Supplementary Material

for

Chloride binding by layered double hydroxides (LDH/AFm phases) and alkaliactivated slag pastes: an experimental study by RILEM TC 283-CAM

Gregor J. G. Gluth^{1,*}, Shishir Mundra², Ricky Henning¹

¹ Division 7.4 Technology of Construction Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany

² Institute for Building Materials (IfB), ETH Zürich, CH-8093 Zürich, Switzerland

* Corresponding author; e-mail: gregor.gluth@bam.de

This PDF file includes:

Supplementary Figs. S1–S13: pp. 2–9 Supplementary Tables S1 and S2: pp. 10–11 Supplementary Text 1: pp. 12–16

Supplementary Fig. S1. X-ray diffraction patterns of monosulfate, batches 1 and 2. Patterns are plotted with their relative intensities. Selected peaks are labelled: Ett, ettringite; *Ms-12*, monosulfate 12-hydrate; *Ms-10.5*, monosulfate 10.5-hydrate; Kapton, Kapton foil used to cover the samples.

Supplementary Fig. S2. X-ray diffraction patterns of strätlingite, batches 1 and 2. Patterns are plotted with their relative intensities. Selected peaks are labelled: Mc, monocarbonate; Hg, hydrogarnet; Kapton, Kapton foil used to cover the samples.

Supplementary Fig. S3. X-ray diffraction patterns of hydrotalcite and meixnerite. Patterns are plotted with their relative intensities. Selected peaks are labelled: ?, unidentified impurities in hydrotalcite and meixnerite; Kapton, Kapton foil used to cover the samples.

Supplementary Fig. S4. X-ray diffraction patterns of the LDH/AFm phases (batch 1). Patterns are plotted with their absolute intensities (a.u.) to demonstrate differences in 'crystallinity'. Selected peaks are labelled: *Ett*, ettringite; *Ms-12*, monosulfate 12-hydrate; *Ms-10.5*, monosulfate 10.5-hydrate; *Str*, strätlingite; *Hg*, hydrogarnet; *Ht*, hydrotalcite; *Mx*, meixnerite; ?, unidentified impurities in hydrotalcite and meixnerite; *, Kapton foil used to cover the samples.

Supplementary Fig. S5. Differential thermogravimetry curves of **A**, monosulfate, batches 1 and 2; **B**, strätlingite, batches 1 and 2; **C**, hydrotalcite; **D**, meixnerite. The curves of monosulfate batch 2 and strätlingite batch 2 are shifted by -0.0003 mg/ms and -0.0002 mg/ms, respectively, for better visibility. Selected signals of impurities are labelled: +Ett, contribution of ettringite; Hg, hydrogarnet.

The thermogravimetric analyses were performed with a Netzsch STA 449 C Jupiter device. Sample masses of 10 mg were used, and the analyses were conducted under flowing nitrogen gas at a heating rate of 10 °C/min, starting at 40 °C.

Supplementary Fig. S6. Infrared (ATR-FTIR) spectra of monosulfate, batches 1 and 2.

Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra of the samples were recorded at room temperature in the mid-IR region (wavenumber 4000–400 cm⁻¹) on a Thermo Scientific Nicolet iS 50 FTIR spectrometer with an optical resolution of better than 0.09 cm⁻¹. For each sample, 32 scans were recorded and averaged. The spectra are plotted with no additional scaling, *i.e.*, with their absolute transmittances as outputted by the spectrometer software.

Supplementary Fig. S7. Infrared (ATR-FTIR) spectra of strätlingite, batches 1 and 2.

Experimental conditions and data presentation as described in the caption of Supplementary Fig. S6.

Supplementary Fig. S8. Infrared (ATR-FTIR) spectra of hydrotalcite and meixnerite.

Experimental conditions and data presentation as described in the caption of Supplementary Fig. S6. The infrared spectra of hydrotalcite and meixnerite (Mg-Al-OH LDH) are usually distinguished by the different intensities of their carbonate bands at ~1365 cm⁻¹, as for the present materials, while differences between their (Mg,Al)–O bands in the range of approx. 1000– 500 cm⁻¹ are generally not sufficient to differentiate between these phases. *Cf.* Bernard E, Zucha WJ, Lothenbach B, Mäder U (2022) Stability of hydrotalcite (Mg-Al layered double hydroxide) in presence of different anions. Cem Concr Res 152:106674, https://doi.org/10.1016/j.cemconres.2021.106674; and Koritnig S, Süsse P (1975) Meixnerit, Mg6Al2(OH)₁₈·4H₂O, ein neues Magnesium-Aluminium-Hydroxid-Mineral. Tschermaks Mineral Petrogr Mitt 22:79-87, https://doi.org/10.1007/BF01081303.

