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Abstract
Powder Bed Fusion with Laser Beam of Metals (PBF-LB/M) has gained more industrial relevance and already demonstrated 
applications at a small series scale. However, its widespread adoption in various use cases faces challenges due to the 
absence of interfaces to established Manufacturing Execution Systems (MES) that support customers in the predominantly 
data-driven quality assurance. Current state-of-the-art PBF-LB/M machines utilize communication architectures, such as 
OPC Unified Architecture (OPC UA), Message Queuing Telemetry Transport (MQTT) and Representational State Transfer 
Application Programming Interface (REST API). In the context of the Reference Architecture Model Industry 4.0 (RAMI 
4.0) and the Internet of Things (IoT), the assets, particularly the physical PBF-LB/M machines, already have an integration 
layer implemented to communicate data such as process states or sensor values. Missing is an MES component acting as a 
communication and information layer. To address this gap, the proposed Extract Transform Load (ETL) pipeline aims to 
extract relevant data from the fabrication of each build cycle down to the level of scan vectors and additionally to register 
process signals. The suggested data schema for archiving each build cycle adheres to all terms defined by ISO/TC 261—
Additive Manufacturing (AM). In relation to the measurement frequency, all data are reorganized into entities, such as the AM 
machine, build cycle, part, layer, and scan vector. These scan vectors are stored in a runtime-independent format, including 
all metadata, to be valid and traceable. The resulting machine log represents a comprehensive documentation of each build 
cycle, enabling data-driven quality assurance at process level.

Keywords Data-driven quality assurance · Laser powder bed fusion · FAIR data

1  Introduction and motivation

Upon entering the shop floors of production facilities, new 
requirements emerge in terms of process control and data 
acquisition for PBF-LB/M [1]. To integrate AM machines 
into value chains of production, they should be interoperable 
with the Enterprise Resource Planning (ERP) systems [2]. 
This interoperability is crucial to manage orders. The MES 
distributes them across the fleet to the specific machine and 
obtains the data of the fabrication as feedback. In the MES, 

an entity of a build cycle should, therefore, get enriched 
with a set of all relevant data of the fabrication in order to 
be able to apply statistical process control (SPC) [3]. Such a 
dataset as the output of an ETL pipeline would be a traceable 
record of each build cycle for PBF-LB/M. The objective of 
this work is to generate it in a form of a PBF-LB/M machine 
log containing the instructions for the AM machine together 
with an image of the specific machine including all involved 
hard- and software components of the fabrication. External 
monitoring systems are not in the actual scope. Nevertheless, 
the process signals from the AM machine during fabrica-
tion could already generate a holistic view at process level. 
For that, the time series data published via an IoT protocol 
of the AM machine need to be registered on the fabrica-
tion instructions. This registration manifests a correlation 
between the timestamp, the sensor value, and the process 
entities, e.g., part and layer. By tracking the conditions of 
each layer and sensor changes during its fabrication, an easy 
root cause analysis is enabled. This analysis can then be 
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further supported by machine learning algorithms, due to 
the high data quality of the proposed machine log. Once 
the data is structured and mapped, the feature extraction is 
considerably simplified [4]. To achieve this, the following 
two questions are answered from the view of PBF-LB/M:

• How to retrieve the fabrication instructions and applied 
parameters runtime independent?

• What are the limitations of the proposed ETL pipeline 
and the overall setup?

2  Applied data sources

In the initial implementation, only process signals that 
are natively supported by the basic configuration of the 
AM machine are considered. Monitoring equipment, 
such as Powder Bed Cameras, Melt Pool Monitoring 
(MPM), or Optical Tomography (OT), is not incorporated. 
Nevertheless, the requirement to integrate these sources 
in future is considered during the design of the ETL 
pipeline. For the creation of the PBF-LB/M machine log, 
the data is organized and, if suitable, registered within 

the Machine Coordinate System (MCS). In any case, all 
process signals are synchronized to a common time scale 
in the format “yyyy-MM-dd HH:mm:ss.SSS” within the 
ETL pipeline. Subsequently, the smallest entity, which is 
used for data registration, is a scan vector. It is provided 
with a timestamp as well as start and end coordinates in 
the MCS. On the premise of an identical system time of 
the measurement device and a transformation rule on the 
MCS, the registration of external signals on the level of a 
hundredth of a second can therefore be enabled. To achieve 
this, the depth of information, mainly influenced by the 
actors equipped with interfaces and sensors, as well as the 
measurement frequency supported by each data point, needs 
to be analyzed first [5]. The utilized multi-laser AM machine 
is an EOS M 300–4.

