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Abstract: Microbially induced carbonate precipitation (MICP), a widespread phenomenon in nature,
is gaining attention as a low-carbon alternative to ordinary Portland cement (OPC) in geotechnical
engineering and the construction industry for sustainable development. In the Philippines, however,
very few works have been conducted to isolate and identify indigenous, urease-producing (ureolytic)
bacteria suitable for MICP. In this study, we isolated seven, ureolytic and potentially useful bacteria for
MICP from marine sediments in Iligan City. DNA barcoding using 16s rDNA identified six of them
as Pseudomonas stutzeri, Pseudomonas pseudoalcaligenes, Bacillus paralicheniformis, Bacillus altitudinis,
Bacillus aryabhattai, and Stutzerimonas stutzeri but the seventh was not identified since it was a
bacterial consortium. Bio-cementation assay experiments showed negligible precipitation in the
control (without bacteria) at pH 7, 8, and 9. However, precipitates were formed in all seven bacterial
isolates, especially between pH 7 and 8 (0.7–4 g). Among the six identified bacterial species, more
extensive precipitation (2.3–4 g) and higher final pH were observed in S. stutzeri, and B. aryabhattai,
which indicate better urease production and decomposition, higher CO2 generation, and more
favorable CaCO3 formation. Characterization of the precipitates by scanning electron microscopy
with energy dispersive X-ray spectroscopy (SEM-EDS) and attenuated total reflectance Fourier
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transform spectroscopy (ATR-FTIR) confirmed the formation of three carbonate minerals: calcite,
aragonite, and vaterite. Based on these results, all six identified indigenous, ureolytic bacterial species
from Iligan City are suitable for MICP provided that the pH is controlled between 7 and 8. To the
best of our knowledge, this is the first report of the urease-producing ability and potential for MICP
of P. stutzeri, P. pseudoalcaligenes, S. stutzeri, and B. aryabhattai.

Keywords: calcium carbonate; microbially induced carbonate precipitation (MICP); ureolytic bacteria

1. Introduction

Microbially induced carbonate precipitation (MICP) is a bio-mineralization technique
that uses metabolic pathways of naturally occurring bacteria to promote calcium carbonate
(CaCO3) precipitation [1,2]. When precipitated between loose soil particles, CaCO3 acts as
a binder that holds particles together, improving soil mechanical properties like strength
and stiffness [3,4]. Qian et al. [5], for example, treated a sand column via injection of
MICP solution and obtained an unconfined compressive strength (UCS) of about 2 MPa.
Similarly high UCS values of between 1.76 and 2.04 MPa were reported by Zhao et al. [1]
after submerging a premixed bacteria–sand matrix in a solution containing nutrients
and cementing agents. Another application of MICP is in the removal of heavy metals
from contaminated soils, wastes, and groundwater via adsorption and coprecipitation.
Kang et al. [6], for instance, removed >99% of cadmium (Cd) as CdCO3 by MICP after 48 h
of treatment in column experiments.

The presence of carbonate minerals like calcite and dolomite has also been shown to
limit the leaching and transport of lead (Pb), copper (Cu), zinc (Zn), and arsenic (As) in
tunnel-excavated rocks [7], contaminated soils and sediments [8], mine tailings [9], and
industrial residues [10]. More recently, MICP has been receiving a lot of attention as a
low-carbon alternative for ordinary Portland cement (OPC) in geotechnical engineering,
and for its ability to impart “self-healing”—a property whereby small cracks are “healed”
with time by filling them with carbonate minerals—in concrete and mortar [11,12]. The
production and use of cement are major contributors to carbon dioxide (CO2) emissions [13],
so shifting to the use of CaCO3 from MICP as a cementing agent for strengthening weak
soils or other materials could reduce OPC use and limit its associated greenhouse gas
emissions [14]. Another advantage of using MICP instead of OPC to stabilize weak soils
is the circumneutral pH (6–8) of the former, which is more conducive for plant nutrient
uptake and growth of most soil microorganisms [15].

