
Vol.:(0123456789)

Progress in Additive Manufacturing
https://doi.org/10.1007/s40964-024-00660-7

FULL RESEARCH ARTICLE

Design and implementation of a machine log for PBF‑LB/M on basis
of IoT communication architectures and an ETL pipeline

Konstantin Poka1 · Sozol Ali1 · Waleed Saeed1 · Benjamin Merz1,2 · Martin Epperlein1 · Kai Hilgenberg1

Received: 2 May 2024 / Accepted: 7 May 2024
© The Author(s) 2024

Abstract
Powder Bed Fusion with Laser Beam of Metals (PBF-LB/M) has gained more industrial relevance and already demonstrated
applications at a small series scale. However, its widespread adoption in various use cases faces challenges due to the
absence of interfaces to established Manufacturing Execution Systems (MES) that support customers in the predominantly
data-driven quality assurance. Current state-of-the-art PBF-LB/M machines utilize communication architectures, such as
OPC Unified Architecture (OPC UA), Message Queuing Telemetry Transport (MQTT) and Representational State Transfer
Application Programming Interface (REST API). In the context of the Reference Architecture Model Industry 4.0 (RAMI
4.0) and the Internet of Things (IoT), the assets, particularly the physical PBF-LB/M machines, already have an integration
layer implemented to communicate data such as process states or sensor values. Missing is an MES component acting as a
communication and information layer. To address this gap, the proposed Extract Transform Load (ETL) pipeline aims to
extract relevant data from the fabrication of each build cycle down to the level of scan vectors and additionally to register
process signals. The suggested data schema for archiving each build cycle adheres to all terms defined by ISO/TC 261—
Additive Manufacturing (AM). In relation to the measurement frequency, all data are reorganized into entities, such as the AM
machine, build cycle, part, layer, and scan vector. These scan vectors are stored in a runtime-independent format, including
all metadata, to be valid and traceable. The resulting machine log represents a comprehensive documentation of each build
cycle, enabling data-driven quality assurance at process level.

Keywords Data-driven quality assurance · Laser powder bed fusion · FAIR data

1 Introduction and motivation

Upon entering the shop floors of production facilities, new
requirements emerge in terms of process control and data
acquisition for PBF-LB/M [1]. To integrate AM machines
into value chains of production, they should be interoperable
with the Enterprise Resource Planning (ERP) systems [2].
This interoperability is crucial to manage orders. The MES
distributes them across the fleet to the specific machine and
obtains the data of the fabrication as feedback. In the MES,

an entity of a build cycle should, therefore, get enriched
with a set of all relevant data of the fabrication in order to
be able to apply statistical process control (SPC) [3]. Such a
dataset as the output of an ETL pipeline would be a traceable
record of each build cycle for PBF-LB/M. The objective of
this work is to generate it in a form of a PBF-LB/M machine
log containing the instructions for the AM machine together
with an image of the specific machine including all involved
hard- and software components of the fabrication. External
monitoring systems are not in the actual scope. Nevertheless,
the process signals from the AM machine during fabrica-
tion could already generate a holistic view at process level.
For that, the time series data published via an IoT protocol
of the AM machine need to be registered on the fabrica-
tion instructions. This registration manifests a correlation
between the timestamp, the sensor value, and the process
entities, e.g., part and layer. By tracking the conditions of
each layer and sensor changes during its fabrication, an easy
root cause analysis is enabled. This analysis can then be

 * Konstantin Poka
 konstantin.poka@bam.de

1 9.6 Additive manufacturing of metallic components,
Bundesanstalt für Materialforschung und –prüfung (BAM),
Unter Den Eichen 87, 12205 Berlin, Germany

2 Institute of Machine Tools and Factory Management,
Technische Universität Berlin, Pascalstraße 8-9,
10587 Berlin, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s40964-024-00660-7&domain=pdf
http://orcid.org/0000-0001-7340-8822
http://orcid.org/0009-0007-5703-2483
http://orcid.org/0009-0000-0777-0604
http://orcid.org/0000-0002-7463-1556
http://orcid.org/0000-0002-6635-8158
http://orcid.org/0000-0001-8875-6547

 Progress in Additive Manufacturing

further supported by machine learning algorithms, due to
the high data quality of the proposed machine log. Once
the data is structured and mapped, the feature extraction is
considerably simplified [4]. To achieve this, the following
two questions are answered from the view of PBF-LB/M:

• How to retrieve the fabrication instructions and applied
parameters runtime independent?

• What are the limitations of the proposed ETL pipeline
and the overall setup?

