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Abstract
In this study, we demonstrate the applicability of nitrogen microwave inductively coupled atmospheric pressure mass spec-
trometry (MICAP-MS) for Ca, Fe, and Se quantification in human serum using isotope dilution (ID) analysis. The matrix 
tolerance of MICAP-MS in Na matrix was investigated, revealing that high Na levels can suppress the signal intensity. This 
suppression is likely due to the plasma loading and the space charge effect. Moreover, 40Ca and 44Ca isotopic fractionation 
was noted at elevated Na concentration. Nine certified serum samples were analyzed using both external calibration and 
ID analysis. Overestimation of Cr, Zn, As, and Se was found in the results of external calibration, which might result from 
C-induced polyatomic interference and signal enhancement, respectively. Further investigations performed with methanol 
showed a similar enhancement effect for Zn, As, and Se, potentially supporting this assumption. The mass concentrations 
determined with ID analysis show metrological compatibility with the reference values, indicating that MICAP-MS combined 
with ID analysis can be a promising method for precise Ca, Fe, and Se determination. Moreover, this combination reduces 
the influence of matrix effects, broadening the applicability of MICAP-MS for samples with complex matrixes.

Keywords  Nitrogen microwave inductively coupled atmospheric pressure mass spectrometry · Isotope dilution · Human 
serum · Calcium · Iron · Selenium

Introduction

As essential components of enzymes and hormones, trace 
elements play an indispensable role in various biological 
systems. For example, Ca is needed for bone mineralization, 
heart rate regulation, and nerve impulse regulation [1–3]. Fe 
participates in a wide variety of metabolisms, like oxygen 
transport and neurotransmitter myelin synthesis [4–6]. Se is 
vital for antioxidant selenoprotein synthesis, protecting the 
body against the oxidative stress [7–9]. Accurate characteri-
zation of trace elements in the human body enables not only 

the monitoring of various physiological mechanisms but also 
assists in various clinical practices such as nutritional assess-
ment and disease diagnosis.

Inductively coupled plasma mass spectrometry (ICP-
MS) stands out as a preeminent method for trace elemental 
analysis due to its exceptional sensitivity and multielement 
capability. However, direct analysis of serum samples by 
ICP-MS encounters matrix effects from Na [10–12], organic 
species [13–15], and polyatomic interferences. These effects 
have the potential to lead to signal suppression and enhance-
ment, thereby introducing distortions in the analysis. The 
capability for isotope ratio measurements in ICP-MS facili-
tates the application of isotope dilution (ID) analysis [16]. 
By utilizing an isotopically enriched spike that shares the 
same matrix as the sample, it becomes feasible to eliminate 
matrix effects originating from the serum matrix. Further-
more, ID has the potential to mitigate errors related to sam-
ple preparation, thereby leading to increased precision and 
accuracy. Over the past few decades, ICP-MS combined with 
ID analysis has emerged as one of the most widely adopted 
techniques for trace elemental analysis in serum [17, 18].
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However, Ar as plasma gas in ICP-MS hinders the ID 
analysis of certain elements by Ar-related interferences, 
particularly in the case of Ca, Fe, and Se. Their most abun-
dant isotopes are interfered by 40Ar+ (40Ca), 40Ar16O+ (56Fe), 
and 80Ar2

+ (80Se), respectively. Additionally, the intense ion 
beam generated by these interferences may cause ion/elec-
tron scattering in the detector, resulting in non-spectral inter-
ferences to isotopes with similar mass-to-charge ratios [19, 
20]. Various approaches have been implemented to address 
this issue, for example, collision cell [17], dynamic reaction 
cell [21], and “cold” plasma conditions [22]. In addition to 
these methods, one approach that can fundamentally solve 
this problem is to replace the Ar plasma gas with N2.

In the 1990s, Hitachi et al. first introduced the coupling of 
N2-based microwave-induced plasma with mass spectrom-
etry (MIP-MS), and this instrument was proved to be effec-
tive in various application areas [23, 24]. In 1998, MIP-MS 
was combined with ID to determine the Se concentration in 
serum by Furuta et al. [25]. They indicated that the results 
agreed well with the reference values, whereas the detection 
sensitivity of N2-MIP is about one order of magnitude lower 
than that of Ar-ICP. Three years later, Majidi et al. coupled 
MIP with time-of-flight mass spectrometry (TOF–MS) to 
measure the Ca isotopes and isotope ratios. They showed 
that all Ca isotopes can be measured with this method. 
However, the precision is poorer than with normal ICP-MS 
[26]. Compared to MIP-MS, microwave inductively coupled 
atmospheric-pressure plasma mass spectrometry (MICAP-
MS) exhibited greater sensitivity and precision due to its 
higher plasma power. It has proven to be a promising alter-
native to ICP-MS in different fields [27–29]. However, its 
performance for ID analysis has not been reported so far.