There are four major metabolic processes for MICP: (i) urea hydrolysis,
(ii) denitrification, (iii) iron salt reduction, and (iv) sulfate reduction [16,17]. Among
them, urea hydrolysis is the most widely used not only because of its simple and easy-
to-control reaction process but also because of its significant production of CaCO3 in a
relatively short period [18,19]. Zaghloul et al. [20], for example, isolated marine bacteria
identified as Staphylococcus epidermidis and reported high CaCO3 precipitation (~13 g/L)
via urea hydrolysis. MICP via urea hydrolysis uses urease-producing (ureolytic) bacteria
that produce urease as part of their metabolism [19]. Urease subsequently catalyzes the
decomposition of urea (CO(NH2)2) to carbamic acid (NH2COOH) and ammonia (NH3)
(Equation (1)). Carbamic acid is unstable in water, rapidly decomposing into NH3 and CO2
(Equation (2)), enhancing CaCO3 precipitation by increasing the pH and solute activities of
bicarbonate (HCO3

–) or carbonate (CO3
2–) in the solution (Equations (3)–(8)).

MICP via urease hydrolysis is a relatively straightforward technique that is dependent
on two overarching factors: (i) microbial growth and urease secretion, and (ii) urease
stability and inhibition. Microbial growth and enzyme secretion further affect the extent
of CaCO3 formation depending on various environmental factors including the species of
bacteria, bacterial abundance, urea concentration, calcium source, temperature, dissolved
oxygen, and pH [21–23]. The pH of the medium, for example, plays an important role
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by inducing morphological changes, which promotes microorganism growth, enzyme
secretion, and stability of microbes [23]. Similarly, dissolved oxygen was highlighted by
Skorupa et al. [24] as another important parameter because it could limit the growth and
proliferation of commonly used ureolytic bacterial species like Sporosarcina pasteurii under
saline and anaerobic conditions. Meanwhile, the urease catalytic reaction (Equation (1)) is
influenced by not only the pH [25], temperature [25], and the system but also the presence
of inhibitors like amides and esters of phosphoric acid, thiols, hydroxamic acids, phosphinic
and thiophosphinic acids, boric and boronic acids, phosphate, heavy metal ions, bismuth
compounds, quinones, and fluoride [26].

CO (NH 2)2 + H2O Urease−−−→ NH2COOH + NH3 (1)

NH2COOH + H2O → NH3 + H2CO3 (2)

NH3 + H2O ⇄ NH+
4 + OH− (3)

H2CO3 ⇄ HCO−
3 + H+ (4)

HCO−
3 + H+ + 2OH− ⇄ CO2−

3 + 2H2O (5)

Ca2+ + H2CO3 ⇄ CaCO3 + 2H+LogK = −9.5314 (6)

Ca2+ + HCO−
3 ⇄ CaCO3 + H+LogK = −1.7130 (7)

Ca2+ + CO2−
3 ⇄ CaCO3LogK = 8.6309 (8)

Another critical requirement for MICP is to use indigenous bacteria found locally
to avoid environmental problems because of introducing non-indigenous or “alien” mi-
croorganisms to a region [27]. To date, this is only the second work in the Philippines
to use indigenous bacteria for MICP. The first paper was published by Doctolero and
coworkers [28], which used bacteria from the Philippine National Collection of Microor-
ganisms (University of the Philippines Los Banos)—Bacillus sphaericus (BIOTECH 1272),
Bacillus subtilis (BIOTECH 1679), and Bacillus megaterium (BIOTECH 1512)—isolated in the
past from Laguna in the northern island of Luzon. These authors used these bacterial
species to induce “self-healing” properties in oven-cured biochar-containing geopolymers
and successfully sealed cracks having sizes between 0.1 and 0.65 mm via MICP. Unfor-
tunately, indigenous bacteria for MICP have yet to be identified and isolated from the
southern islands of the Philippines, and this work is the first report of ureolytic bacteria for
MICP isolated from Mindanao, Philippines.

In this study, urease-producing marine bacteria in sediments from Iligan City, Min-
danao, Philippines were isolated, identified, and grown for MICP. After initial screening,
potent urease producers were identified by DNA barcoding and subjected to a biomineral-
ization assay, a test that evaluated the CaCO3 production capability of bacterial isolates.
The effects of initial pH on biomass and CaCO3 formation were also investigated to find the
optimum pH for MICP while precipitates generated by the isolates were characterized by
the gravimetric acid-washing technique, attenuated total reflectance Fourier transform in-
frared spectroscopy (ATR-FTIR) and scanning electron microscopy with energy dispersive
X-ray spectroscopy (SEM-EDS).

