss of 661 billion USD and 747,000 fa-
talities between 1998 and 2017 (CRED&UNISDR, 2018). Seismicity, for example, at active faults, is assumed to
be resilient against anthropogenic impacts. However, earthquakes may be triggered, delayed or advanced in
response to changing boundary conditions: stress transfer from adjacent regions, for example, due to plate tec-
tonics, movement of magma, or tides (C. H. Scholz et al., 2019), can bring a fault closer to, or away from, failure.
Man‐made stresses from mining, geothermal exploration, or crustal load from large hydropower dams may also
initiate seismicity. The same applies to the presence of fluid flows in Earth's crust. Stress from fluids include
natural causes such as increased pore pressure after rainfall (Hainzl et al., 2006), as well as man‐made intrusions
such as wastewater injections into deep wells. The majority of this wastewater originates from conventional
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hydrocarbon deposits and is separated during oil production. Moreover new drilling techniques for oil and gas
exploitation have shed light on injection‐caused earthquakes. Hydraulic fracturing (”fracking”) routinely pro-
duces micro‐earthquakes below M = 2, though an increase in earthquakes with higher, potentially damaging
magnitudes could not be proven (Ellsworth, 2013). However, wastewater injection into deep wells has produced a
notable increase in harmful earthquakes. For example, the US state of Oklahoma has attained public and political
interest due to a rapid increase of seismicity since the onset of high‐volume wastewater injections in 2009 (Gupta
& Baker, 2017; Langenbruch et al., 2018; Montoya‐Noguera & Wang, 2017), including five events of M ≥ 5 in
Oklahoma (Ellsworth, 2013; Langenbruch & Zoback, 2016). To prevent further, possibly larger earthquakes,
injection volumes had to be reduced by law in 2016 (Baker, 2017).

Changes in the stress regime may not only affect the number of earthquakes, but also the ratio of large‐magnitude
to small‐magnitude earthquakes (Amitrano, 2003; Goebel et al., 2013; C. Scholz, 1968). A decreasing ratio of
large to small magnitudes can indicate an increasing stress level in Earth's crust (Urbancic et al., 1992;
Wyss, 1973), for example, as a consequence of human activity. A reliable detection of changed seismicity can be
challenging due to small sample sizes, binned data, and natural fluctuation. Here, we present a Bayesian approach
to identify change points in earthquake numbers and magnitude distributions based on seismic catalogs. The
approach is applied to seismic catalogs from Oklahoma and southernmost Kansas (US) to substantiate a rapid
increase in seismicity in connection with the growing number of industrial projects and associated fluid injections.

6.2. Data and Methods

We apply a change point model to examine the footprint of fluid injections in seismic catalogs from Oklahoma
and southernmost Kansas (US). The studied earthquake catalog comprises events with magnitudeM ≥ 2 between
1 January 2005 and 31 December 2019, obtained from the Oklahoma Geological Survey (OGS, 2021). The
distribution of earthquakes is assumed to follow a Poisson process. The count N(M) of earthquakes of magnitude
M or greater is typically described by the Gutenberg‐Richter relationship:

log N(M) = a − bM, M≥Mc,

here,Mc is a threshold above which the earthquake catalog is considered complete. The parameter a represents the
total seismicity rate, and b characterizes the proportion of smaller to larger earthquakes within a specific region.

We focus on the temporal change of the two key parameters a and b and compare two model setups to investigate
earthquake occurrences in a given catalog:M0 assumes that a and b remain constant over time. In contrast,M1
expects one change point with credible differences in a or b before and after the change point. We test the hy-
pothesis of no versus one change point using the Bayes factor, B01. The Bayes factor relates the probability of
observing the recorded data under the assumption of no change point, p(d∣M0) , to the probability of observing
the data under the assumption of one change point, p(d∣M1) ,

B01 =
p(d∣M0)

p(d∣M1)
.

Due to the fact that the Bayes factor quantifies the evidence of the supported model and strongly depends on the
choice of the prior distributions, the Bayes factor threshold is different for the parameters a and b. Synthetic tests
for a suggest a threshold for the Bayes factor at B = 0.05, whereas B = 0.5 is a reasonable choice for the b‐value.
This means, that for example, for the parameter a, B01 < 0.05 can be interpreted as a decisive evidence against a
model without a change point. The concept can be extended to models with several change points. Here, the Bayes
factor Blk = p(d∣Ml)

p(d∣Mk)
is used, where Ml and Mk denote a model with l and m change points, respectively. We

provide a detailed description of the extended approach in Fiedler, Hainzl, et al. (2018).

