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Abstract

We introduce a novel adaptive Gaussian Process Regression (GPR)
methodology for efficient construction of surrogate models for Bayesian
inverse problems with expensive forward model evaluations. An adaptive
design strategy focuses on optimizing both the positioning and simulation
accuracy of training data in order to reduce the computational cost of
simulating training data without compromising the fidelity of the posterior
distributions of parameters. The method interleaves a goal-oriented active
learning algorithm selecting evaluation points and tolerances based on the
expected impact on the Kullback-Leibler divergence of surrogated and
true posterior with a Markov Chain Monte Carlo sampling of the posterior.
The performance benefit of the adaptive approach is demonstrated for two
simple test problems.
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1 Introduction

The inverse problem of inferring the posterior probability of parameters p ∈ Rd

in a forward model y(p) from measurements ym ∈ Rm is often addressed by sam-
pling with Markov Chain Monte Carlo (MCMC) methods [5]. The large num-
ber of forward evaluations required for a faithful representation of the posterior
density renders this inapplicable in case of computationally expensive forward
models such as large finite element (FE) simulations. The forward model is thus
often replaced by a fast surrogate model when sampling the posterior. Here,
we focus on the efficient construction of Gaussian Process Regression (GPR)
surrogates.

Surrogate models are learned from values y(pi) at specific evaluation points
pi as training data. The accuracy of the resulting surrogate depends on the
number and position of the sample points. Constructing an accurate surrogate
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model can become computationally expensive when a large number of evalua-
tions is required. Consequently, strategies for selecting near-optimal evaluation
points have been proposed for various settings [11]. A priori point sets [4, 10]
are effectively supplemented by adaptive designs [3, 6, 8, 16] selecting the most
beneficial evaluation points pi.

When using FE simulations for computing training data, the evaluations of
y(pi) are affected by discretization and truncation errors. The trade-off between
accuracy and cost has been investigated using different low and high fidelity
models [9], and by an adaptive choice of evaluation tolerances [12, 13, 14] in
different settings. Here, we extend [13] from an offline training for maximum
posterior point estimates to an interleaved posterior sampling and surrogate
training driven by a goal-oriented approach.

2 Gaussian Process regression

Gaussian process regression is a regression technique which allows to approx-
imate any function, naturally fits the Bayesian framework, and provides an
uncertainty estimate of its prediction.

We consider a forward model y : Rd → Rm, which we assume to be a
realisation of a Gaussian process G with mean µ0 : Rd → Rm and covariance
kernel k : Rd × Rd → Rm×m to be defined later.

For training points (pi, yi)i=1,...,s with yi ≈ y(pi) of accuracy τi ≥ 0, we
are interested in a prediction of ys+1 ≈ y(ps+1) for any ps+1. The GPR pos-
terior covariance block matrix is Γ = (K−1 + T−2)−1 ∈ Rm(s+1)×m(s+1) with
prior covariance blocks Kij = k(pi, pj) and formally likelihood covariance T =
diag(τ1I, . . . , τsI,∞I). The GPR posterior mean is Ȳ = Γ(K−1M0 + T−2Y )
with Y = (y1, . . . , ys, 0). Then, the GPR prediction is the marginal normal dis-
tribution ys+1 ∼ N (Ȳs+1,Γs+1,s+1). As ps+1 ∈ Ω is arbitrary, this defines mean
ȳ : Ω→ Rm and covariance Γ : Ω→ Rm×m on the whole parameter space. We
refer to [11, 13] for a more detailed exposition.

3 Bayesian surrogate-based parameter identifi-
cation

We consider the forward model y : Ω ⊂ Rd → Rm, which cannot be evaluated
directly, but can be approximated through a numerical procedure yτ with ar-
bitrary precision in exchange of computational work: We assume that for any
τ > 0, we obtain an evaluation yτ (p) ∼ N (y(p), τI), with cost Wτ .

We assume measurements ym to be random variables generated by a linear
additive Gaussian noise model

ym = y(p) + η (1)

with η ∼ N (0,Σl). For simplicity, we consider a diagonal covariance structure
Σ = diag(σ1, . . . σn), corresponding to independent noise components. The
conditional distribution of the measurements is then ym | p ∼ N (y(p),Σl),

π(ym | p) = (2π)−m/2 det(Σl)
−1/2 exp

(
− 1

2
∥ym − y(p)∥2

Σ−1
l

)
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is the likelihood of the problem. Evaluating the likelihood requires evaluating
the forward model y, which we assume to be computationally expensive.