2. Materials and Methods
2.1. Sample Collection and Isolation of Ureolytic Bacteria

The bacterial samples used in this study were collected from the coastal areas of Iligan
City in Northern Mindanao Island, Philippines (8.2280◦ N, 124.2452◦ E). The pH and tem-
perature of seawater in the sampling area were around 7.3–7.5 and 30–32 ◦C, respectively.
Meanwhile, the salinity and dissolved oxygen levels in Iligan Bay have been reported in the
range of 34–35 ppt and 5.3–5.7 mg/L, respectively [29]. The isolation of ureolytic bacteria
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followed the protocol of Anitha et al. [17]. In brief, coagulated marine sediments were
collected using sterile polyethylene bags. After collection, fresh samples were crushed
using a sterile mortar and pestle. The bacterial strains were isolated using the serial dilution
technique, spread and cultured on nutrient agar prepared using aged seawater (28 g/L,
sterilized by autoclaving at 121 ◦C for 15 min), and incubated at 37 ◦C for 24 h until visible
colonies were obtained. From the nutrient agar, several phenotypically different colonies
were collected for purification. The purification procedure of each bacterial isolate under
investigation was carried out by repeated agar streak plate method [30].

2.2. Screening of Urease Producers

For the screening of urease producers, bacterial isolates were grown in Christensen’s
agar. The pH of the media was adjusted to 7 and prepared as described by Anitha et al. [17].
Several studies have reported that urea agar base can be used as a quick method to primarily
screen for urease-producing bacteria suitable for MICP [31–33]. Urea agar base contains
urea and phenol red, which acts as a pH indicator. When urea is hydrolyzed by the
bacteria, NH3 is released and becomes accumulated in the medium, which increases the
pH of the environment making it alkaline [34]. Since urea is unstable and breaks during
autoclaving, it was sterilized by filtration through a 0.22 µm syringe-driven membrane
filter and introduced to the urea agar base medium. Isolates were inoculated and streaked
on Christensen’s agar plates and were incubated for 24–48 h at 37 ◦C. Isolates that turned
the medium reddish or pinkish color may indicate positive urease production were selected
and evaluated in more detail. The hydrolysis of urea by ureolytic bacterial isolates releases
NH3, resulting in alkaline pH. Phenol red indicator turns pink at alkaline pH values,
causing the media to turn pinkish or reddish [17].

2.3. Selection of Potent Urease Producer

The urea tolerance test was performed according to Anitha et al. [17], by adding
2% w/v, 6% w/v, and 10% w/v of urea on Christensen’s agar plates. These plates were
spot inoculated with positive isolates (i.e., urease producer) and incubated at 37 ◦C. The
urease production test was performed via visual observation, and isolates showing rapid
development of the pink color on the urea agar plates within 24 h of incubation [35,36] at a
high concentration of urea were selected for further evaluation. Morphological characteri-
zations of the bacteria, including colony morphology, gram stain reaction tests and selected
biochemical tests, were performed using standard methods.

2.4. Genotypic Characterization of Bacterial Isolates

Selected bacterial isolates identified as ureolytic bacteria were sent to the 1st Base Lab-
oratory, Malaysia, for bacterial DNA Barcoding. The bacterial 16S rDNA, full-length 1.5 kb,
was amplified using universal primers 27F and 1492R. The total reaction volume of 25 µL
contained gDNA purified using 0.3 pmol of each primer, deoxynucleotides triphosphates
(dNTPs, 400 µM each), 0.5 U of thermostable DNA polymerase, supplied PCR buffer, and
water. The polymerase chain reaction (PCR) was performed as follows: 1 cycle (94 ◦C for
2 min) for initial denaturation; 25 cycles (98 ◦C for 10 s; 53 ◦C for 30 s; 68 ◦C for 1 min) for
denaturation, annealing, and extension. The PCR products were purified by the standard
PCR clean-up method and subjected to bidirectional sequencing with universal primers
785F and 907R using BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems,
Bedford, MA, USA).