In the second step, we use the likelihood function to determine the most likely position of the change point and
check its significance (α = 0.05). This approach avoids smearing effects of the commonly applied moving
window approach (Kulhanek, 2005; Nuannin et al., 2005), where the b‐value is estimated from sliding time
windows with predefined window length and step size. Subsequently, the detected change points are visually
compared with the onset of fluid injection wells (OCC, 2021), and a correlation analysis is performed.
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The refined location of changes in the magnitude‐frequency distribution can be used not only to analyze human‐
induced earthquakes, but also to detect natural transitions in the stress regime. For example, in Fiedler, Hainzl,
et al. (2018) we study possible precursor signals of large magnitude events. Decreasing b‐values have been
observed before major earthquakes (Schorlemmer et al., 2005; Spada et al., 2013; C. H. Scholz, 2015), but the
value of changing b‐values to predict large earthquakes is debated (Imoto, 1991; Kamer & Hiemer, 2013;
Nakaya, 2006; Nanjo et al., 2012; Smith, 1981).

6.3. Results

Figure 5 shows a considerable increase in high‐volume injection wells in Oklahoma after 2010. This onset is
accompanied by change points toward an increasing seismicity rate, starting with a few change point locations in
2010 and leading to a high concentration of change points toward increased seismicity between 2013 and 2015.
We analyze the correlation between the change points and the onset of injection wells in Fiedler, Zöller,
et al. (2018) and find it to be especially pronounced for high‐volume injection wells. This correlation is consistent
with the results of Langenbruch and Zoback (2016), as well as the findings of transients between 2008 and the end
of 2015 by Gupta and Baker (2017) and Montoya‐Noguera and Wang (2017). About 25% of all time series
suggest two or more change points. The later change points are usually associated with a decreased seismic
activity, possibly related to reduced injection volumes (Langenbruch et al., 2018). From around 2016, the ma-
jority of change points reflects a decreasing seismicity rate. This indicates a positive effect of the prohibition of
large injection volumes in 2016.

6.4. Summary and Conclusion

This study analyzed earthquake occurrences in Oklahoma (US) with regard to suspected changes in seismicity as
a consequence of the growing number of industrial projects. Earthquakes belong to the most damaging natural
hazards worldwide. Their occurrence can be favored by man‐made stresses, for example, from mining,
geothermal exploration or hydraulic fracking. While most human‐induced earthquakes are limited to small‐
magnitude events, the US state of Oklahoma reported a rapid increase in seismicity, including events of
magnitude five or higher, since the onset of high‐volume wastewater injections in 2009. We applied a change
point detection algorithm to pinpoint transitions in the magnitude‐frequency distribution of earthquakes recorded
in comprehensive catalogs from Oklahoma and southernmost Kansas from 1 January 2005–31 December 2019. A
Bayes factor that compares the performance of models with no, one or several change points is used to derive the
number of transitions. Subsequently, the likelihood function is used to locate the most likely change point(s). A
correlation analysis of the identified change points with the onset of injection wells confirmed an increase of

Figure 5. Locations and occurrence times of transients for models with one, two or three change points, compared with
approval dates of injection wells between 2005 and 2019 in Oklahoma.Wells that had an approved injection volume>10,000
barrels per day are black. (a) Map of the first occurrence of estimated transitions, (b) latitude‐time plot, and (c) time‐longitude
plot with all estimated change points and injection wells. For all transients, it is illustrated whether an increasing or a
decreasing rate is given.
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seismicity as a consequence of high injection volumes. We further found a cluster of change points with
decreasing seismicity around 2016, which indicate a positive effect of the injection reduction mandate from 2016.
In contrast to trend analyses or the commonly applied moving window approach, the change point algorithm has
no smearing effects and is suitable for detecting rapid modifications of the studied system. The precise deter-
mination of changed seismicity simplifies the detection of the seismic response to naturally or anthropogenically
changed stress regimes and improves the root‐cause investigation.

7. Discussion
7.1. Need and Potential for Time‐Dependent Hazard Models

Table 2 summarizes the five case studies presented, highlighting the specific challenges of the hazards studied and
how these were addressed through tailored approaches. This process has led to new ways of evaluating data and
the development of innovative model designs, providing new insights into changing hazard potentials.