To reduce costs, we assume that y is a realisation of a GP, and introduce a
GP surrogate model G of predictive mean ȳ and variance Γ. For simplicity, we
consider a surrogate with independent output components, i.e. diagonal covari-
ance Γ(p). The training points for this GP are given by numerical evaluations
yτi(pi) of the forward model. These points and the corresponding evaluation
tolerances τi form the training design D. We postpone the question of how to
build training designs to the next section.

To evaluate the likelihood, we could substitute the forward model with the
mean estimate ȳ, obtaining

πplug-in(ym | p, ȳ) = (2π)−m/2 det(Σl)
−1/2 exp

(
− 1

2
∥ym − ȳ(p)∥2

Σ−1
l

)
. (2)

This, from a decision-theoretic point of view, corresponds to the minimisation
of the L1 loss [7], but ignores the uncertainty estimate given by the predictive
variance: since y is assumed to be a realisation of G, the measurement noise
model (1) becomes ym = G(p)+η. Marginalizing over GP realizations results in
a different conditional distribution of the measurements ym | p,G ∼ N (ȳ(p),Σl+
Γ(p)) and in a marginal likelihood:

πD(ym | p,D) = (2π)−m/2 det (Σl + Γ(p))
− 1

2 exp

(
−1

2
∥ym − ȳ(p)∥2

(Σl+Γ(p))−1

)
,

(3)
see, e.g., [2]. Note that the conditional distribution is still Gaussian due to the
normality of both the noise and the GP. Moreover, the likelihood πD is closely
related to the L2 loss [7, 15]. Including the GP variance into the likelihood can
be important for avoiding overconfident yet wrong posterior approximations by
surrogated forward models, see Fig. 1 for an illustration.

By adopting a Bayesian point of view, we express prior belief on the param-
eter by assigning a prior distribution π(p). Then, by Bayes’ theorem, we obtain
a true posterior distribution

π(p | ym) =
π(p) π(ym | p)

π(ym)
, (4)

corresponding to the true likelihood π(ym | p) and an approximate posterior

π(p | ym,D) =
π(p) π(ym | p,D)

π(ym | D)
, (5)

corresponding to the likelihood approximation π(ym | p,D) as given in (2)
and (3), respectively.

In both cases, the normalising constant π(ym) or π(ym | D), respectively, will
not be computationally available, as it requires integration over the parameter
space Ω: fortunately, it is not needed for posterior sampling by Markov-Chain
Monte Carlo (MCMC) methods.

4 Posterior-oriented surrogate model

As in [15], we do not aim at building a surrogate which is globally accurate
on the whole parameter space Ω, but at finding a design D such that the ap-
proximate posterior is accurate, i.e. π(p | ym) ≈ π(p | ym,D). Repeatedly
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Figure 1: Impact of the likelihoods (2) and (3) on the posterior for an illustrative
inverse problem problem with forward model y(p) = p2sin(p) and uniform prior
on parameter space [0, 1]. The horizontal lines show the actual measurement
and the 2σ range of measurement noise. The marginal likelihood (3) is wider
due to including the GP variance, and avoids overconfident posteriors.

selecting training points randomly sampled from π(p | ym,D), updating G and
then iterating is sufficient for convergence of π(p | ym,D) to π(p | ym) in the
Hellinger metric [2]. Here, we also aim at finding a design D which incurs a
small computational cost of evaluating training data yτi .

We measure the deviation of the surrogated and the true posterior densities
by the Kullback-Leibler (KL) divergence

DKL (π(· | ym) | π(· | ym,D)) = Eπ(p|ym)

[
log

π(p | ym)

π(p | ym,D)

]
=

∫
Ω

π(p | ym) log
π(p | ym)

π(p | ym,D)
dp. (6)

Since computing the KL divergence requires evaluating the full model, we de-
rive a numerical approximation which relies on the surrogate only. Using the
marginal likelihood (3) and the posteriors (4) and (5), their logarithmic ratio
can be written as

log
π(p | ym)

π(p | ym,D)
= log

π(ym | p)

πD(ym | p,D)
− log

π(ym)

π(ym | D)
.
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The first term, the logarithmic ratio of true and surrogated likelihood, equals

log
π(ym | p)

πD(ym | p,D)

=
1

2

(
log

det (Σl + Γ(p))

det (Σl)
− ∥y(p)− ym∥2

Σ−1
l

+ ∥ȳ(p)− ym∥2
(Σl+Γ(p))−1

)
.