Its structure can be described abstractly by the automa-
tion pyramid in Fig. 1. At the field level, all drives of the 
actors, of the z-axis of the build platform, of the recoater, 
of the feed system and of the compressor of the filtration 
system, transmit their current operating mode and addi-
tional information, such as torque, position, and rotations 
per minute (rpm), as a message. These messages, including 
a timestamp, are sent to the Programmable Logic Control 

Fig. 1  PBF-LB/M machine and Extract Transform Load (ETL) pipeline within the automation pyramid
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(PLC) controller at the operational level via a Binary Unit 
System (BUS) [6]. This communication model is in addi-
tion deployed for all sensors to establish a process control 
based on their signal values. The so-captured data can be 
categorized into the physical locations of the filtration 
system, the build chamber, and the environment. For the 
filtration system, the measurands include the oxygen con-
centration, the flow rate of the shielding gas, and the pres-
sure difference of the in- and outlet. In the build chamber, 
the oxygen concentration of the atmosphere, the pressure, 
the humidity, and the temperature can be retrieved, along 
with the temperature of the build platform. To also moni-
tor external influences, humidity and temperature at the 
installation site of the AM machine are tracked. The core 
component of each PBF-LB/M machine, the laser unit, is 
an exception to this seamless integration into the machine 
network. The assembly of a laser unit comprises a laser 
source, a control card, and a scan head.

The counterpart to the PLC controller at the operational 
level is the laser control card. Unlike the PLC, it does not 
support an open industrial Ethernet standard such as Process 
Field Network (PROFINET) in this AM machine, see Fig. 1. 
The tilting commands for the mirrors of the scan heads are 
transmitted from the laser control card via a proprietary SL2-
100 protocol. Simultaneously, the modulation combined 
with the output power of the beams, is transferred to the 
laser sources. The execution of the scan vectors, regulated 
by these controls and adjusted process parameters, such as 
scan speed and laser power, takes place at a repetition rate 
of up to tens of kHz [7]. Despite the proprietary protocol, 
some data selected by the Original Equipment Manufacturer 
(OEM) can be accessed by the process control level through 
the Industrial Personal Computer  (IPC). For each laser 
source, the operation time since the Installation Qualification 
(IQ) of ASTM 52930 [8], the rated laser power from the 
last calibration, and the current temperature are logged. 
However, the data of the scan vectors are not recorded.

A retrofit for the extraction of this data is not feasible 
as the laser control card lacks an interface and cannot be 
replaced without significant intervention in the machine 
network in the current setup. A workaround is established 
in Sect. 2.2, to at least obtain the data of the fabrication 
by an external source. The file of the build cycle, storing 
the instructions of the fabrication, is parsed assuming an 
ideal process with no additional delays. All other internally 
available datums collected by the PLC and the laser control 
card are aggregated by the IPC executing the Supervisory 
Control and Data Acquisition (SCADA) system, visualized 
in Fig. 1. At the level of process control also, an interaction 
via the Human Machine Interface (HMI) is implemented 
to set for instance the recoater speed and mode. All 

settings forwarded through the HMI, if supported, and the 
datums of the field level are published via the installed 
IoT communication architecture hosted by the IPC. The 
so-transferred data serves as the input for the ETL pipeline, 
which registers the data on process entities, such as part and 
layer. By adopting a standardized integration layer of RAMI 
4.0, functionality across platforms is guaranteed [9].

2.1  Deployed IoT communication architecture

The PBF-LB/M machine of this work supports three IoT 
communication architectures, each with distinct scopes 
and applications [10]. The first is the OPC UA with its own 
standard IEC 62541 [11], overseen by the OPC foundation. 
It promotes device interoperability by establishing standard 
APIs rather than proprietary ones, and categorizes system 
software into clients and servers, with servers often located 
on devices like the PBF-LB/M machine IPC [12]. The OPC 
UA device model ensures semantic interoperability, defining 
generic object APIs even in AM contexts, as specified in the 
working draft of OPC UA 40540 [13]. The authentication 
of the client is strengthened in this setup through self-
signed certificates and the Secure Hash Algorithm 256-
bit (SHA256), ensuring secure communication. Entities, like 
devices and servers, can generate their own certificates, with 
SHA256 maintaining their integrity. This procedure adds an 
additional layer of security by verifying the integrity of the 
certificates and confirming their authenticity. This forms a 
robust foundation for secure OPC UA communication [14].