In summary, the individual studies support the hypotheses set out in Section 1.3:

1. Identified changes in hazard potential underscore the need for time‐dependent hazard models to capture dy-
namics (e.g., in frequency, magnitude, space‐time variability) of hazard events, and, thus, contribute to the
dynamics of the associated risks. Significant differences in the manifestations of change are evident, whether
hazards evolve gradually or abruptly, show local increases or decreases, or undergo seasonal shifts.

2. Accordingly, data evaluation methods must be adapted to the specific nature of the hazard under investigation.
The choice of method used should be based on expected changes and problems encountered in data analysis,
rather than on personal preference or popularity of the method. The studies presented are examples of how an
efficient study design was developed through close collaboration between data and earth scientists. This
facilitated the development of time‐dependent hazard models and provided new insights into the hazard type
studied.

In the following, we summarize how the presented hazard analyses pave the way for better quantification of
transient hazards by addressing the aspects outlined in Section 1.2, namely natural variability on temporal and
spatial scales, overlapping and counteracting factors, and limitations in data quality and availability. These ap-
proaches serve as showcases and inspiration for how data science techniques can be used to overcome existing
challenges in natural hazard assessment.

7.2. Challenges in Assessing Natural Hazard Changes

7.2.1. Natural Variability on a Temporal Scale

Understanding the intrinsic temporal variability in natural hazards is key to identifying transient states. For
instance, meteorological dynamics can be characterized by seasonal variations. Annual values, such as annual
mean temperature or annual mean precipitation, ignore seasonal effects and may hide, for example, an increase or
decrease in seasonal amplitudes or timing. Average values (e.g., annual rainfall values) may also mask transient
features in shorter intervals, such as for example, peak rainfall intensity in a sub‐hourly time scale. Sections 3 and
4 use oscillating functions or modes to capture seasonal behavior. By identifying and distinguishing seasonality
from long‐term trends, we receive more distinct information for both components and, in addition, are able to
detect shifts in seasonality. Another often assumed form of temporal variability, namely the random occurrence of
independent events, is typically modeled as a stochastic Poisson process. This is illustrated in Section 6 for
modeling the temporal occurrence of earthquakes. Poisson processes can also be used to estimate return levels of
outburst floods, given that associated triggers such as earthquakes, landslides, or ice avalanches can be considered
as randomly occurring and independent events (Section 5).

Both the frequency and the intensities of events are prone to change. Hazard assessments are typically interested
in the extreme or largest events in a given period, as those are associated with the largest impacts. Extreme events,
such as severe wind storms (Section 2), heavy rainfall (Section 3), very high or low river runoff values (Section 4),
or large glacier lake outburst floods (Section 5) may be defined as the highest (or lowest) quantiles of reported
intensities. This allows us to capture the tails of the probability distribution, which are usually of high relevance
with regard to the damage potential. The occurrence of extreme events can be tied to extreme value distributions
in order to model the probabilistic behavior of rare events (Section 3 and 5).
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7.2.2. Natural Variability on a Spatial Scale

Spatial variability and the peculiarities of different hazard types limit the transferability of hazard models and the
joint evaluation of data from different regions. Section 3 emphasizes that return levels of extreme precipitation in
Germany vary on local and regional scales. While some regions show a general increase in extreme precipitation
intensities, others show a forward or backward shift in seasonality, an increase in seasonal amplitudes, or even
decreasing intensities. Further, Section 5 shows a regionally contrasting pattern of glacier lake abundance, which
controls the likelihood of observing a lake outburst flood. Both studies suggest models that can account for
regional and local differences in magnitude and frequency of the underlying process. Extending Section 3, we
refer to Fischer et al. (2019) and Ulrich et al. (2020), who show how the location can be included in modeling
extreme precipitation. This approach is especially beneficial for rare events and small data sets, since data from
neighboring stations is used to train the model. Section 4 showed that the overall/large scale hydrological runoff
dynamics is resulting from a combination of different hydrographical regions and altitudes of the Rhine River
basin. For understanding the whole region's dynamics it is essential to understand the mechanisms at the sub‐
regional scale.

7.2.3. Superimposing and Counteracting Factors

Superimposing or opposing effects complicate the interpretation of observed results. For instance, the hazard of
flooding could increase due to seasonal shifts in precipitation, if extreme precipitation becomes more likely to
coincide with snow melting. Rising temperatures can have an opposite effect (Section 4). In the European Alps,
rising temperatures reduce snowpacks and consequently decrease the potential for meltwater floods. Moreover,
human impacts, such as changing land use or reservoir construction, can hide less pronounced signals, such as
changes in snowmelt‐induced river runoff. This example illustrates that mechanistic process knowledge is
essential to interpret the results and infer possible consequences. A purely data‐driven analysis that ignores the
interplay of contributing factors may fail to draw relevant conclusions. For example, an unchanged GLOF fre-
quency (Section 5) may point at an unchanged hazard in an unchanged environmental system. Yet, this is in
contrast to the observed growth of glacier lakes in number and size. At the same time, GLOF‐triggering
mechanisms might be affected by changed environmental conditions, for example, the number of lakes
affected by ice avalanches may decrease due to glacier retreat.