2 Applied data sources

In the initial implementation, only process signals that
are natively supported by the basic configuration of the
AM machine are considered. Monitoring equipment,
such as Powder Bed Cameras, Melt Pool Monitoring
(MPM), or Optical Tomography (OT), is not incorporated.
Nevertheless, the requirement to integrate these sources
in future is considered during the design of the ETL
pipeline. For the creation of the PBF-LB/M machine log,
the data is organized and, if suitable, registered within

the Machine Coordinate System (MCS). In any case, all
process signals are synchronized to a common time scale
in the format “yyyy-MM-dd HH:mm:ss.SSS” within the
ETL pipeline. Subsequently, the smallest entity, which is
used for data registration, is a scan vector. It is provided
with a timestamp as well as start and end coordinates in
the MCS. On the premise of an identical system time of
the measurement device and a transformation rule on the
MCS, the registration of external signals on the level of a
hundredth of a second can therefore be enabled. To achieve
this, the depth of information, mainly influenced by the
actors equipped with interfaces and sensors, as well as the
measurement frequency supported by each data point, needs
to be analyzed first [5]. The utilized multi-laser AM machine
is an EOS M 300–4.

Its structure can be described abstractly by the automa-
tion pyramid in Fig. 1. At the field level, all drives of the
actors, of the z-axis of the build platform, of the recoater,
of the feed system and of the compressor of the filtration
system, transmit their current operating mode and addi-
tional information, such as torque, position, and rotations
per minute (rpm), as a message. These messages, including
a timestamp, are sent to the Programmable Logic Control

Fig. 1 PBF-LB/M machine and Extract Transform Load (ETL) pipeline within the automation pyramid

Progress in Additive Manufacturing

(PLC) controller at the operational level via a Binary Unit
System (BUS) [6]. This communication model is in addi-
tion deployed for all sensors to establish a process control
based on their signal values. The so-captured data can be
categorized into the physical locations of the filtration
system, the build chamber, and the environment. For the
filtration system, the measurands include the oxygen con-
centration, the flow rate of the shielding gas, and the pres-
sure difference of the in- and outlet. In the build chamber,
the oxygen concentration of the atmosphere, the pressure,
the humidity, and the temperature can be retrieved, along
with the temperature of the build platform. To also moni-
tor external influences, humidity and temperature at the
installation site of the AM machine are tracked. The core
component of each PBF-LB/M machine, the laser unit, is
an exception to this seamless integration into the machine
network. The assembly of a laser unit comprises a laser
source, a control card, and a scan head.

The counterpart to the PLC controller at the operational
level is the laser control card. Unlike the PLC, it does not
support an open industrial Ethernet standard such as Process
Field Network (PROFINET) in this AM machine, see Fig. 1.
The tilting commands for the mirrors of the scan heads are
transmitted from the laser control card via a proprietary SL2-
100 protocol. Simultaneously, the modulation combined
with the output power of the beams, is transferred to the
laser sources. The execution of the scan vectors, regulated
by these controls and adjusted process parameters, such as
scan speed and laser power, takes place at a repetition rate
of up to tens of kHz [7]. Despite the proprietary protocol,
some data selected by the Original Equipment Manufacturer
(OEM) can be accessed by the process control level through
the Industrial Personal Computer (IPC). For each laser
source, the operation time since the Installation Qualification
(IQ) of ASTM 52930 [8], the rated laser power from the
last calibration, and the current temperature are logged.
However, the data of the scan vectors are not recorded.

A retrofit for the extraction of this data is not feasible
as the laser control card lacks an interface and cannot be
replaced without significant intervention in the machine
network in the current setup. A workaround is established
in Sect. 2.2, to at least obtain the data of the fabrication
by an external source. The file of the build cycle, storing
the instructions of the fabrication, is parsed assuming an
ideal process with no additional delays. All other internally
available datums collected by the PLC and the laser control
card are aggregated by the IPC executing the Supervisory
Control and Data Acquisition (SCADA) system, visualized
in Fig. 1. At the level of process control also, an interaction
via the Human Machine Interface (HMI) is implemented
to set for instance the recoater speed and mode. All

settings forwarded through the HMI, if supported, and the
datums of the field level are published via the installed
IoT communication architecture hosted by the IPC. The
so-transferred data serves as the input for the ETL pipeline,
which registers the data on process entities, such as part and
layer. By adopting a standardized integration layer of RAMI
4.0, functionality across platforms is guaranteed [9].

2.1 Deployed IoT communication architecture

The PBF-LB/M machine of this work supports three IoT
communication architectures, each with distinct scopes
and applications [10]. The first is the OPC UA with its own
standard IEC 62541 [11], overseen by the OPC foundation.
It promotes device interoperability by establishing standard
APIs rather than proprietary ones, and categorizes system
software into clients and servers, with servers often located
on devices like the PBF-LB/M machine IPC [12]. The OPC
UA device model ensures semantic interoperability, defining
generic object APIs even in AM contexts, as specified in the
working draft of OPC UA 40540 [13]. The authentication
of the client is strengthened in this setup through self-
signed certificates and the Secure Hash Algorithm 256-
bit (SHA256), ensuring secure communication. Entities, like
devices and servers, can generate their own certificates, with
SHA256 maintaining their integrity. This procedure adds an
additional layer of security by verifying the integrity of the
certificates and confirming their authenticity. This forms a
robust foundation for secure OPC UA communication [14].