As Σ−1
l − (Σl + Γ(p))

−1 ⪰ 0, we can upper bound the difference between norms
by

−∥y(p)− ym∥2
Σ−1

l

+ ∥ȳ(p)− ym∥2(Σl+Γ(p))−1

≤ −∥y(p)− ym∥2
Σ−1

l

+ ∥ȳ(p)− ym∥2
Σ−1

l

= −∥y(p)− ȳ(p)∥2
Σ−1

l

− 2 (ȳ(p)− ym)
T

Σ−1
l (y(p)− ȳ(p)) .

By assuming that y is a realisation of G, E
[(
y(i)(p)− ȳ(i)(p)

)2]
= Γ(i,i)(p)

and therefore ∥y(p)−ȳ(p)∥2
Σ−1

l

≈ tr
(
Σ−1

l Γ(p)
)

hold. Defining v = Σ−1
l

√
diag (Γ(p)) ∈

Rm, we obtain

−∥y(p)− ym∥2
Σ−1

l

+ ∥ȳ(p)− ym∥2(Σl+Γ(p))−1 ≲ − tr
(
Σ−1

l Γ(p)
)

+ 2 |ȳ(p)− ym|T v.

We therefore define the local error quantity

eD(p) :=
1

2

(
log det(I + Σ−1

l Γ(p))− tr
(
Σ−1

l Γ(p)(I − Σ−1
l )
)

+ 2 |ȳ(p)− ym|T v
)

(7)

≳ log
π(ym | p)

πD(ym | p,D)

as an approximate upper bound on the log ratio of true and surrogated likeli-
hood.

By optimistically assuming that the normalisation factors are similar inde-

pendent of the design D, and thus log π(ym)
π(ym|D) ≈ 0, we substitute (7) into (6)

and obtain the global error quantity

E(D) =

∫
Ω

eD(p)π(p | ym) dp. (8)

To create an optimal surrogate model, we aim at a training design D which
minimises E(D) under a computational work constraint. By denoting the com-
putational work needed to realize D by W (D) , for a given budget W we aim
at solving the optimisation problem

min
D

E(D) subject to W (D) ≤W. (9)

5 Sequential design of experiments

It is far from trivial to predict a priori how design choices impact the error quan-
tity E, especially when a large budget W is available or the initial surrogate is
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unreliable. Fortunately, an exact solution of (9) is not needed – an approximate
solution will do, even if it yields a slightly less efficient design. We follow [13, 14]

and adopt a greedy sequential approach, where the budget W =
∑J

j=1 ∆Wj is
partitioned and sequentially spent.

We start from an initial design D0 and then, for j = 1, . . . , J , aim at solving

min
Dj≤Dj−1

E(Dj) s.t. W (Dj | Dj−1) ≤ ∆Wj . (10)

We write D ≤ Dj−1 for any design D which refines Dj−1 in the sense that it
includes all evaluation points pi contained in Dj−1 with lesser or equal tolerances
τi. We write W (D | Dj−1) = W (D) −W (Dj−1) for the work needed to obtain
D from Dj−1.

Even this sequential formulation is highly non-linear and non-convex. An
accurate solution would require a considerable amount of computational work,
possibly exceeding the savings in computational budget possible with a better
design. Consequently, we adopt the heuristic approach of separating the selec-
tion of new candidate evaluation points from the optimisation of the evaluation
tolerances. In the latter, we also decide about the actual inclusion of the new
points in the training set.

Candidate points. We choose points where spending computational budget
is likely to reduce the error most. In order to do so, we look at the sensitivity
of the global error E with respect to a reduction of training error at a candiate
position p′ [14]. This is given by

dE(D)

dW (p′)
=

∫
Ω

deD(p)

dW (p′)
πD(p | ym) dp

=

∫
Ω

deD(p)

dΓ(p)

dΓ(p)

dτ(p′)

∣∣∣∣
τ=τ ′

dτ(p′)

dW (p′)

∣∣∣∣
τ=τ ′

πD(p | ym) dp, (11)

where the linearization tolerance τ ′ is the current GP standard deviation at
point p′. We adopt (11) as a utility function and select local minimizers of
dE(Dj−1)

dW as next candidate points.
The optimisation problem is solved approximately via a multistart pattern

search. Quadrature is performed by Monte Carlo integration on samples Sj to
be defined in Sec. 6 below. This results in the numerical utility function

dE(Dj−1)

dW (p′)
≈ 1

|Sj |
∑
p∈Sj

deDj−1
(p)

dW (p′)
.

If more than cj local maxima are found, the best cj ones are selected as candi-
dates; if less are found, all of them are included. A larger number of candidates
allows more points to be considered, but results in a harder accuracy optimisa-
tion problem.