The second implemented architecture is MQTT. It is 
widely used in IoT, facilitates lightweight and efficient 
device communication through a publish/subscribe model, 
enhancing scalability. Known for its simplicity, MQTT is 
suitable for resource-constrained environments, excelling 
in high-throughput scenarios. Notably, MQTT operates 
without the need for a permanent connection, contributing 
to its flexibility and adaptability. Authentication in MQTT 
involves username–password pairs or advanced mechanisms 
like Transport Layer Security (TLS), crucial for securing 
data transmission. However, MQTT is not considered 
further, as the PBF-LB/M machine on this testbed supports 
only a limited number of data points and its spread in 
industry is lower [10].

The third supported architecture is a REST API as a 
specific implementation of the REST architecture tailored 
for a particular system, as observed on the IPC of the applied 
PBF-LB/M machine. When aligned with REST principles, 
it transforms into a RESTful API, delineating accessible 
resources through REST. While REST does not prescribe 
a specific technology, it is commonly implemented using 
the Hyper Text Transfer Protocol (HTTP). Resources are 
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identified by unique Uniform Resource Identifiers (URI), 
like the structure of web page addresses  [15]. On the 
IPC of the PBF-LB/M machine, Swagger, a tool for API 
documentation, is deployed to enhance and simplify testing 
and exploration. API keys, serving as unique identifiers, 
are used for user authentication. Importantly, custom logics 
can be implemented for transferring process data, extending 
functionalities beyond what is covered by the OPC UA 
protocol in its standard usage, such as MPM or OT datasets.

In the following, the two remaining architectures, OPC 
UA and REST API, are evaluated for their suitability in the 
ETL pipeline, using the recoater torque machine datum as 
an example. The evaluation focuses on request speed and 
response rate, as well as on the robustness of the traffic. 
Therefore, the corresponding OPC UA node ns = 4; s = EOS.
Machine.Recoater.AxisTorque is monitored via polling to 
retrieve the value every 0.1 s.

Additionally, the value is queried via the REST API using 
the GET request with curl: -X GET.

“https:// < SI > /api/v6/recoater/axisTorque/current”.
Both data queries are conducted separately for one hour 

each. The results are visualized in Fig. 2. It can be inferred 
that the OPC UA Client, implemented via the Python library 
opcua-asyncio, performs more efficiently in handling the 
request load and resulting traffic. In an ideal scenario, the 
client would retrieve 36,000 values per hour from the OPC 
UA server.

However, due to latency, the overall number of consumed 
values is 4,322 lower. This corresponds to a mean delay of 
0.014 s for each transaction of the machine datum published 
via the OPC UA server. Opting for the OPC UA server as 
the source for machine data allows a more detailed examina-
tion of the latency between the creation of the sensor value 
and its retrieval. This latency is indicated by the differences 

between the source timestamp, which is assigned by the ded-
icated component of the PBF-LB/M machine during sensor 
value creation, the server timestamp when it is published, 
and the timestamp when the value is retrieved at the cli-
ent. To ascertain this crucial parameter, pivotal for drawing 
conclusions regarding real-time capability, the torque sensor 
undergoes further interrogation. However, this investigation 
is conducted in subscription mode to mitigate the load in 
subsequent implementations in the ETL pipeline [10]. In 
this operating mode, a new value is only published when it 
surpasses a threshold represented by the dead band value. 
The value is then disseminated with a frequency at maxi-
mum equal to the revised sampling rate. In the case of the 
torque sensor, the sensor exhibits a measured value flicker 
above the dead band value, thus generating artificial traffic. 
The subscription to this allows a comparison of the source 
timestamp, server timestamp, and client timestamp during 
the retrieval process presented in Fig. 3. This evaluation is 
only valid under the premise that the server and the client 
are using the identical time server. The mean delay in the 
internal network of the machine is 200 ms. The average 
delay between the published value and the retrieving of the 
client is 900 ms. It can be assumed that the sensor values can 

Fig. 2  Comparison of response speed of IoT protocols Fig. 3  Evaluation of the real time capability
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be accurately assigned to build cycle entities, such as layer 
and part, provided that the revised sampling rate permits 
this. Despite the noted delay, this method is even suitable 
for rudimentary closed-loop control. For documentation 
purposes, the source timestamp of each machine datum is 
utilized because it is as precise as the integration time of the 
individual sensor.