Supplementary Fig. S9. X-ray diffraction patterns of the AAS pastes (batch 1) after 48-day curing (AAS Na₂CO₃) or 28-day curing (all other pastes). Selected peaks are labelled: Ht-ss, hydrotalcite-like compound (Mg-Al-OH LDH); CASH, C-(N-)A-S-H gel; Cc, calcite; Vat, vaterite; Mc, monocarbonate; Ga, gaylussite; Ett, ettringite.

Supplementary Fig. S10. X-ray diffraction pattern of the AAS Na₂SO₄ paste (batch 1) after 90-day curing. Selected peaks are labelled: *Ett*, ettringite; Ms, monosulfate 12-hydrate; Ht-ss, hydrotalcite-like compound (Mg-Al-OH LDH); Vat, vaterite; CASH, C-(N-)A-S-H gel; Cc, calcite.

Supplementary Fig. S11. Modelled equilibrium solid-phase assemblages in the chloride binding experiments with strätlingite at a liquid volume/solid mass ratio of 13 mL/g.

Supplementary Fig. S12. Chloride sorption isotherms of a calcined Mg-Al LDH (Mx) and strätlingite (Str) in NaOH/NaCl solutions, and monosulfate (Ms) in NaCl solutions. The liquid volume/solid mass ratios used for the experiments were approx. 96 mL/g for Mx and Str, and 10 mL/g for Ms.

Data from Ke X, Bernal SA, Provis JL (2017) Uptake of chloride and carbonate by Mg-Al and Ca-Al layered double hydroxides in simulated pore solutions of alkali-activated slag cement. Cem Concr Res 100:1-13, <u>https://doi.org/10.1016/j.cemconres.2017.05.015</u>; and Hirao H, Yamada K, Takahashi H, Zibara H (2005) Chloride binding of cement estimated by binding isotherms of hydrates. J Adv Concr Technol 3:77-84, <u>https://doi.org/10.3151/jact.3.77</u>.

Supplementary Fig. S13. Chloride sorption isotherms of C-A-S-H (nominal Ca/Si = 1.0, Al/Si = 0.1; named CNASH-B in the original publication) in NaOH/NaCl solutions, and C-S-H in NaCl solutions. The liquid volume/-solid mass ratios used for the experiments were approx. 96 mL/g for C-A-S-H, and 10 mL/g for C-S-H.

Data from Ke X (2017) Improved durability and sustainability of alkali-activated slag cements. PhD thesis, University of Sheffield; and Hirao H, Yamada K, Takahashi H, Zibara H (2005) Chloride binding of cement estimated by binding isotherms of hydrates. J Adv Concr Technol 3:77-84, <u>https://doi.org/10.3151/jact.3.77</u>.

Component	GGBFS Batch 1 (wt.%)	GGBFS Batch 2 (wt.%)
CaO	43.8	42.1
MgO	4.9	5.1
SiO ₂	33.4	35.0
Al ₂ O ₃	12.0	11.4
Fe ₂ O ₃	0.3	0.3
Na ₂ O	0.3	0.2
K ₂ O	0.8	0.5
$\mathrm{SO}_3^{\mathrm{a}}$	1.8	2.0
$Mn_2O_3{}^b$	0.4	0.1
LOI ^c	1.2	1.7

Supplementary Table S1. Chemical compositions of the ground granulated blast-furnace slags (GGBFS) used for batch 1 (BAM) and batch 2 (ETH).

 a Sulfur species, including reduced sulfur (presumably mainly S^{2-}), expressed as SO_3 b Manganese species in different oxidation states, expressed as Mn_2O_3

° Loss on ignition

Reference ^a	Material	<i>l/s</i> (mL/g)	Time
Delagrave et al. (1997)	Cement paste	2.5 or 5	3 weeks
Ipavec et al. (2013)	Cement paste	10	2 months
De Weerdt et al. (2015)	Cement paste	0.5	2 months
Machner et al. (2018)	Cement paste	0.5	≥ 1 month
Ukpata et al. (2019)	Cement paste	4	6 weeks
Avet and Scrivener (2020)	Cement paste	4	2 months
Ke et al. (2017a)	AAS paste	~6.7	2 months
Zhang et al. (2019)	AAS/FA paste	3.2	2 months
Present study	AAS paste	4	3 weeks
Hirao et al. (2005)	AFm, AFt, CH, and C-S-H/CH	10	2 days
Ke (2017)	C-A-S-H	~96	4 months
Ke et al. (2017b)	Mg-Al LDH and AFm	~96	1 or 3 weeks
Present study	Mg-Al LDH and AFm	13, 26, 53, and 108	3 weeks

Supplementary Table S2. Examples of experimental parameters applied in previous studies of chloride binding in hydrated cement pastes and alkali-activated materials, compared to the present study.