The second implemented architecture is MQTT. It is
widely used in IoT, facilitates lightweight and efficient
device communication through a publish/subscribe model,
enhancing scalability. Known for its simplicity, MQTT is
suitable for resource-constrained environments, excelling
in high-throughput scenarios. Notably, MQTT operates
without the need for a permanent connection, contributing
to its flexibility and adaptability. Authentication in MQTT
involves username–password pairs or advanced mechanisms
like Transport Layer Security (TLS), crucial for securing
data transmission. However, MQTT is not considered
further, as the PBF-LB/M machine on this testbed supports
only a limited number of data points and its spread in
industry is lower [10].

The third supported architecture is a REST API as a
specific implementation of the REST architecture tailored
for a particular system, as observed on the IPC of the applied
PBF-LB/M machine. When aligned with REST principles,
it transforms into a RESTful API, delineating accessible
resources through REST. While REST does not prescribe
a specific technology, it is commonly implemented using
the Hyper Text Transfer Protocol (HTTP). Resources are

 Progress in Additive Manufacturing

identified by unique Uniform Resource Identifiers (URI),
like the structure of web page addresses [15]. On the
IPC of the PBF-LB/M machine, Swagger, a tool for API
documentation, is deployed to enhance and simplify testing
and exploration. API keys, serving as unique identifiers,
are used for user authentication. Importantly, custom logics
can be implemented for transferring process data, extending
functionalities beyond what is covered by the OPC UA
protocol in its standard usage, such as MPM or OT datasets.

In the following, the two remaining architectures, OPC
UA and REST API, are evaluated for their suitability in the
ETL pipeline, using the recoater torque machine datum as
an example. The evaluation focuses on request speed and
response rate, as well as on the robustness of the traffic.
Therefore, the corresponding OPC UA node ns = 4; s = EOS.
Machine.Recoater.AxisTorque is monitored via polling to
retrieve the value every 0.1 s.

Additionally, the value is queried via the REST API using
the GET request with curl: -X GET.

“https:// < SI > /api/v6/recoater/axisTorque/current”.
Both data queries are conducted separately for one hour

each. The results are visualized in Fig. 2. It can be inferred
that the OPC UA Client, implemented via the Python library
opcua-asyncio, performs more efficiently in handling the
request load and resulting traffic. In an ideal scenario, the
client would retrieve 36,000 values per hour from the OPC
UA server.

However, due to latency, the overall number of consumed
values is 4,322 lower. This corresponds to a mean delay of
0.014 s for each transaction of the machine datum published
via the OPC UA server. Opting for the OPC UA server as
the source for machine data allows a more detailed examina-
tion of the latency between the creation of the sensor value
and its retrieval. This latency is indicated by the differences

between the source timestamp, which is assigned by the ded-
icated component of the PBF-LB/M machine during sensor
value creation, the server timestamp when it is published,
and the timestamp when the value is retrieved at the cli-
ent. To ascertain this crucial parameter, pivotal for drawing
conclusions regarding real-time capability, the torque sensor
undergoes further interrogation. However, this investigation
is conducted in subscription mode to mitigate the load in
subsequent implementations in the ETL pipeline [10]. In
this operating mode, a new value is only published when it
surpasses a threshold represented by the dead band value.
The value is then disseminated with a frequency at maxi-
mum equal to the revised sampling rate. In the case of the
torque sensor, the sensor exhibits a measured value flicker
above the dead band value, thus generating artificial traffic.
The subscription to this allows a comparison of the source
timestamp, server timestamp, and client timestamp during
the retrieval process presented in Fig. 3. This evaluation is
only valid under the premise that the server and the client
are using the identical time server. The mean delay in the
internal network of the machine is 200 ms. The average
delay between the published value and the retrieving of the
client is 900 ms. It can be assumed that the sensor values can

Fig. 2 Comparison of response speed of IoT protocols Fig. 3 Evaluation of the real time capability

Progress in Additive Manufacturing

be accurately assigned to build cycle entities, such as layer
and part, provided that the revised sampling rate permits
this. Despite the noted delay, this method is even suitable
for rudimentary closed-loop control. For documentation
purposes, the source timestamp of each machine datum is
utilized because it is as precise as the integration time of the
individual sensor.

For the execution of the individual scan vector, no data
can be mapped precisely. This is due to the latency time and
the low revised sampling rate of a maximum of 10 Hz of
the AM machine data, as the repetition rate of the scanning
heads is up to several tens of kHz in comparison. The
values of the machine data points can only be registered
to multiple scan vectors and their timestamps of a cross-
section of one part within one layer. All scan vectors within
a time range are assigned to the sensor value valid for this
range. A method for retrieving the pre-computed timestamps
of the fabrication and the applied parameters in a runtime-
independent format via a Software Developer Kit (SDK) is
presented in the next section.