For the execution of the individual scan vector, no data 
can be mapped precisely. This is due to the latency time and 
the low revised sampling rate of a maximum of 10 Hz of 
the AM machine data, as the repetition rate of the scanning 
heads is up to several tens of kHz in comparison. The 
values of the machine data points can only be registered 
to multiple scan vectors and their timestamps of a cross-
section of one part within one layer. All scan vectors within 
a time range are assigned to the sensor value valid for this 
range. A method for retrieving the pre-computed timestamps 
of the fabrication and the applied parameters in a runtime-
independent format via a Software Developer Kit (SDK) is 
presented in the next section.

2.2  Extraction of scan vector data via SDK

Since the smallest entity for data registration in the proposed 
ETL pipeline is a scan vector, it is essential to extract this 
data from each build cycle.

Nevertheless, it is neither available via the OPC UA 
nor the REST API. The OPC UA protocol is not designed 
to transfer the data of the scan vectors in parallel with the 
fabrication in terms of signal cycle times and signals per 
second. Additionally, as discussed earlier in this section, 
there is no interface implemented on the applied PBF-
LB/M machine, where for instance, a custom REST API 
could retrieve this data from and provide it asynchronously 
to the fabrication. However, the machine is executing the 
scan vectors during the build cycle, so the information 
must be available. To access them, the build cycle file, for 
EOS in a.openjz format, gets parsed prior to fabrication. 
It contains the geometries of the parts, the parameter set 
and the instructions on how to create a format that can be 
executed by the PBF-LB/M machine. The task of slicing and 
mapping the parameters on each scan vector, depending on 
its section within the part, is performed via an SDK [16].

The PBF-LB/M machine that is applied operates a pri-
ori. As a result, the entire build cycle is pre-computed in 
advance. In this work, it is processed layer by layer and con-
verted into JavaScript Object Notation (JSON) format by an 
external Python script. Thereby the start and end points of 
each vector are accessible. This information corresponds to 
what will be executed on the machine, along with the laser 
parameters applied during fabrication, assuming no process 

deviations. To ensure accuracy, a current image of the AM 
machine, which includes the calibration of the scan heads 
and laser sources, is retrieved before compiling the instruc-
tions for fabrication. A coarse program workflow is given in 
Fig. 4, an exemplary output is given in Sect. 4.4.

3  Data pipeline concept

The key requirement for the ETL pipeline is to capture the 
process signals in situ and register them on the process enti-
ties, such as the AM machine, build cycle, part, layer, and 
scan vector. To achieve this, the machine data from the fab-
rication are accessed via the OPC UA server of the AM 
machine and the corresponding scan vectors data is extracted 
via an SDK. Both data sources must be integrated into a 
single ETL pipeline. Since the OPC UA server represents 
a dynamic data source [17], the concept of streaming the 
data in five stages is applied, see Fig. 5. The first stage, 

Fig. 4  Scan vector extraction of a build cycle
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also called connect stage, involves authenticating the cli-
ent and establishing a robust subscription to the machine 
datums. In the second stage, also known as the govern stage, 
the data stream is organized into topics via a distributed 
event streaming platform. Here the loosely published data 
points, provided only with an identifier and timestamp, are 
aggregated. This process tends to have a maximum offset 
in the range of seconds, as shown in Fig. 3. The distributed 
event streaming platform performs the initial caching via 
the brokers of its cluster and maps the data points based on 
their identifier to the topics “AM machine”, “Build cycle 
setup”, “AM machine sensor”, and “AM process state”, see 
Fig. 5. Utilizing this concept, a cardinality is introduced. 
The machine datums of topic 1 and topic 2, shown in Fig. 5, 
remain static once a build cycle is initialized. Serial numbers 
of soft- and hardware components are then constants since a 
change of this data is unlikely during fabrication. This also 
reduces the data traffic. However, the topics of AM machine 