^a References:

Avet F, Scrivener K (2020) Influence of pH on the chloride binding capacity of Limestone Calcined Clay Cements (LC³). Cem Concr Res 131:106031. <u>https://doi.org/10.1016/j.cemconres.2020.106031</u>

De Weerdt K, Colombo A, Coppola L, Justnes H, Geiker MR (2015) Impact of the associated cation on chloride binding of Portland cement paste. Cem Concr Res 68:196-202. <u>https://doi.org/10.1016/j.cemconres.2014.01.027</u>

Delagrave A, Marchand J, Ollivier J-P, Julien S, Hazrati K (1997) Chloride binding capacity of various hydrated cement paste systems. Adv Cem Based Mater 6:28-35. <u>https://doi.org/10.1016/S1065-7355(97)90003-1</u>

Hirao H, Yamada K, Takahashi H, Zibara H (2005) Chloride binding of cement estimated by binding isotherms of hydrates. J Adv Concr Technol 3:77-84. <u>https://doi.org/10.3151/jact.3.77</u>

Ipavec A, Vuk T, Gabrovšek R, Kaučič V (2013) Chloride binding into hydrated blended cements: the inluence of limestone and alkalinity. Cem Concr Res 48:74-85. <u>https://doi.org/10.1016/j.cemconres.2013.02.010</u>

Ke X (2017) Improved durability and sustainability of alkali-activated slag cements. PhD thesis, University of Sheffield

Ke X, Bernal SA, Hussein OH, Provis JL (2017a) Chloride binding and mobility in sodium carbonate-activated slag pastes and mortars. Mater Struct 50:252. <u>https://doi.org/10.1617/s11527-017-1121-8</u>

Ke X, Bernal SA, Provis JL (2017b) Uptake of chloride and carbonate by Mg-Al and Ca-Al layered double hydroxides in simulated pore solutions of alkali-activated slag cement. Cem Concr Res 100:1-13. https://doi.org/10.1016/i.cemconres.2017.05.015

Machner A, Zajac M, Ben Haha M, Kjellsen KO, Geiker MR, De Weerdt K (2018) Chloride-binding capacity of hydrotalcite in cement pastes containing dolomite and metakaolin. Cem Concr Res 107:163-181. https://doi.org/10.1016/j.cemconres.2018.02.002

Ukpata JO, Basheer PAM, Black L (2019) Slag hydration and chloride binding in slag cements exposed to a combined chloride-sulphate solution. Constr Build Mater 195:238-248. <u>https://doi.org/10.1016/j.conbuildmat.2018.11.055</u>

Zhang J, Shi C, Zhang Z (2019) Chloride binding of alkali-activated slag/fly ash cements. Constr Build Mater 226:21-31. https://doi.org/10.1016/j.conbuildmat.2019.07.281

Supplementary Text 1

Synthesis protocols for LDH/AFm phases

Monosulfate Ca₄Al₂SO₄(OH)₁₂·6H₂O

 $= 4CaO \cdot Al_2O_3 \cdot SO_3 \cdot 12H_2O \ [\textcircled{a} \ 11 \ \% \ RH: \ 4CaO \cdot Al_2O_3 \cdot SO_3 \cdot 10.5H_2O]$

Ref.: T. Matschei et al., Cem.Concr. Res. 37 (2007) 1379-1410.

<u>Chemicals required</u>: 3CaO·Al₂O₃ ("aluminate"), CaSO₄ or CaSO₄·2H₂O, and ultrapure water (not necessarily degassed).

<u>Conditions required</u>: All steps (except 2. and 4.) need to be done in the <u>glove box</u> under Ar or N_2 atmosphere. Constant temperature in the range 20–25 °C (if not specified otherwise).

If required: Calcine the required amount of $CaSO_4 \cdot 2H_2O$ at 200 °C in a muffle furnace for 2 hours to remove the H₂O. Allow the calcined material (*i.e.*, $CaSO_4$) to cool naturally in the furnace until a furnace temperature of ~150 °C is reached (make sure that *T* is always >105 °C). Remove the crucible with the CaSO₄ from the furnace and immediately transfer it to a desiccator with dry silica gel; allow the CaSO₄ to cool to room temperature in the desiccator. [Measure the mass of the material before and after calcination to check for complete dehydration.]