In this work, we employed MICAP-MS to quantify the 
concentrations of Ca, Fe, and Se in human serum using 
external calibration and ID analysis, utilizing the isotope 
ratios 40Ca/44Ca, 57Fe/56Fe, and 82Se/80Se. Nine reference 
serum samples were digested and analyzed. The results 
obtained from both methods were compared and validated 
against certified values. Since serum has a remarkable level 
of Na, the performance of MICAP-MS under varying Na 
matrix concentrations was studied. Furthermore, the effect 
of organic species was also investigated and discussed.

Experimental

Materials and samples

The reference serum samples analyzed included NIST 909C 
(National Institute of Standards and Technology, USA), 
BCR-304, BCR-637, BCR-638, BCR-639 (Joint Research 
Centre, Belgium), Seronorm L-1, Seronorm L-2 (Sero As, 
Norway), ClinChek Level 1, ClinChek Level 2 (Recipe 

Chemicals + Instruments GmbH, Germany). The certified 
mass concentrations of the elements contained in the sam-
ples are listed in Table S1. High-purity deionized water with 
a resistivity of 18 MΩ cm obtained from a Milli-Q system 
(Merck Millipore, Germany) was used throughout the exper-
iments. HNO3 (Merck, Germany) was used after purification 
by subboiling distillation in PFA containers.

For ID analysis, the spike solution used for Se determi-
nation was prepared by diluting the liquid isotope standard 
VHG-LIS82Se-50 (VHG Labs, USA) by a factor of 100. 
After dilution, this spike solution has a Se mass concentra-
tion of around 100 µg L−1 (99.72% 82Se). The spike solution 
utilized for Fe determination was prepared using the liquid 
isotope standard IRMM-620 (IRMM, Belgium), which con-
tains approximately 11 mg L−1 of Fe with a 57Fe isotope 
abundance of 95.19%. In the case of calcium determination, 
the spike solution was prepared from the solid 44Ca enriched 
isotope material ISOFLEX-Ca-44 (ISOFLEX, USA), which 
is in the form of carbonate and has a 44Ca isotope abundance 
of 99.2%. To prepare the spike solution, 17.63 mg standard 
was weighted and dissolved with 2% HNO3. After dissolu-
tion, the Ca spike solution has a 44Ca mass concentration 
of 529 mg L−1. To ensure that the ratios of 40Ca/44Ca and 
57Fe/56Fe after spiking were close to 1, while the ratio of 
82Se/80Se is about to 1.5, the masses of the spike solutions to 
be added were calculated according to the natural abundance 
and the mass concentration of the corresponding elements in 
the samples. The mass concentrations and weighted masses 
of the spike solutions are shown in Table S2. For the reverse 
ID analysis, spike solutions were mixed with single-element 
solutions diluted from the ICP stock solutions (Merck AG, 
Germany), respectively (see Table S3). A solution contain-
ing 100 mg L−1 Ca, 10 mg L−1 Fe, and 100 µg L−1 Se was 
used for sample bracketing. To avoid the memory effect of 
Se, two rinsing steps with a rinse time of 60 s were applied 
subsequently between each sample.

External calibrations were carried out using multielement 
solutions prepared from single-element ICP stock solutions. 
To mimic the matrix in the serum samples, 50 mg L−1 NaCl 
(Merck AG, Germany) was added to each standard. Six cali-
bration levels were applied for all the elements, and the con-
centration of the standards ranged from 0.1 to 500 µg L−1. 
6Li, 45Sc, 89Y, 115In, 159 Tb, and 209Bi were used as inter-
nal standards (IS) in each calibration standard and sample 
(see Table S4). To investigate the matrix effect of Na and 
C, matrix-matched solutions with increasing concentrations 
were prepared with NaCl and Methanol (Merck AG, Ger-
many), respectively.

Serum sample preparation

0.6 g of each serum sample was mixed with a correspond-
ing volume of spike solution and subjected to digestion 
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with 4 mL 65% HNO3 and 2 mL 15% H2O2 (Merck AG, 
Germany). The reaction mixture was heated at 100 °C for 
60 min in a microwave digester (Anton Paar Multiwave 
5000, Germany). After cooling, it was diluted to 25 mL with 
2% HNO3 and used as stock solution. For the determination 
of Ca, the stock solution was diluted by a factor of 10. Undi-
luted stock solution was applied for Fe and Se determination 
due to the low Se mass concentration in the serum samples.