sensor and AM process state present a different scenario. 
The machine data associated with these topics are linked 
to the fabrication and fluctuate within certain limits ran-
domly. This variability is inherent to the fabrication and is 
also expected under normal operating conditions. Therefore, 
the data points need to get further processed and aligned to 
one common time scale with fixed increments. Otherwise, 
it is not possible to register and link data measured with dif-
ferent revised sampling rates on the process entities. This 
is particularly true when the threshold for a value has not 
been exceeded for a longer duration and no new value has 
been published. To address this issue, a common time scale 
is established from the start. The size of increments is gov-
erned by the highest revised sampling rate of all machine 
datums. All machine datums with a lower sampling rate, 
or those that did not change and are therefore not repub-
lished, are maintained as valid by the concept of resampling 
with forward fill. This ensures that a request by a user at 
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the database will access all relevant information without the 
need to manually query the otherwise missing values and 
apply domain knowledge to do so.

This stream processing takes place in a distributed 
computing framework between the govern and the enrich 
stage from Fig. 5. It assures that the topics in the enrich 
stage are already consisting of agglomerated data points 
for the respective entity. The distributed event streaming 
platform, again hosting these topics via the brokers, its 
cluster receives the data asynchronously to the process itself 
due to the computation time of the resampling. However, 
this modular concept provides near real-time data at the 
governing stage and processed data sets at the enrichment 
stage, where external sources like the output of an SDK can 
be coupled in. The enriched data is then organized into a 
data product, in this case a sink, which serves as an archive 
in the proposed ETL pipeline. This data product allows the 
structured storage of a build cycle. It is structured in a way 
that queries for various entities, such as a specific layer and 
the valid conditions during its fabrication, like the torque 
curve for recoating, can be performed efficiently. For this 
functionality and to support the claim of understanding 
with the lowest possible amount of domain knowledge, a 
No Standard Query Language (NoSQL) database schema 
is engineered, as shown in Fig. 6. The database where the 
schema is implemented is document oriented. This approach 
is particularly suitable for PBF-LB/M and its high degree 
of freedom of process characteristics, as it allows data to 
be organized without the need for bridging tables [18, 19]. 
In a relational SQL database, these tables, which serve 
solely as links and contain no additional information, are 
a requirement. In the NoSQL database schema of Fig. 6, 
instead, each table represents a collection of documents, as 
indicated by bold entries. Each document stores the values 
of the assigned OPC UA nodes, which are processed and 
forwarded trough the topics of the enrichment stage. The 
cardinality is established through the time stamp aligned 
with the timescale of the build cycle, the process states of 
the AM machine, and the layer identifier. This approach 
offers the adaptability needed for altering the data schema or 
incorporating new data sources. For instance, it simplifies the 
extension by a new data source by allowing the creation of 
a new collection, thus avoiding the complexities associated 
with a rigid SQL database. To facilitate the sharing aspect 
of the data product at the last stage of Fig. 5, the NoSQL 
schema used to register the stream during the build stage is 
designed with established semantics and, wherever possible, 
ontologies are considered.

Initially, all terms from the ISO/TC 261—Additive 
Manufacturing standards are collected by web scraping 

the official International Standard Organization (ISO) 
Online Browsing Platform (OBP), where term definitions 
can be viewed in the preview of each standard. This list is 
then compared with all terms from the National Institute 
of Standards and Technology (NIST) AMS 500–1 [20] in 
addition to the F3490 -21 [21], also including their ontology. 
The data schema engineered in this work contributes to 
filling the gap of a standardized machine log file, identified 
in the standardization roadmap [22].

By maintaining the same ontology for already described 
relations, such as the AM machine and build chamber, 
along with the semantics, interoperability with the stated 
Common Data Exchange Formats (CDEF) [20] is achieved. 
The remaining open term definitions, especially in the field 
of AM process states, are taken from the OPC UA release 
candidate 40001–3 [23]. Utilizing established terminologies 
and ontologies like for CDEF, the schema is user-friendly 
and easily understandable. This approach also provides a 
solid foundation for further inquiries, enhancing scientific 
integrity of the schema.