2.2 Extraction of scan vector data via SDK

Since the smallest entity for data registration in the proposed
ETL pipeline is a scan vector, it is essential to extract this
data from each build cycle.

Nevertheless, it is neither available via the OPC UA
nor the REST API. The OPC UA protocol is not designed
to transfer the data of the scan vectors in parallel with the
fabrication in terms of signal cycle times and signals per
second. Additionally, as discussed earlier in this section,
there is no interface implemented on the applied PBF-
LB/M machine, where for instance, a custom REST API
could retrieve this data from and provide it asynchronously
to the fabrication. However, the machine is executing the
scan vectors during the build cycle, so the information
must be available. To access them, the build cycle file, for
EOS in a.openjz format, gets parsed prior to fabrication.
It contains the geometries of the parts, the parameter set
and the instructions on how to create a format that can be
executed by the PBF-LB/M machine. The task of slicing and
mapping the parameters on each scan vector, depending on
its section within the part, is performed via an SDK [16].

The PBF-LB/M machine that is applied operates a pri-
ori. As a result, the entire build cycle is pre-computed in
advance. In this work, it is processed layer by layer and con-
verted into JavaScript Object Notation (JSON) format by an
external Python script. Thereby the start and end points of
each vector are accessible. This information corresponds to
what will be executed on the machine, along with the laser
parameters applied during fabrication, assuming no process

deviations. To ensure accuracy, a current image of the AM
machine, which includes the calibration of the scan heads
and laser sources, is retrieved before compiling the instruc-
tions for fabrication. A coarse program workflow is given in
Fig. 4, an exemplary output is given in Sect. 4.4.

3 Data pipeline concept

The key requirement for the ETL pipeline is to capture the
process signals in situ and register them on the process enti-
ties, such as the AM machine, build cycle, part, layer, and
scan vector. To achieve this, the machine data from the fab-
rication are accessed via the OPC UA server of the AM
machine and the corresponding scan vectors data is extracted
via an SDK. Both data sources must be integrated into a
single ETL pipeline. Since the OPC UA server represents
a dynamic data source [17], the concept of streaming the
data in five stages is applied, see Fig. 5. The first stage,

Fig. 4 Scan vector extraction of a build cycle

 Progress in Additive Manufacturing

also called connect stage, involves authenticating the cli-
ent and establishing a robust subscription to the machine
datums. In the second stage, also known as the govern stage,
the data stream is organized into topics via a distributed
event streaming platform. Here the loosely published data
points, provided only with an identifier and timestamp, are
aggregated. This process tends to have a maximum offset
in the range of seconds, as shown in Fig. 3. The distributed
event streaming platform performs the initial caching via
the brokers of its cluster and maps the data points based on
their identifier to the topics “AM machine”, “Build cycle
setup”, “AM machine sensor”, and “AM process state”, see
Fig. 5. Utilizing this concept, a cardinality is introduced.
The machine datums of topic 1 and topic 2, shown in Fig. 5,
remain static once a build cycle is initialized. Serial numbers
of soft- and hardware components are then constants since a
change of this data is unlikely during fabrication. This also
reduces the data traffic. However, the topics of AM machine

sensor and AM process state present a different scenario.
The machine data associated with these topics are linked
to the fabrication and fluctuate within certain limits ran-
domly. This variability is inherent to the fabrication and is
also expected under normal operating conditions. Therefore,
the data points need to get further processed and aligned to
one common time scale with fixed increments. Otherwise,
it is not possible to register and link data measured with dif-
ferent revised sampling rates on the process entities. This
is particularly true when the threshold for a value has not
been exceeded for a longer duration and no new value has
been published. To address this issue, a common time scale
is established from the start. The size of increments is gov-
erned by the highest revised sampling rate of all machine
datums. All machine datums with a lower sampling rate,
or those that did not change and are therefore not repub-
lished, are maintained as valid by the concept of resampling
with forward fill. This ensures that a request by a user at

Connect

Continous
data stream

Govern

Tag and
secure data
stream

Enrich

Synchronize,
process, and
cleanse

Build

Create data
container for
application

Share

Multicast
to any
destination

Topic 1:
AM machine

Topic 3:
AM process state

Topic 2:
Build cycle set up

Topic 4:
AM machine sensor

Topic 1:
AM machine

Topic 5:
Layer set up

Topic 2:
Build cycle set up

Topic 4:
Build cycle pre process

Topic 6:
Layer fabrication

Topic 9:
Build cycle post process

Topic 7:
Layer tool path

Topic 8:
Build cycle pause

Topic 10:
Build cycle fabrication

Data product 2:
Industrialmachine log

Data product 1:
Scientificmachine log

0 1 23 45

old new

0 1 23 45

old new
SDK

Producer Stream

processing

Transformation

and creation

Saving and

archiving

Database
Topic 3:

AM process state

Machine Execution System

Software Developer Kit

RepresentationalState Transfer

SDK

Enterprise Resource Planning

Message Queuing

Telemetry Transport

OPC Unified Architecture

Build cycle

Machine produces
datums and hosts
OPC UA server,
SDK exports scan
vector data

Broker cluster

Subscription to
machine, tags and
secures data,
stream is parallel
to process

Broker cluster

Synchronization,
cleaning,
asynchronously
enrichment by
scan vector data

Transform

Consumption of

topics of enrich
stage, transfor-
mation of topics
to documents

Storage

Historical archive
of build cycles,
one coordinate
system and one
time scale

Fig. 5 Stateful ETL pipeline concept and setup with images from [16]

Progress in Additive Manufacturing

the database will access all relevant information without the
need to manually query the otherwise missing values and
apply domain knowledge to do so.