2.5. Microbially Induced Carbonate Precipitation Assay

The identified isolates were subsequently assessed for their microbially induced calcite
precipitation (MICP) potential. For this assay, a biomineralization medium was used, con-
sisting of 0.25 M calcium chloride (CaCl2) solution, 0.5 M of urea solution, and 0.005 g/mL
of nutrient broth per 150 mL consistent with published methods used in previous MICP
studies [6,36–40]. CaCl2 solution was autoclaved and filter-sterilized before mixing to
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avoid any contamination while the urea solution was filter-sterilized only to avoid thermal
hydrolysis at high temperatures. Two (2) mL of bacterial culture grown in nutrient broth
at 30 ◦C for 24 h was added to 150 mL of the biomineralization media. To investigate the
influence of pH on biomass production, biomineralization media for each of the bacterial
isolates were prepared at three varying pH levels: pH 7, pH 8, and pH 9. Sterile biominer-
alization media without bacterial isolates were also used as a control. The media were then
incubated in a rotary shaker at 120 rpm and 30 ◦C for 7 days, and changes in the pH were
monitored and recorded every 24 h. The pH was checked aseptically to avoid any potential
contamination. After 7 days of incubation, the solution was filtered through a sterile 0.6 µm
Whatman® membrane filter (Whatman®, Kent, UK). Each filter paper was put in a separate
sterile Petri dish and air-dried at 37 ◦C for 24 h for subsequent analyses. All incubation
experiments were carried out in triplicates to ensure that the differences observed were
statistically significant.

2.6. Characterization of Precipitates

The yield of biomass/precipitates from the MICP assay was weighed using an analyti-
cal balance and those with more than 1 g were further characterized using ATR-FTIR (IR
Tracer 100, Shimadzu Corporation, Kyoto, Japan) and SEM-EDS (Hitachi SU3500, Hitachi
High-Technologies Corporation, Kyoto, Japan). The mass of CaCO3 was also determined in
representative samples using the gravimetric acid-washing technique [11]. For this method,
predetermined amounts of biomass/precipitates were mixed with 100 mL of 5 M HCl and
shaken in a thermostat shaker at 100 rpm for 1 h. The residue was then rinsed twice with
distilled water, filtered through Whatman no. 2 filter paper, oven-dried, and weighed.
The mass difference before and after acid washing was used to calculate the percentage of
CaCO3 in the biomass/precipitates.

2.7. Data and Statistical Analysis

The data were expressed as mean and standard division of three replicates, and the
results were analyzed by one-way analysis of variance (ANOVA) using IBM SPSS V.23
at the significance level of p < 0.05. The ATR-FTIR spectra were deconvoluted by the
Fityk 0.9.8 software using Gaussian peak models [41], while carbonate speciation and
precipitation diagrams were created using the Geochemist’s Workbench (GWB®, Aqueous
Solutions LLC, Champaign, IL, USA) based on the actual solute activity of Ca2+ used in
the experiments.

3. Results and Discussion

A total of 36 bacterial isolates were initially identified and screened for their strong
urease-producing potential and, among them, 10 isolates were selected based on the urea
potency test results. These 10 isolates were further evaluated for their urease-producing
ability by culturing them on Christensen’s agar plates with 10% urea. Out of the 10 bacterial
isolates, 7 samples—coded as S1S6, S1S7, S1S8, S1S19, S2S6, S3S12, and S4S8—exhibited
the highest urease activity potential based on the rapid development of the pink color
of the urea agar plates within 24 h of incubation in all urea concentrations. Isolates
that changed the media color beyond 24 h were excluded in succeeding experiments.
The selected bacterial isolates were then initially identified based on colony morphology
and biochemical characteristics as summarized in Tables 1 and 2, respectively. Using
Bergey’s manual [42], comparisons between the biochemical profiles of the isolates were
undertaken. Four isolates shared biochemical traits consistent with the Pseudomonas genus
while the remaining three isolates displayed biochemical attributes aligning closely with
characteristic features of the Bacillus genus.
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Table 1. Morphological characteristics of bacterial isolates.

Isolate Code Gram Stain
Colony Morphology

Texture Size Color Form

S1S6 − smooth small white circular

S1S7 + smooth small white circular

S1S8 − smooth small white circular

S1S19 − smooth small white circular

S2S6 − smooth large colorless Irregular

S3S12 + rough small yellow Irregular

S4S8 + smooth small yellow Circular
Note: “−” means “gram negative staining”; “+” means “gram positive staining”.

Table 2. Biochemical characteristics of bacterial isolates.