Evaluation tolerances. Let Dj =
{

(pji , τ
j
i ) | i = 1, . . . , sj

}
be the set of

training points at step j. By the selection of candidate points, sj ≥ sj−1 and

pji = pj−1
i for i = 1, . . . , sj−1 hold.

Optimal tolerances τ ji are given by the solution of (10) as a function of the
tolerances. In order to be able to solve the problem, we ignore the shifts in the
mean ȳ as they cannot be predicted before evaluating the model. Consequently,
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we only consider the impact of evaluation tolerances on the predictive variance
and, for evaluation tolerances τ j = (τ j1 , . . . , τ

j
sj ), write E(τ j). As already spent

computational budget cannot be recovered by forgetting previously acquired
information, we impose the constraint τ ji ≤ τ j−1

i for i = 1, . . . , sj−1.
This results in the problem

min
τj∈Tj

E(τ j) subject to Wτj |Dj−1
≤ ∆Wj , (12)

where the set of admissible tolerances is

Tj = {(τ1, . . . , τsj ) ∈ (R+ ∪ {+∞})sj | τi ≤ τ j−1
i for i ≤ sj−1}.

If after optimization τ ji = +∞ holds for some i > sj−1, pji is excluded from the
training set.

Before we can numerically solve the problem, we need to notice that com-
putational costs are not available before the evaluation is performed, such that
we need to resort to a priori work models. Following [13, 18], we make use of
established a priori asymptotic estimates for finite elements of degree r in space
dimension l and an optimal solver such as multigrid, and define

W (τ) = τ−l/r. (13)

This estimate is asymptotic for τ → 0. Consequently, despite being inaccu-
rate for low-accuracy evaluations, it is usually accurate for the expensive high-
accuracy ones.

Problem (12) is solved by multistart gradient descent with projection and
backtracking linesearch. The integral in E is approximated again by Monte
Carlo integration on the samples Sj , resulting in a numerical objective

E(τ j) ≈ 1

|Sj |
∑
p∈Sj

eτj (p).

To implement gradient descent with projection, we adopt the coordinate change

τ j =
(
τ1, . . . , τsj

)
7→
(
τ
−l/r
1 , . . . , τ−l/r

sj

)
= W j ,

such that the constraint in (12) becomes linear, transforming the set of admis-
sible tolerances T j into a simplex and enabling efficient projection.

6 Solution of the inverse problem

The previous sections established the inverse problem (4) and the sequential
approach (10) to surrogate model training. Similar to [17], we combine them to
an interleaved strategy given as pseudocode in Alg. 1.

Both the global error quantity (8) and the utility function (11) require in-
tegration with respect to the posterior π(p | ym). We perform the integration
through an MCMC sampling of the posterior, which is is at the same time the
ultimate goal of the inversion.

We start with an empty sample chain S0 = ∅. At iteration j, we draw a
number nj of samples form π(p | ym,Dj−1), append them to Sj−1, and remove
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the oldest hj < nj elements of the chain, as they have been drawn from a less
accurate posterior approximation. This results in the sample chain Sj , which is
used to evaluate the integrals involved in the training problem (10) at step j.

As the sample size |Sj | may be is too large for an efficient evaluation of the
integrals in (8) and (11), we use a sufficiently large randomly extracted subset
of Sj instead of the whole chain for Monte Carlo integration.

When the computational budget is exhausted, the training of the surrogate
model terminates. A last round of samples is added to the chain, obtaining the
final set of samples from the posterior.

Algorithm 1 Surrogate-based Bayesian inversion

Require: D0 initial design, W budget
1: S0 ← ∅
2: WD ← 0
3: j ← 1
4: while WD ≤W do
5: decide: nj samples to draw, hj samples to remove
6: remove hj samples from Sj−1

7: draw nj samples S from π(p | ym,D)
8: Sj ← Sj−1 ∪ S
9: decide: ∆Wj iteration budget, cj number of candidates

10: obtain cj candidates
11: optimize accuracies τ j , update D
12: evaluate forward model for decreased tolerances
13: WD ←WD + ∆Wj

14: j ← j + 1
15: end while
16: draw nj samples S from π(p | ym,D)
17: Sj ← Sj−1 ∪ S

7 Numerical experiments

We present two illustrative experiments based on a Python implementation of
Alg. 1, where GPR is implemented with PyTorch. We adopt a separable kernel
with diagonal output structure and a Gaussian kernel as base [1]. The hyperpa-
rameters are tuned by marginal likelihood maximisation using PyTorch’s Adam
optimiser, with the kernel’s correlation length scale constrained to [0, 0.15].