This stream processing takes place in a distributed
computing framework between the govern and the enrich
stage from Fig. 5. It assures that the topics in the enrich
stage are already consisting of agglomerated data points
for the respective entity. The distributed event streaming
platform, again hosting these topics via the brokers, its
cluster receives the data asynchronously to the process itself
due to the computation time of the resampling. However,
this modular concept provides near real-time data at the
governing stage and processed data sets at the enrichment
stage, where external sources like the output of an SDK can
be coupled in. The enriched data is then organized into a
data product, in this case a sink, which serves as an archive
in the proposed ETL pipeline. This data product allows the
structured storage of a build cycle. It is structured in a way
that queries for various entities, such as a specific layer and
the valid conditions during its fabrication, like the torque
curve for recoating, can be performed efficiently. For this
functionality and to support the claim of understanding
with the lowest possible amount of domain knowledge, a
No Standard Query Language (NoSQL) database schema
is engineered, as shown in Fig. 6. The database where the
schema is implemented is document oriented. This approach
is particularly suitable for PBF-LB/M and its high degree
of freedom of process characteristics, as it allows data to
be organized without the need for bridging tables [18, 19].
In a relational SQL database, these tables, which serve
solely as links and contain no additional information, are
a requirement. In the NoSQL database schema of Fig. 6,
instead, each table represents a collection of documents, as
indicated by bold entries. Each document stores the values
of the assigned OPC UA nodes, which are processed and
forwarded trough the topics of the enrichment stage. The
cardinality is established through the time stamp aligned
with the timescale of the build cycle, the process states of
the AM machine, and the layer identifier. This approach
offers the adaptability needed for altering the data schema or
incorporating new data sources. For instance, it simplifies the
extension by a new data source by allowing the creation of
a new collection, thus avoiding the complexities associated
with a rigid SQL database. To facilitate the sharing aspect
of the data product at the last stage of Fig. 5, the NoSQL
schema used to register the stream during the build stage is
designed with established semantics and, wherever possible,
ontologies are considered.

Initially, all terms from the ISO/TC 261—Additive
Manufacturing standards are collected by web scraping

the official International Standard Organization (ISO)
Online Browsing Platform (OBP), where term definitions
can be viewed in the preview of each standard. This list is
then compared with all terms from the National Institute
of Standards and Technology (NIST) AMS 500–1 [20] in
addition to the F3490 -21 [21], also including their ontology.
The data schema engineered in this work contributes to
filling the gap of a standardized machine log file, identified
in the standardization roadmap [22].

By maintaining the same ontology for already described
relations, such as the AM machine and build chamber,
along with the semantics, interoperability with the stated
Common Data Exchange Formats (CDEF) [20] is achieved.
The remaining open term definitions, especially in the field
of AM process states, are taken from the OPC UA release
candidate 40001–3 [23]. Utilizing established terminologies
and ontologies like for CDEF, the schema is user-friendly
and easily understandable. This approach also provides a
solid foundation for further inquiries, enhancing scientific
integrity of the schema.

4 Data pipeline setup

The ETL pipeline is configured as a standalone Docker
application. This design ensures independence from the
computational system on which it is executed [19]. Supple-
mentary, it enables sharing of the host system resources,
making it more efficient than a Virtual Machine (VM).
The implementation of the ETL pipeline, depicted at the
bottom of Fig. 5, is composed out of microservices. Each
microservice operates within its own container, orches-
trated by Docker Compose, which establishes connections
between the containers by opening the necessary ports.
This approach facilitates inter-container communication
and enhances the overall efficiency of the application. At
the beginning of the pipeline, a Python producer retrieves
data from the PBF-LB/M machine via the OPC UA server
and transmits it to the brokers of the Apache Kafka clus-
ter, see Fig. 5. The records of these topics of the govern
stage are subsequently relayed to PySpark, where they are
further processed, as explained in Sect. 3. Thus, the struc-
tured data gets then extended by the output from the SDK
and is cached again at the Kafka cluster in the topics of
the enrich stage. Ultimately, a connector to MongoDB is
employed to perform type casting and store the process
signals as a machine log. The microservices and especially
the triggers of the ETL, which are controlling the logic
of tasks such as the assignment of nodes based on their

 Progress in Additive Manufacturing

values to different topics, are discussed in detail in the
following subsections.