1. [glove box] Suspend a 1:1 molar mixture of 3CaO·Al₂O₃ and CaSO₄ in ultrapure water. See table below for the composition of the suspension.

Water	3CaO·Al ₂ O ₃	CaSO ₄
(g)	(g)	(g)
200.00	9.9743	5.0257

- 2. Age the suspension in a sealed bottle at 85 °C for 7 days.
- 3. [glove box] Vacuum filtration (using "Blauband" filter paper, *i.e.*, slow filter paper) and washing with ultrapure water at least five times.
- 4. Dry filter residue in a desiccator in a CO₂-free atmosphere [Ar or N₂] above saturated LiCl solution (11 % RH) for 3 weeks.

If necessary for subsequent analyses/experiments, grind the material [in a glove box under Ar or N_2 atmosphere]. Store the material in sealed containers until required for analyses/experiments.

Strätlingite $Ca_2Al_2SiO_2(OH)_{10}\cdot 3H_2O$ = 2CaO·Al_2O_3·SiO_2·8H_2O [@ 11 % RH: 2CaO·Al_2O_3·SiO_2·{7...7.5}H_2O]

Ref.: Matschei, T. et al., Cem.Concr. Res. 37 (2007) 1379-1410.

<u>Chemicals required</u>: Ca(OH)₂, waterglass solution with 27.3 wt.% SiO₂ and 15.0 wt.% Na₂O, NaAlO₂ and ultrapure water (not necessarily degassed).

<u>Conditions required</u>: All steps (except 5. and 7.) need to be done in the <u>glove box</u> under Ar or N_2 atmosphere. Constant temperature in the range 20–25 °C.

Optional: Calcine the NaAlO₂ at 500 °C in a muffle furnace for 1 hour to remove impurity CO₂ and H₂O. Allow the calcined material to cool naturally in the furnace until a furnace temperature of ~150 °C is reached (make sure that *T* is always >105 °C). Remove the crucible with the material from the furnace and immediately transfer it to a desiccator with dry silica gel; allow the material to cool to room temperature in the desiccator.

1. [glove box] Suspend each of the solid chemicals in separate bottles/beakers containing ultrapure water. See table below for the compositions of the suspensions.

	Water	Solute
	(g)	(g)
Ca(OH) ₂	151.22	7.5610
Waterglass sln.*	11.25 g of solution	
NaAlO ₂	167.30	8.3650

* Composition: 27.3 wt.% SiO₂; 15.0 wt.% Na₂O; remainder H₂O

- 2. [glove box] Add NaAlO₂ suspension to Ca(OH)₂ suspension.
- 3. [glove box] Add mixed suspension prepared in step 2 to the waterglass solution.
- 4. [glove box] Make up the suspension with ultrapure water to 450 ml.
- 5. Stir suspension in a sealed bottle for 4 weeks.
- 6. [glove box] Vacuum filtration (using "Blauband" filter paper, *i.e.*, slow filter paper) and washing with ultrapure water at least five times to remove alkalis.
- 7. Dry filter residue in a desiccator in a CO₂-free atmosphere [Ar or N₂] above saturated LiCl solution (11 % RH) for 3 weeks.

If necessary for subsequent analyses/experiments, grind the material [in a glove box under Ar or N_2 atmosphere]. Store the material in sealed containers until required for analyses/experiments.

Hydrotalcite $Mg_{1-x}Al_x(OH)_2(CO_3)_{x/2} \cdot nH_2O (x = 0.20...0.33; n = 1 - 3x/2)$ = {(2-2x)/x}MgO·Al_2O_3·CO_3·{2/x+2n/x}H_2O

<u>Refs.</u>: S. Miyata, *Clays Clay Miner*. 28 (1980) 50–56; see also T. Hibino *et al.*, *Clays Clay Miner*. 43 (1995) 427–432.

Chemicals required: MgCl₂, AlCl₃, NaOH, Na₂CO₃ and ultrapure water (not necessarily degassed).

Conditions required: Constant temperature in the range 20-25 °C (if not specified otherwise).

1. Prepare aqueous solutions of MgCl₂ (0.7 M), AlCl₃ (0.3 M), NaOH (2 M) and Na₂CO₃ (0.2 M) separately in ultrapure water. See table below for the compositions of the suspensions/solutions [calculated for x = 0.30 and $CO_3^{2-}/Al^{3+} = 0.67$ ($CO_3^{2-}/Al^{3+} = 0.50$ is required by stoichiometry)].