Isolate
Code

Oxygen
Require-
ment

Sugar Motility H2S Pro-
duction Citrate Oxidase

Test
Catalase
Test

Coagulase
Test

Methyl
Red

Vogues
Proskauer

Growth
in Mac-
Conkey
Agar

Growth
in Cetrim-
ide Agar

Initial
Identification

S1S6 Obligate
aerobes

Absence of
carbohydrate
fermentation

− − + + + − − − + + Pseudomonas sp.

S1S7
Facultative
Anaer-
obes

Fermentation
of dextrose,
lactose,
sucrose

− − + − + + − − − − Bacillus sp.

S1S8 Obligate
Aerobes

Dextrose
fermentation
only

+ − − + + − − − + + Pseudomonas sp.

S1S19
Facultative
Anaer-
obes

Dextrose
fermentation
only

− + − + + − − − + − Pseudomonas sp.

S2S6 Obligate
Aerobes

Fermentation
of dextrose,
lactose,
sucrose

+ − + + + − − − + − Pseudomonas sp.

S3S12
Facultative
Anaer-
obes

Dextrose
fermentation
only

+ − − − + + − − − − Bacillus sp.

S4S8
Facultative
Anaer-
obes

Fermentation
of dextrose,
lactose,
sucrose

− − − − + + − − − − Bacillus sp.

Note: “−” means “absent”; “+” means “present”.

For more detailed identification, the bacterial isolates were subjected to 16s rDNA
barcoding analysis, and the results were analyzed using NCBI BLAST to match with refer-
ence sequences from the database. The sequence with the highest percent identity value
was used as the reference sequence for the bacterial isolates. Based on the NCBI BLAST
results (Table 1; Figure 1), two of the isolates were identified as belonging to the genus
Pseudomonas: S1S6 (Pseudomonas stutzeri) and S1S8 (Pseudomonas pseudoalcaligenes). Both
Pseudomonas spp. are well-known as denitrifying bacteria and have been used as bioclean-
ing agents for the removal of nitrate and sulfate salts from wall paintings and heritage
structures [36,41,43–45]. To the best of our knowledge, however, this is the first report of
their urease-producing behavior and potential for MICP. Meanwhile, three of the bacterial
isolates were identified as belonging to the genus Bacillus: S1S7 (Bacillus paralicheniformis),
S3S12 (Bacillus altitudinis), and S4S8 (Bacillus aryabhattai). Bacillus paralicheniformis was
recently reported by Hoffman et al. [46] and Rajabi Agereh et al. [47] as a urease-producing
bacterium suitable for MICP. Similarly, Bacillus altitudinis has been reported to generate
carbonate minerals in mangroves and manganese-contaminated environments [48,49]. In
contrast, this is only the second report in the literature on the urease-producing ability of
Bacillus aryabhattai and its suitability for MICP [50]. One bacterial isolate was identified
as Stutzerimonas stutzeri (S1S19) belonging to the genus Stutzerimonas, a recently defined
genus that was previously classified as part of the genus Pseudomonas [51]. Although this
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bacterium had previously been isolated from wastewater sludge and seawater and was
found capable of degrading residual pharmaceuticals like paracetamol [52,53], this is the
first report of its urease-producing capability and potential for MICP. Finally, bacterial
isolate S2S6 was not identified due to the presence of multiple microbial types within
the submitted culture, warranting further purification. The biochemical identification
and DNA barcoding results were complementary except for the microbial consortium,
S2S6 isolate.
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Figure 1. Molecular phylogenetic analysis (Mega v.11.0.10) by maximum likelihood method and
Tamura–Nei model with bootstrap analysis based on 1000 replications on partial 16s rDNA sequences
from our isolates and reference sequence from NCBI BLAST, illustrating the phylogenetic position of
the six isolates and its related taxa.