4.1 ETL pipeline triggers

To initiate the pipeline, the Python producer subscribes to
the node of the OPC UA server that indicates whether the
PBF-LB/M machine is operational. When the state changes
to true, the pipeline subscribes to all relevant nodes of the
OPC UA server. For further processing between the govern
and the enrich stage, as shown in Fig. 5, additional logic
is required. Wherever possible, in accordance with the
namespace of OPC UA 40001–3 [23], basic process states
and events are declared to describe a unique subprocess
during a build cycle. This enables the mapping of process
signals to process entities. Therefore, the six machine states
“AM machine idle”, “Build cycle pre-process”, “Build cycle
processing”, “Build cycle error”, “Build cycle pause”, and
“Build cycle post process” are defined for PBF-LB/M.
These states, in conjunction with the identifier of each layer
and the declaration of the result of each build cycle, are
establishing a set of variables for uniquely defining each
topic in the ETL pipeline. As a result, the pipeline must
exhibit conditional behavior, often referred to as stateful.
The optimal implementation of each condition is achieved
by minimizing the logical terms of each process state. This
is accomplished utilizing the declaration of each process
state, based on domain knowledge, as a starting point. The
Espresso Algorithm, a heuristic logic minimizer [24], is then
used to carry out this optimization via the implementation
of the Python library pyeda. The pipeline, depicted in Fig. 5,
is triggered by this logic and autonomously performs the
agglomeration and structuring into the topics. This process
is based on the values of the OPC UA nodes, or more
specifically, the edges of their resulting signals. It is tested
and validated against a VM simulating the EOS M 300–4,
which is hosted on Microsoft Azure and creates mock data.

4.2 Producer

The OPC UA client is implemented using the Python library
opcua-asyncio, as detailed in Sect. 2.1. The subscription of
the client is configured through a Python script that queries
the available nodes of the OPC UA server. It registers the

relevant nodes to the terms from the database schema, of
Fig. 6. These nodes are then incorporated into the pipeline
through JSON configuration files for the stream set-up.

4.3 Broker cluster govern stage

The Kafka cluster hosts the four topics from Fig. 5. It is
responsible for receiving incoming messages from the
Python producer, storing, and serving them to the streaming
processor PySpark synchronously.

Messages are stored in a key–value format, where the key
is the node id of the OPC UA schema, and the value is the
measurand of the OPC UA node. These records are stored
along with a timestamp in topics. The topics are distributed
and replicated across the brokers of the Kafka cluster to
ensure fault tolerance and enable load balancing. Within a
partition, records are stored in the order they are written.
The Kafka cluster of the test bed uses 1 partition per topic
with a replication factor of three, striking a good balance
between redundancy, storage resources and future scalability
for a fleet of machines. The maximum retention is set to two
weeks. This implies that in the event of a sink failure, the
data can be recovered within this timeframe.

4.4 Streaming processor

The primary logic of the pipeline, in conjunction with the
assurance of data integrity through resampling as outlined
in Sect. 3, is executed utilizing micro batching, implemented
via PySpark. Depending on the state of the build cycle and
the AM machine, which is represented by specific combi-
nations of the values of the OPC UA nodes, the stream is
asynchronously divided into the topics of the enrich stage.
Records within these topics are structured in a way that facil-
itates their registration on process entities, such as a layer. In
PySpark, the enrichment of information through scan vectors
is conducted, as the output of the SDK is coupled into the
pipeline. This integration imports the corresponding scan
vectors for each layer of the build cycle, as well as the set-
tings for each part. An extract of the SDK output, which is
prepared to align with the data schema, is presented below
for one part, its initial layer, and the first scan vector of this
layer.

Progress in Additive Manufacturing

{"1": {

"beam_compensation": "0",

"hatch_origin": "MCS",

"id": "2023_10_30_Gyroid",

"process_parameter_set":

"AlSi10Mg_060_CoreM304_102_Default_DirectPart",

"scaling_x": "0",

"scaling_y": "0",

"translation_x": "0",

"translation_y": "0"}

}

{"layer_1": {

"delta_z": 60,

"exposed_part": ["2023_10_30_Gyroid"],

"sdk_id": 2023-29-14 20:15:15,

"position_z": 60,

"vector_1": {

"end": {"x_mm": 152.343,

"y_mm": 148.447},

"exposure_unit": 0,

"inter_vector_time": 0.0,

"laser_power": 315.25,

"part_id": "2023_10_30_Gyroid",

"scan_speed": 1210.0,

"start": {"x_mm": 152.390,

"y_mm": 148.544},

"timestamp": 1640.0,

"type": "INFILL"},

}

}

4.5 Broker cluster enrich stage and sink

The topics of the enrich stage of the Kafka cluster are serv-
ing as modular instances, extending the pipeline for potential
integration of external data sources like an MPM, given that
the connection to the machine log is already established.
Additionally, they are natively feeding data to the cor-
responding collection of the NoSQL database MongoDB
via a Kafka connector. This setup provides high flexibility,
enabling adjustments in the scope of the extracted and per-
manently stored data, to realize different data products, as
shown in Fig. 5. The schema of the data product for this
work is designed using Hackolade, a NoSQL schema mod-
eler. This tool facilitates a swift iterative design process
through forward-engineering. The database schema is illus-
trated in a compressed form in Fig. 6, excluding the nested
documents within collections. This schema circumvents the

16 MB per document limitation of MongoDB and enables
selective data retrieval during querying the database. In
addition, it can accommodate data with high variance, such
as the number of components and layers.