	Concentration (M)	Volume (ml)	Weight of solute (g)
MgCl ₂	0.7	100	6.6648
AlCl ₃	0.3	100	4.0002
NaOH	2.0	100	7.9994
Na ₂ CO ₃	0.2	100	2.1198

- 2. Mix all solutions.
- 3. Make up the resulting suspension with ultrapure water to 450 ml and adjust the pH to 10 ± 0.2 using NaOH solution.
- 4. Stir the suspension at 40-50 °C for 20 min.
- 5. Vacuum filtration (using "Blauband" filter paper, *i.e.*, slow filter paper) and washing with ultrapure water at least five times.
- 6. Immerse filter residue in $0.1 \text{ M Na}_2\text{CO}_3$ solution (see table below for the composition of the solution), at a concentration of ~1 g of precipitate per 20 ml of solution, in a closed bottle for 7 days to remove residual Cl⁻ in the precipitate through ion exchange; stir or shake bottle once per day.

	Concentration (M)	Volume (ml)	Weight of solute (g)
Na ₂ CO ₃	0.1	750	7.9492

- 7. Vacuum filtration (using "Blauband" filter paper, *i.e.*, slow filter paper) and washing with ultrapure water at least five times.
- 8. Dry filter residue at 80 °C for 20–24 hours in an Erlenmeyer flask with CO₂ adsorbent (NaOH) on top.
- 9. Immerse dried filter residue in ~10 ml of ultrapure water per 1 g of precipitate.
- 10. Aging of the suspension in an Erlenmeyer flask with CO₂ adsorbent (NaOH) on top for 4 days at 90–95 °C.
- 11. Vacuum filtration (using "Blauband" filter paper, *i.e.*, slow filter paper) and washing with ultrapure water at least five times.

12. Dry filter residue in a desiccator above saturated LiCl solution (11 % RH) for 3 weeks.

If necessary for subsequent analyses/experiments, grind the material. Store the material in sealed containers until required for analyses/experiments.

Mg-Al-OH LDH approx. meixnerite, Mg_{0.75}Al_{0.25}(OH)_{2.25}·0.5H₂O = 6MgO·Al₂O₃·13H₂O actual stoichiometry depending on starting hydrotalcite

Ref.: X. Ke *et al.*, *Cem. Concr. Res.* 81 (2016) 24–37. [Regarding calcination of hydrotalcite and remaining carbonate, see T. Hibino *et al.*, *Clays Clay Miner.* 43 (1995) 427–432 and T. Stanimirova *et al.*, *Clay Miner.* 39 (2004) 177–191. Regarding stoichiometry of synthetic Mg-Ag-OH LDH, see G. Mascolo & O. Marino, *Mineral. Mag.* 43 (1980) 619–621]

Chemicals required: Hydrotalcite, NaOH and ultrapure water (not necessarily degassed).

<u>Conditions required</u>: Steps 4. and 6. need to be done in the <u>glove box</u> under Ar or N_2 atmosphere. Constant temperature in the range 20–25 °C (if not specified otherwise).

- 1. Heat the required amount of hydrotalcite in a crucible at a heating rate of 5 °C/min to 500 °C and hold it at that temperature for 3 h. (Some carbonate may remain in the material, depending on Mg/Al ratio etc.)
- 2. Allow the calcined material to cool naturally in the furnace until a furnace temperature of ~150 °C is reached (make sure that *T* is always >105 °C).
- 3. Remove the crucible with the material from the furnace and immediately transfer it to a desiccator with dry silica gel; allow the material to cool to room temperature in the desiccator.
- 4. [glove box] Immerse the material in 1 M NaOH solution (see table below for the composition of the solution), at a concentration or ~1 g of solid per 10 ml of solution.

	Concentration (M)	Volume (ml)	Weight of solute (g)
NaOH	1.0	200	7.9994

- 5. Aging of the suspension in a sealed bottle for 20–24 hours.
- 6. [glove box] Vacuum filtration (using "Blauband" filter paper, *i.e.*, slow filter paper) and washing with ultrapure water at least five times.
 - a. Dry filter residue in a desiccator in a CO₂-free atmosphere [Ar or N₂] above saturated LiCl solution (11 % RH) for 3 weeks.

If necessary for subsequent analyses/experiments, grind the material [in a glove box under Ar or N_2 atmosphere]. Store the material in sealed containers until required for analyses/experiments.