As a benchmark, the results are compared with a non-adaptive space filling
approach, Latin Hypercube Sampling, and the position-adaptive-only training
strategy given by candidate point selection according to (11), i.e. all candi-
dates are accepted and evaluated with a fixed accuracy. For comparing the ap-
proaches, the approximation errors (6) are computed numerically with MCMC
sampling utilising the true forward model. The implementation used for these
examples is available at Zenodo1.

1https://zenodo.org/doi/10.5281/zenodo.11066159

https://zenodo.org/doi/10.5281/zenodo.11066159
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Figure 2: Kullback-Leibler divergence of surrogated posterior and true poste-
rior for different training designs over the computational work spent in the 1D
example.

7.1 1D analytical experiment

The first experiment is performed on a one-dimensional parameter space, with
m = 2 measurements. We consider an analytical forward model y : ]0, 1[→ R2

given by

y(p) =

[
1

2
p +

1

2
p2 exp

(
1

3
sin(12p− i)

)]
i=0,1

.

This mimics the evaluation of a FE model on a 2D domain with quadratic
elements, i.e. l/r = 1. The discretization error is simulated via a zero mean
Gaussian noise and the measurement likelihood is Σl = 10−4diag( 16

9 , 4
9 ).

A budget of 500 is considered: at each iteration two candidate points are con-
sidered and a budget of 20 is assigned to each point. With the work model (13),
this results in a default tolerance of 0.05 per point in the non-adaptive strategies
and a total of 12 iterations.

The number nj of new samples added into Sj is gradually increased from
200 samples at the first iteration to 2000 in the last, according to nj = 200 +

1800
(

j
12

)2
. Similarly, the number of discarded samples ranges from 200 to 1000,

with h1 = 0 as in the first iteration the chain is empty, and hj = 200+800
(

j
12

)2
for j > 1.

The obtained accuracies in terms of the Kullback-Leibler divergence between
true posterior π(p | ym) and surrogated posterior π(p | ym,D) are shown in
Fig. 2. Optimizing evaluation tolerances provides a significant performance
improvement over both other strategies.

7.2 2D analytical experiment

The second experiment considers a parameter space of two dimensions and m =
3 measurements. The forward model y : ]−0.5, 0.5[2 → R3 is again analytical,
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Figure 3: Reduction of surrogate standard deviation of the y1, i.e. k = 0,
component (left) and change of posterior distribution (right) between iterations
7 and 9. The computational work for each point is represented by its size. New
points are added and some of the old points are refined. The true parameter
used for creating the artificial measurements ym is denoted by a green star.

given by

y(p) =

[
sin(10k)(p1 − p2) exp

(
1

3
sin(8p2)

)
+ cos(10k)(p1 + p2) exp

(
1

3
sin(8p1)

)]
k∈{0,2,3}

.

The underlying model is assumed to be a quadratic FE scheme on a 3D do-
main, i.e. l/r = 1.5. The discretization error is again simulated via zero mean
Gaussian noise and the measurement likelihood is Σl = 10−4diag(1, 1, 4).

A working budget of 3600 is considered: at each iteration, 3 candidate points
are considered and a fixed budget of 100 corresponding to a fixed tolerance
τ = 0.046 is assigned to each point in the non-adaptive strategies for a total of
12 iterations.

The number nj of new samples added into Sj is gradually increased from 200
samples at the first iteration to 4000 in the last, according to nj = 200+⌊26.4j2⌋.
Similarly, the number of discarded samples ranges from 200 to 2000, with h1 = 0
as in the first iteration the chain is empty, and then hj = 200+⌊12.5j2⌋ for j > 1.
The error reduction by adding new points and decreasing tolerances is illustrated
in Fig. 3 for a single iteration. The performance in terms of the Kullback-Leibler
divergence between true and surrogated posteriors over computational work is
shown in Fig. 4. Again, a substantial performance improvement is achieved by
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Figure 4: Kullback-Leibler divergence of surrogated posterior and true poste-
rior for different training designs over the computational work spent in the 2D
example.

optimizing evaluation tolerances in addition to the evaluation positions.

Conclusions

When learning GPR surrogate models with numerically simulated training data
as a replacement for the true forward model in posterior sampling, significant
reductions of computational effort can be achieved with adaptive approaches.
With numerical forward models that allow exploiting accuracy-work trade-offs,
such as finite element simulations, the goal-oriented adaptive selection of simu-
lation tolerances appears to be particularly effective.
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