5 Conclusion and outlook

The proposed ETL pipeline establishes a seamless connection
from the SCADA to the MES level. The scalable and extenda-
ble data pipeline, made robust through Docker, ensures consist-
ent operation across all environments. This pipeline can accom-
modate the three main IoT communication architectures for data
acquisition. It requires adjustments only to the Python producer
to establish the connection and retrieve the data, as explained in
Sect. 2.1. This flexibility allows it to address various network
technology limitations, such as available bandwidth or stability.

 Progress in Additive Manufacturing

The ETL pipeline empowers users to customize data acquisition
based on their application needs, by configuring their own data
product. For example, a real-time dashboard can be mounted on
the govern stage due to its low latency. In the current test bed,
the data provides valuable and easily interpretable insights into
machine health and production operability, detailed at the scan
vector level. Additionally, Key Performance Indicators (KPIs),
such as the Overall Equipment Effectiveness (OEE), can be
derived. The provision of data in a runtime-independent format
supports the FAIR principles (Findable, Accessible, Interoper-
able, and Re-usable) for PBF-LB/M. Therefore, the domain
knowledge required to evaluate the data is reduced. No specific
software is mandatory to access the fabrication data or retrieve
the image of the AM machine of the fabrication. The only flaw
in this work is that currently the timestamps are pre-computed
for each layer. This procedure is assuming an ideal process with
no additional delays, like the cleanse of the filtration system
within a build cycle.

It can be resolved by retrieving the actual timestamp
of each scan vector through access to the traffic of the
SL2-100 protocol, see Fig. 1. Therefore, discrepancies
between the instructions and the fabrication itself, as also
reported in the literature, can be qualified [25]. By substi-
tuting the now pre-computed timestamps against the real
timestamps, the data quality can be further increased on
the level of scan vectors. This extension, as well as the
incorporation of MPM data, will be carried out in future.

Appendix

NoSQL schema of the PBF‑LB/M machine log

Fig. 6 NoSQL data base schema and cardinality of the MongoDB instance down to the level of first order documents

Progress in Additive Manufacturing

Acknowledgements Gratitude is extended to Pascal Desmarets for
providing guidance for the use of Hackolade, which expedited the
data schema design process for MongoDB and facilitated an iterative
and collaborative approach through forward-engineering. The authors
also acknowledge the contributions of Michael Scharf from EOS, who
generously shared his expertise on the SDK and provided support for
validating the ETL pipeline via the VM of the EOS M 300-4, as part
of the EOS Developer Network (EDN).

Funding Open Access funding enabled and organized by Projekt
DEAL.

Data availability Selected code components and data records will be
made available on request.

Declarations

Conflicts of interest The authors declare that there is no conflict of
interest for the present work.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Wohlers TT, Associates W, Campbell I, Diegel O, Huff R, Kowen
J, Mostow N, Staff WA. (2021). Wohlers Report 2021: 3D printing
and additive manufacturing global state of the industry. Wohlers
Associates, Incorporated

 2. Bartsch K, Pettke A, Hübert A, Lakämper J, Lange F (2021) On
the digital twin application and the role of artificial intelligence
in additive manufacturing: a systematic review. J Phys Mater
4:032005

 3. Yang H, Rao P, Simpson T, Lu Y, Witherell P, Nassar AR, Reutzel
E, Kumara S (2021) Six-sigma quality management of additive
manufacturing. Proc IEEE 109:347–376

 4. Zhang Y, Safdar M, Xie J, Li J, Sage M, Zhao YF (2022) A sys-
tematic review on data of additive manufacturing for machine
learning applications: the data quality, type, preprocessing,
and management. J Intell Manuf. https:// doi. org/ 10. 1007/
s10845- 022- 02017-9

 5. Zhang L, Chen X, Zhou W, Cheng T, Chen L, Guo Z, Han B, Lu L
(2020) Digital twins for additive manufacturing: a state-of-the-art
review. Appl Sci 10:8350

 6. Kuhn T, Antonino PO, Schnicke F. (2020) Industrie 4.0 virtual
automation bus architecture. In: Software Architecture: 14th
European Conference, ECSA 2020 Tracks and Workshops,
L'Aquila, Italy, September 14–18, 2020, Proceedings 14, pp.
477–489. Springer,

 7. Höfflin D, Sauer C, Schiffler A, Hartmann J (2022) Process
monitoring using synchronized path infrared thermography in
PBF-LB/M. Sensors 22:5943

 8. Standardization IOf. (2022) DIN CEN ISO ASTM TS 52930
April 2022 Additive fertigung grundlagen der qualifizierung
installation funktion und leistung (IQ OQ PQ) von PBF-LB
Anlagen. vol. DIN CEN ISO ASTM TS 52930.