7.2.4. Limitations in Data Quality and Availability

Depending on the hazard and region studied, aspects of scarce or inconsistent data can be of high relevance.
Especially remote regions, such as high mountain areas in general and the Himalayas in particular, suffer from
poor instrumentation and limited data. For instance, considering the occurrence of GLOFs, data recordings are not
only incomplete, but also biased towards large and destructive events. Remote sensing can help to systematically
detect, and fill inventories of gravitational and hydrological hazard events without drawing on field work or
eyewitness reports. In Section 5, the time series analysis of satellite imagery helped to compile a more complete
database of GLOFs and to reduce the observation bias. As a result, it increased the reliability of the statistical trend
analysis. In contrast, the remaining studies make use of permanent and continuous monitoring, which form the
basis for robust statistics on seismic data (Section 6), meteorological data (Sections 2, 3 and 4), and discharge data
(Section 4). The amount of data exceeds manual inspection and requires automated data processing with a careful
selection of explanatory variables and model designs. Section 2 illustrates the benefit of including domain
knowledge in the feature selection to retrieve more information when analyzing complex data. Compared to
commonly used windstorm counts, the newly developed storminess metric shows a more distinct signal of the
increasing hazard arising from European winter storms.

7.3. Data Science for Time‐Dependent Hazard Assessments

In summary, to address aspects of natural variability, interfering impacts, and data quality, the analysis of natural
hazards requires the integration of knowledge about the data acquisition and processing, a physical and mech-
anistic understanding of the studied process, and methodological expertise in applicable algorithms and potential
pitfalls of data evaluation. As a consequence, natural hazard analyses benefit from a dynamic feedback between
different branches of research, including statistics, machine learning, and physical models, which describe the
seismological, hydro‐meteorological, ecological or geomorphological processes. To exploit the available data
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most effectively, their analysis needs a careful selection of suitable evaluation techniques with consideration of
the research question and the underlying physics. Especially machine learning approaches may not be completely
traceable and at some points resemble a black box. Moreover, random coincidences or artifacts in the data can
lead to unexpected results. To diminish misinterpretation, the study should be designed to prove or disprove a
certain hypothesis, such that “high wastewater injection rates increase the seismic activity” (Section 6).
Consequently, a useful study design demands physical understanding of the underlying process and knowledge
about applicable algorithms.

In the presented hazard analyses, each study was designed according to the physical understanding of how fre-
quencies, magnitudes, and return periods of the studied hazard might have changed. We applied linear models to
express the belief that hazard frequencies or intensities might have changed more gradually, and less abruptly or
in another more complex form. For instance, in Section 2 the linear model confirms an increasing trend in the
number and intensity of winter storms in Europe. Surprisingly, in Section 5 the linear model shows no trend in
GLOF frequency in the Himalayas, despite a growth of glacier lakes in number and size. This finding is difficult to
explain, and its interpretation requires the consideration of trigger mechanisms and the underlying physical
processes. The models in Sections 3 and 4 are not limited to linear trends, but also account for seasonal behavior
and changes in seasonality. They identify local trends and seasonal shifts for extreme precipitation in Germany
(Section 3) and river runoff in the European Alps (Section 4). In contrast to linear models, a change point model is
preferred if the studied hazard is expected to be subject to more sudden changes. Unlike a trend analysis or a
moving window approach, the change point model can capture sharp responses to abrupt system changes. In
Section 6, a change point model helps to detect the onset of increased or decreased seismicity as a consequence of
changed wastewater injection. In each studied research question, the custom‐fit model selection is key to provide
new findings from the available data.