The final pH of the isolates either decreased or increased depending on the bacterial
species (Figure 2). At pH 7, there were no observed changes in the pH level of all isolates
after 168 h. Under pH 8 conditions, four isolates—P. stutzeri (S1S6), P. pseudoalcaligenes
(S1S8), B. paralicheniformis (S1S7), and B. altitudinis (S3S12)—exhibited a noticeable de-
crease in pH, while two isolates—S. stutzeri (S1S19) and B. aryabhattai (S4S8)—showed
a slight pH increase. At pH 9, the decrease in pH of the four isolates noted above was
more significant, with only a minimal pH increase observed for the remaining two iso-
lates. All bacterial isolates, regardless of the initial pH, generated biomass/precipitates,
which were absent in the controls (without bacteria) (Figure 3). More extensive generation
of biomass/precipitates was also observed at pH 7 and 8, depending on the bacterial
species. The highest amounts of biomass/precipitates were obtained at an initial pH
of 8 for P. stutzeri (S1S6), B. paralicheniformis (S1S7), P. pseudoalcaligenes (S1S8), S. stutzeri
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(S1S19), B. altitudinis (S3S12), and B. aryabhattai (S4S8). At an initial pH of 9, however, the
biomass/precipitates produced in all bacterial isolates dramatically decreased (Figure 3).
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Figure 2. Initial and final pH of bacterial isolates in the biocementation assay experiments (S1S6:
P. stutzeri; S1S7: B. paralicheniformis; S1S8: P. pseudoalcaligenes; S1S19: S. stutzeri; S2S6: microbial
consortium; S3S12: B. altitudinis; S4S8: B. aryabhattai).

The pH of the system is controlled by bacterial metabolic processes and chemical
precipitation of carbonates (Equations (6)–(8)) [29]. The breakdown of urea, and the for-
mation of urease and its by-products by bacteria generates alkalinity (OH−) via NH3
generation and hydrolysis (Equations (1)–(4)), while the formation, dissolution, and spe-
ciation of CO2, including carbonate precipitation, lower the pH via proton (H+) produc-
tion (Equations (4), (6), and (7)). In addition, the pH of the isolates could be directly in-
fluenced by bacteria because of their inherent pH tolerance and buffering ability [52].
It is interesting to note that biomass/precipitates were more abundant in S. stutzeri
(S1S19), B. aryabhattai (S4S8), and microbial consortium S2S6 (Figure 3), which could be
attributed to higher bacterial activity, better urease decomposition and CO2 generation
(Equations (1)–(4)), and enhanced precipitation of carbonate minerals under alkaline condi-
tions (Equations (7) and (8)). As illustrated in Figure 4a, a higher concentration of dissolved
CO2 (i.e., higher CO2 fugacity due to microbial activity (Equation (2)) promoted calcite
formation by not only lowering the pH of nucleation from ~9 to ~6.5 but also enhancing
the overall extent of precipitation. In addition, dissolved inorganic carbon starts to speciate
at pH 8 to the carbonate ion (CO3

2−), which is more readily precipitated than carbonic
acid (H2CO3) and bicarbonate ion (HCO3

−) as implied by the positive Log K of reaction
between CO3

2− and Ca2+ (i.e., more spontaneous process) (Figure 4b; Equations (6)–(8)).
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Figure 3. Amounts of biomass/precipitates collected from each bacterial isolate as a function of pH
(S1S6: P. stutzeri; S1S7: B. paralicheniformis; S1S8: P. pseudoalcaligenes; S1S19: S. stutzeri; S2S6: microbial
consortium; S3S12: B. altitudinis; S4S8: B. aryabhattai). Cultivation of the isolated ureolytic bacteria
was performed in a medium containing 0.25 M CaCl2 and 0.5 M urea in 250 mL flask. Vertical error
bars indicate standard deviations, and ANOVA with Tukey’s procedure was used to compare the
variance between different groups at a level of significance of 0.05 (*).