4  Data pipeline setup

The ETL pipeline is configured as a standalone Docker 
application. This design ensures independence from the 
computational system on which it is executed [19]. Supple-
mentary, it enables sharing of the host system resources, 
making it more efficient than a Virtual Machine (VM). 
The implementation of the ETL pipeline, depicted at the 
bottom of Fig. 5, is composed out of microservices. Each 
microservice operates within its own container, orches-
trated by Docker Compose, which establishes connections 
between the containers by opening the necessary ports. 
This approach facilitates inter-container communication 
and enhances the overall efficiency of the application. At 
the beginning of the pipeline, a Python producer retrieves 
data from the PBF-LB/M machine via the OPC UA server 
and transmits it to the brokers of the Apache Kafka clus-
ter, see Fig. 5. The records of these topics of the govern 
stage are subsequently relayed to PySpark, where they are 
further processed, as explained in Sect. 3. Thus, the struc-
tured data gets then extended by the output from the SDK 
and is cached again at the Kafka cluster in the topics of 
the enrich stage. Ultimately, a connector to MongoDB is 
employed to perform type casting and store the process 
signals as a machine log. The microservices and especially 
the triggers of the ETL, which are controlling the logic 
of tasks such as the assignment of nodes based on their 
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values to different topics, are discussed in detail in the 
following subsections.

4.1  ETL pipeline triggers

To initiate the pipeline, the Python producer subscribes to 
the node of the OPC UA server that indicates whether the 
PBF-LB/M machine is operational. When the state changes 
to true, the pipeline subscribes to all relevant nodes of the 
OPC UA server. For further processing between the govern 
and the enrich stage, as shown in Fig. 5, additional logic 
is required. Wherever possible, in accordance with the 
namespace of OPC UA 40001–3 [23], basic process states 
and events are declared to describe a unique subprocess 
during a build cycle. This enables the mapping of process 
signals to process entities. Therefore, the six machine states 
“AM machine idle”, “Build cycle pre-process”, “Build cycle 
processing”, “Build cycle error”, “Build cycle pause”, and 
“Build cycle post process” are defined for PBF-LB/M. 
These states, in conjunction with the identifier of each layer 
and the declaration of the result of each build cycle, are 
establishing a set of variables for uniquely defining each 
topic in the ETL pipeline. As a result, the pipeline must 
exhibit conditional behavior, often referred to as stateful. 
The optimal implementation of each condition is achieved 
by minimizing the logical terms of each process state. This 
is accomplished utilizing the declaration of each process 
state, based on domain knowledge, as a starting point. The 
Espresso Algorithm, a heuristic logic minimizer [24], is then 
used to carry out this optimization via the implementation 
of the Python library pyeda. The pipeline, depicted in Fig. 5, 
is triggered by this logic and autonomously performs the 
agglomeration and structuring into the topics. This process 
is based on the values of the OPC UA nodes, or more 
specifically, the edges of their resulting signals. It is tested 
and validated against a VM simulating the EOS M 300–4, 
which is hosted on Microsoft Azure and creates mock data.

4.2  Producer

The OPC UA client is implemented using the Python library 
opcua-asyncio, as detailed in Sect. 2.1. The subscription of 
the client is configured through a Python script that queries 
the available nodes of the OPC UA server. It registers the 

relevant nodes to the terms from the database schema, of 
Fig. 6. These nodes are then incorporated into the pipeline 
through JSON configuration files for the stream set-up.

4.3  Broker cluster govern stage

The Kafka cluster hosts the four topics from Fig. 5. It is 
responsible for receiving incoming messages from the 
Python producer, storing, and serving them to the streaming 
processor PySpark synchronously.

Messages are stored in a key–value format, where the key 
is the node id of the OPC UA schema, and the value is the 
measurand of the OPC UA node. These records are stored 
along with a timestamp in topics. The topics are distributed 
and replicated across the brokers of the Kafka cluster to 
ensure fault tolerance and enable load balancing. Within a 
partition, records are stored in the order they are written. 
The Kafka cluster of the test bed uses 1 partition per topic 
with a replication factor of three, striking a good balance 
between redundancy, storage resources and future scalability 
for a fleet of machines. The maximum retention is set to two 
weeks. This implies that in the event of a sink failure, the 
data can be recovered within this timeframe.