8. Conclusion
We have presented five case studies to illustrate the multifaceted nature of changing natural hazards in recent
decades. It is important to realize that such changes can become apparent in multiple data characteristics, for
example, in frequency, magnitude, temporal or spatial pattern (either as an organized or random type of vari-
ability), or in a gradual/linear or sudden/abrupt manner. Our selection includes different hazard types and
different manifestations of change: The increasing trend in European winter storms could be highlighted by
showing not only an increase in the number of storms, but also in their severity (Section 2). Different forms of
change could be observed for extreme precipitation in Germany. Increasing and decreasing trends in daily pre-
cipitation extremes could be identified, as well as shifts and changing amplitudes of the seasonal cycle. In
addition, the prediction of return levels could be improved (Section 3). Decreasing snowpack, changes in pre-
cipitation and river engineering are leading to a change in the seasonality of river discharge in Alpine catchments,
with a reduced risk of meltwater‐induced floods but an increased frequency of rainfall‐induced floods (Section 4).
Despite the increasing number and area of glacial lakes in the Himalayas, no change in annual GLOF frequency
has been observed over the last 30 years. However, spatial variations in GLOF hazard are significant and highly
correlated with the abundance of meltwater areas and the change in lake areas over the past decades (Section 5).
The identification of change points in seismicity data from Oklahoma (USA) and their correlation with the onset
of wastewater injection wells improves the attribution of increased seismicity to the onset of high‐volume in-
jection wells (Section 6). The synthesis of the case studies not only demonstrates the need for time‐dependent
hazard models to capture changing hazard potentials, but also illustrates the different ways in which change
can manifest itself, such as gradual versus abrupt changes, altered amplitudes, or seasonal shifts.

Scientific advances in data‐driven methods and the increasing availability of climate‐related and environmental
data have facilitated in‐depth analysis of large data sets beyond human interpretation. This is paving the way for
new opportunities to identify and quantify changes in natural hazards. However, each hazard assessment has
different needs and shortcomings, requiring tailored methodologies. The case studies presented provide strategies
to address specific shortcomings, such as variability on temporal and spatial scales, interacting processes, or
limited data quality. They serve as examples for similar scenarios and suggest assessment techniques tailored to
the specific nature and expected change of the hazard under consideration: Linear models serve to identify gradual
trends, oscillatory functions adequately describe seasonal variations, extreme value distributions are effective in
modeling changes in the most hazardous events, and change point detection techniques are used to identify
sudden shifts and improve attribution to driving forces of change.
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As a final conclusion, we state that

1. The presented combination of studies demonstrates the need for an adequate and customized analysis and
model selection. The choice of an appropriate study design is critical for reliable and efficient hazard
assessment under change. When applied correctly and supported by a mechanistic/physical understanding of
the governing processes, this will enable to disentangle the dynamics about the hazard type under
investigation.

2. Time‐dependent hazard analyzing methods and models enable to capture changing hazard potentials. They
further illustrate the different ways in which change can manifest itself, such as gradual versus abrupt changes,
altered amplitudes, or seasonal shifts.

3. Based on our experiences, we think that an over‐simplification and/or a broad averaging over large scales in
time and space will result in severe loss of information and hide the inherent mechanisms/reasons for changes.
Consequently, this may yield to misleading system's analysis or even prognosis about the future development
of such changes.

4. The symbiotic alliance between data science and earth science is a key determinant of successful time‐
dependent natural hazard assessments.

Data Availability Statement
For the data used in Section 2, all 6‐hourly surface wind speed data from the ERA‐20C reanalysis (Poli
et al., 2016) can be accessed from the European Centre for Medium‐Range Weather Forecasts (ECMWF) portal
(ECMWF, 2019). Daily precipitation sums for stations in Germany considered in Section 3 are provided via the
open‐data server of the German Weather Service (DWD, 2022). Discharge data presented in Section 4 were
obtained from the Global Runoff Data Centre (GRDC, 2020). GLOFs, Section 5, were detected by Landsat,
Shuttle Radar Topography Mission, and GTOPO30 data that are available from the US Geological Survey
(earthexplorer.usgs.gov). Landsat images were preprocessed via the Earth Resources Observation and Science
Center Science Processing Architecture ESPA (espa.cr.usgs.gov). Data and codes to estimate GLOF return pe-
riods are published by Veh, Korup, and Walz (2019) and available at GitHub (github.com/geveh/GLOFhazard).
The data used in the Oklahoma case study in Section 6 can be obtained from Oklahoma Geological Survey
(OGS, 2021) and the Oklahoma Corporation Commission (OCC, 2021).

Data in Sections 2, 3, 4 and 5 were analyzed and visualized using the open‐source statistical programming
software R (R Core Team, 2019). The simulations in Section 6 were conducted using R (R Core Team, 2019) and
Python (Python Core Team, 2017). Figure 5 was generated using the Generic Mapping Tools (Wessel &
Smith, 1998, 2007).
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