Regardless of the pH, the biomass/precipitates produced by the bacterial isolates had
flaky morphologies and were predominantly composed of Ca, C, and O based on SEM-EDS
observations (Figures 5 and 6). The biomass/precipitates collected from the isolates were
further characterized by ATR-FTIR, and the results showed that they were a mixture of
bacterial debris, entrained agar, adsorbed water, and calcium carbonates (Figure 7). In
P. stutzeri (S1S6), P. pseudoalcaligenes (S1S8), and B. altitudinis (S3S12) at an initial pH of 7,
a broad infrared (IR) absorption band was observed centered at 1645 cm−1, which was
assigned to Amide I (ν C=O, ν C−N) vibrations of proteins and peptides present in bacterial
biomolecules [53]. The final pH in these three bacterial isolates decreased below 7, which
likely promoted bacterial deaths in the system, a deduction supported by the presence of
carbohydrates (i.e., excess food) in the biomass/precipitates as implied by the IR band at
1020 cm−1 and shoulder at 1110 cm−1 [53]. The IR peaks of biomolecules and carbohydrates
were not observed in bacterial isolates B. aryabhattai (S4S8) and S. stutzeri (S1S19), both
of which have an initial pH of 8 and final pH of ~8.5. The disappearance of these IR
bands was likely because of the more conducive environment for bacterial growth and
proliferation, fewer bacterial deaths, and more rapid consumption of available nutrients in
solutions like carbohydrates. This deduction is supported by the pH trends and amounts of
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biomass/precipitates noted previously. Meanwhile, the broad IR absorption peak between
3700 and 3000 cm−1 could be attributed to adsorbed water, which is to be expected because
the biomass/precipitates were only air-dried (Figure 7b) [19].
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The ATR-FTIR spectra also detected the presence of three carbonate minerals—calcite,
aragonite, and vaterite—in all five isolates (Figure 7a). The IR absorption bands at 870 and
712 cm−1 are assigned to the out-of-plane and in-plane carbonate deformation vibrations
in calcite, respectively [54,55]. More IR bands of carbonate minerals were revealed by de-
convoluting the complex peaks around 740–660 cm−1 and 900–800 cm−1 (Figure 7c,d). The
IR bands at 1083, 856, 847, 709, and 703 cm−1 could be attributed to carbonate stretching,
bending, and deformation vibrations in aragonite while those at 881 cm−1 are assigned
to the out-of-plane carbonate bending vibration in vaterite [54,55]. Finally, the CaCO3
production of bacterial isolates were estimated using the gravimetric acid-washing tech-
nique, and the results suggest around 75% to 95% CaCO3 abundance in the generated
biomass/precipitates (Table 3). Based on these results, all 6 bacterial isolates—P. stutzeri,
P. pseudoalcaligenes, B. paralicheniformis, B. altitudinis, B. aryabhattai, and S. stutzeri—are
promising for MICP provided that the pH is controlled between 7 and 8.

Table 3. Percentage of carbonates in biomass/precipitates from the biomineralization assay.

Sample Mass of Precipitate
(mg)

Mass of Carbonate
(mg) % Carbonate

S1S19 105.7 97.1 91

S3S12 214.5 203.7 95

S4S8 98.8 74.7 75.6
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Figure 7. ATR-FTIR spectra of biomass/precipitates in bacterial isolates at 1600–600 cm−1 (a) and
3800–3000 cm−1 (b), and deconvoluted peaks at 740–660 cm−1 in S4S8 at initial pH 8 (c), and
740–660 cm−1 in S4S8 at initial pH 8 (d). Note that S1S6-7 is P. stutzeri at initial pH 7, S1S8-7 is
P. pseudoalcaligenes at initial pH 7, S3S12-7: B. altitudinis at initial pH 7; S4S8-8 is B. aryabhattai at initial
pH 8, and S1S19-8 is S. stutzeri at initial pH 8.
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4. Conclusions

This study isolated indigenous, ureolytic bacteria from Iligan City, Philippines, iden-
tified them using DNA barcoding, and elucidated their potential for MICP using the
biomineralization assay, including the characterization of biomass/precipitates by the
gravimetric acid-washing technique, ATR-FTIR and SEM-EDS. The findings of this study
are summarized as follows:

1. Seven (7) bacterial isolates with strong potential for urease production were identified
out of the 36 initially screened isolates based on the urea tolerance test.

2. Among the seven isolates with strong urease production potential, two were identi-
fied from the genus Pseudomonas (P. stutzeri and P. pseudoalcaligenes), three from the
genus Bacillus (B. paralicheniformis, B. altitudinis, and B. aryabhattai), one from genus
Stutzerimonas (S. stutzeri), and one remained as a microbial consortium (S2S6), which
needs further studies for isolation and identification of bacterial species.

3. The six identified bacterial isolates performed better at pH 8 than under more alkaline
conditions (pH 9).

4. The observed high carbonate precipitation in S. stutzeri and B. aryabhattai could be
attributed to their more alkaline final pH, implying better urease formation and
decomposition, CO2 generation, and CaCO3 precipitation under these conditions.

5. Three carbonate minerals—calcite, aragonite, and vaterite—were identified in the
precipitates by SEM-EDS and ATR-FTIR.

The findings of this study contribute valuable insights into the utilization of indige-
nous, urease-producing bacteria isolated from the southern island of the Philippines for
MICP as a sustainable technology in the local construction and geotechnical engineering
sectors, including efforts for environmental rehabilitation and carbon capture, storage, and
sequestration.
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