 9. eV DIfN. (2016) Referenzarchitekturmodell industrie 4.0
(RAMI4.0). DIN SPEC 91345,

 10. Profanter S, Tekat A, Dorofeev K, Rickert M, Knoll A. (2019)
OPC UA versus ROS, DDS, and MQTT: performance evalu-
ation of industry 4.0 protocols. In: 2019 IEEE International
Conference on Industrial Technology (ICIT), IEEE.

 11. Standardization IOf. (2021) DIN EN IEC 62541–5 August 2021
OPC unified architecture teil 5 informationsmodell. DIN EN
IEC 62541–5.

 12. Morato A, Vitturi S, Tramarin F, Cenedese A. (2020) Assessment
of different OPC UA industrial IoT solutions for distributed meas-
urement applications. In: 2020 IEEE International Instrumentation
and Measurement Technology Conference (I2MTC). IEEE,

 13. Anlagenbauer VDM-u. (2023) OPC UA for Additive Manufactur-
ing. VDMA 40540.

 14. Gamper S, Poudel BK, Schriegel S, Pethig F, Jasperneite J (2020)
Untersuchung der Netzlastrobustheit von OPC UA-Standard, Pro-
file, Geräte und Testmethoden. Kommunikation und Bildverar-
beitung in der automation: Ausgewählte Beiträge der Jahreskol-
loquien KOMMA und BVAu 2018. Springer, Berlin Heidelberg

 15. Garg H, Dave M. (2019) Securing IoT devices and securely con-
necting the dots using REST API and middleware. In: 2019 4th
International Conference on Internet of Things: Smart Innovation
and Usages (IoT-SIU). IEEE.

 16. Poka K, Merz B, Epperlein M, Hilgenberg K. (2023) Integration
of the whole digital chain in a unique file for PBF-LB/M: practi-
cal implementation within a digital thread and its advantages. In:
International Conference on Additive Manufacturing in Products
and Applications. Springer.

 17. Burger A, Koziolek H, Rückert J, Platenius-Mohr M, Stomb-
erg G. (2019) Bottleneck identification and performance mod-
eling of OPC UA communication models. In: Proceedings of
the 2019 ACM/SPEC International Conference on Performance
Engineering.

 18. Aggour KS, Kumar VS, Cuddihy P, Williams JW, Gupta V, Dial
L, Hanlon T, Gambone J, Vinciquerra J. (2019) Federated mul-
timodal big data storage & analytics platform for additive manu-
facturing. In: 2019 IEEE international conference on big data (big
data). IEEE.

 19. Michalkowski C, Janhsen J, Springer P (2023) Concept for a
generic modular software architecture for the integration of qual-
ity relevant data and sample implementation for a laser sintering
system. Prog Addit Manuf 8:67–73

 20. Li S, Lu Y, Aggour K, Coutts P, Harris B, Kitt A, Lupulescu
A, Mohr L, Vasquez M (2023) Enabling FAIR data in additive
manufacturing to accelerate industrialization. Boulder, Colorado,
National Institute of Standards and Technology

 21. Materials ASfTa. (2022) ASTM F3490–21 Standard practice for
additive manufacturing—general principles—overview of data
pedigree. ASTM F3490–21,

 22. (AMSC), AMaAAMSC. (2023) Standardization roadmap for
additive manufacturing, Version 3.0.

 23. Anlagenbauer VDM.-u. (2023) OPC UA Job management.
VDMA 40001–3

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10845-022-02017-9
https://doi.org/10.1007/s10845-022-02017-9

 Progress in Additive Manufacturing

 24. Rudell RL, Sangiovanni-Vincentelli A (1987) Multiple-valued
minimization for PLA optimization. IEEE Trans Comput Aided
Des Integr Circuits Syst 6:727–750

 25. Duong E, Masseling L, Knaak C, Dionne P, Megahed M (2022)
Scan path resolved thermal modelling of LPBF. Addit Manuf Lett
3:100047

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Design and implementation of a machine log for PBF-LBM on basis of IoT communication architectures and an ETL pipeline
	Abstract
	1 Introduction and motivation
	2 Applied data sources
	2.1 Deployed IoT communication architecture
	2.2 Extraction of scan vector data via SDK

	3 Data pipeline concept
	4 Data pipeline setup
	4.1 ETL pipeline triggers
	4.2 Producer
	4.3 Broker cluster govern stage
	4.4 Streaming processor
	4.5 Broker cluster enrich stage and sink

	5 Conclusion and outlook
	Appendix
	NoSQL schema of the PBF-LBM machine log

	Acknowledgements
	References