4.4  Streaming processor

The primary logic of the pipeline, in conjunction with the 
assurance of data integrity through resampling as outlined 
in Sect. 3, is executed utilizing micro batching, implemented 
via PySpark. Depending on the state of the build cycle and 
the AM machine, which is represented by specific combi-
nations of the values of the OPC UA nodes, the stream is 
asynchronously divided into the topics of the enrich stage. 
Records within these topics are structured in a way that facil-
itates their registration on process entities, such as a layer. In 
PySpark, the enrichment of information through scan vectors 
is conducted, as the output of the SDK is coupled into the 
pipeline. This integration imports the corresponding scan 
vectors for each layer of the build cycle, as well as the set-
tings for each part. An extract of the SDK output, which is 
prepared to align with the data schema, is presented below 
for one part, its initial layer, and the first scan vector of this 
layer.
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{"1": {

"beam_compensation": "0",

"hatch_origin": "MCS",

"id": "2023_10_30_Gyroid",

"process_parameter_set": 

"AlSi10Mg_060_CoreM304_102_Default_DirectPart",

"scaling_x": "0",

"scaling_y": "0",

"translation_x": "0",

"translation_y": "0"}

}

{"layer_1": {

"delta_z": 60,

"exposed_part": ["2023_10_30_Gyroid"],

"sdk_id": 2023-29-14 20:15:15,

"position_z": 60,

"vector_1": {

"end": {"x_mm": 152.343,

"y_mm": 148.447},

"exposure_unit": 0,

"inter_vector_time": 0.0,

"laser_power": 315.25,

"part_id": "2023_10_30_Gyroid",

"scan_speed": 1210.0,

"start": {"x_mm": 152.390,

"y_mm": 148.544},

"timestamp": 1640.0,

"type": "INFILL"},

}

}

4.5  Broker cluster enrich stage and sink

The topics of the enrich stage of the Kafka cluster are serv-
ing as modular instances, extending the pipeline for potential 
integration of external data sources like an MPM, given that 
the connection to the machine log is already established. 
Additionally, they are natively feeding data to the cor-
responding collection of the NoSQL database MongoDB 
via a Kafka connector. This setup provides high flexibility, 
enabling adjustments in the scope of the extracted and per-
manently stored data, to realize different data products, as 
shown in Fig. 5. The schema of the data product for this 
work is designed using Hackolade, a NoSQL schema mod-
eler. This tool facilitates a swift iterative design process 
through forward-engineering. The database schema is illus-
trated in a compressed form in Fig. 6, excluding the nested 
documents within collections. This schema circumvents the 

16 MB per document limitation of MongoDB and enables 
selective data retrieval during querying the database. In 
addition, it can accommodate data with high variance, such 
as the number of components and layers.

5  Conclusion and outlook

The proposed ETL pipeline establishes a seamless connection 
from the SCADA to the MES level. The scalable and extenda-
ble data pipeline, made robust through Docker, ensures consist-
ent operation across all environments. This pipeline can accom-
modate the three main IoT communication architectures for data 
acquisition. It requires adjustments only to the Python producer 
to establish the connection and retrieve the data, as explained in 
Sect. 2.1. This flexibility allows it to address various network 
technology limitations, such as available bandwidth or stability. 
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The ETL pipeline empowers users to customize data acquisition 
based on their application needs, by configuring their own data 
product. For example, a real-time dashboard can be mounted on 
the govern stage due to its low latency. In the current test bed, 
the data provides valuable and easily interpretable insights into 
machine health and production operability, detailed at the scan 
vector level. Additionally, Key Performance Indicators (KPIs), 
such as the Overall Equipment Effectiveness (OEE), can be 
derived. The provision of data in a runtime-independent format 
supports the FAIR principles (Findable, Accessible, Interoper-
able, and Re-usable) for PBF-LB/M. Therefore, the domain 
knowledge required to evaluate the data is reduced. No specific 
software is mandatory to access the fabrication data or retrieve 
the image of the AM machine of the fabrication. The only flaw 
in this work is that currently the timestamps are pre-computed 
for each layer. This procedure is assuming an ideal process with 
no additional delays, like the cleanse of the filtration system 
within a build cycle.

It can be resolved by retrieving the actual timestamp 
of each scan vector through access to the traffic of the 
SL2-100 protocol, see Fig. 1. Therefore, discrepancies 
between the instructions and the fabrication itself, as also 
reported in the literature, can be qualified [25]. By substi-
tuting the now pre-computed timestamps against the real 
timestamps, the data quality can be further increased on 
the level of scan vectors. This extension, as well as the 
incorporation of MPM data, will be carried out in future.

Appendix

NoSQL schema of the PBF‑LB/M machine log

Fig. 6  NoSQL data base schema and cardinality of the MongoDB instance down to the level of first order documents
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