Instruments

A PlasmaQuant MS Elite quadrupole mass spectrometer 
(Analytik Jena GmbH, Germany) modified with a MICAP 
plasma source (Radom Research & Development, USA) was 
used for all measurements. Nitrogen (N2 purity ≥ 99.999%, 
Linde AG, Germany) was used as general nebulizer, auxil-
iary, and plasma gas. Samples were transported to a concen-
tric nebulizer (MicroMist, USA) using a peristaltic pump at 
a liquid uptake rate of approximately 400 µL min−1. Larger 
aerosol particles were cut off by a cooled double-pass spray 
chamber. Aspect MS software (Analytik Jena GmbH, Ger-
many) was used for data acquisition, including mass calibra-
tion, data processing, and plots. All torch parameters were 
optimized for high sensitivity and matrix tolerance. The 
optimized operation conditions are listed in Table 1.

Data analysis

For ID analysis, the mass concentrations of Ca, Fe, and Se in 
the serum samples were calculated according to Eq. (1) [16, 
18], where C is the mass concentration, M is the molar mass, 
m is the mass, x is the amount fraction of the correspond-
ing element in the sample, and ρ is the density determined 
through weighing (see Table S5).

R represents the isotope ratio, which is given by Eq. (2). 
N is the number of detected isotope atoms, which can be 
obtained by subtracting the background intensity from the 

(1)

Csample = Cspike

�sample

�spike

∙

Msample

Mspike ∙ xsample
∙

mspike

msample

∙

Rspike − Rmix

Rmix − Rsample

signal intensity. a represents the less abundant isotope, while 
b denotes the more abundant isotope.

The mass concentration of the spike solution was deter-
mined using reverse ID by rearranging the equation for Cspike 
and setting Csample as the certified concentration of the ICP 
standard solution. Expanded measurement uncertainty was 
estimated by multiplication of the standard deviation with 
factor two, for a confidence interval of 95%.

Results and discussion

Matrix tolerance of MICAP‑MS at different Na 
concentrations

Matrix tolerance serves as a metric for assessing an instru-
ment’s robustness to matrix effects, which is described 
by the ratio of the signal intensity of an element/isotope 
obtained in the matrix containing solution to that from the 
element solution without matrix. The matrix tolerance of 
MICAP-MS at varying Na mass concentrations was investi-
gated by measuring the intensity recovery of 6Li, 45Sc, 89Y, 
115In, 159 Tb, and 209Bi in 2% HNO3 with NaCl mass concen-
trations ranging from 1 to 2000 mg L−1. The obtained results 
are shown in Fig. 1.

Na was noted to suppress the signal of all the elements 
measured. This is consistent with the reported results 
obtained with ICP-MS [10, 15], which indicates that easily 
ionizable elements (EIEs) like Na can reduce the plasma 

(2)R =

Na

Nb

Table 1   Optimized operation parameters used in MICAP-MS

MICAP-MS

Plasma Power 1500 W
Nebulizer gas flow 1.1 L min−1 N2

Auxiliary gas flow 0.8 L min−1 N2

Plasma gas flow 9 L min−1 N2

Sampling depth 6 mm
Sampling cone Pt 1.1 mm
Skimmer cone Ni 0.5 mm

Fig. 1   Matrix tolerance of 6Li, 45Sc, 89Y, 115In, 159  Tb, and 209Bi in 
2% HNO3 with different NaCl mass concentrations. The lines with 
light color represent the standard deviation
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energy necessary for the ionization and may also lead to space 
charge effect within the interface region. Consequently, this 
culminates in a decrease in the number of detected analyte 
ions. The degree of the suppression is highly dependent on 
the Na mass concentration, which is about 15% at 50 mg L−1 
for Li and between 25 and 30% for other elements. Li seems to 
be affected to a weaker extent, which might be due to its lower 
first ionization energy and smaller ionic mass. As Na mass 
concentration exceeds 100 mg L−1, the suppressing effect 
intensifies proportionally with the increase in Na mass con-
centration. As much as 60% suppression of the signal intensity 
was found with a Na mass concentration of 2 g L−1.

To investigate the influence of Na matrix on ID analy-
sis, isotope ratios of 40Ca/44Ca, 57Fe/56Fe, and 82Se/80Se in 
solutions containing 100 µg L−1 Ca, Fe, Se, and increasing 
mass concentration of NaCl were determined. Figure 2 shows 
that isotope ratios of 57Fe/56Fe and 82Se/80Se were not sig-
nificantly affected by the increasing Na mass concentration, 
which was almost consistent with the natural isotope ratios. 
Surprisingly, 40Ca/44Ca decreased significantly when the 

Na mass concentration exceeded 500 mg L−1. A possible 
explanation is that excessive Na ions enhanced the space 
charge effect in the skimmer cone regions, which improved 
the transmission of the heavier isotope and resulted in 
instrumental isotopic fractionation [30–32]. As a result, 
the isotope with lower ionic mass, in this case 40Ca, was 
less detected. Since the Na mass concentration in the serum 
samples was approximately 50 mg L−1, ID analysis of the 
serum samples with MICAP-MS should not be distorted by 
this issue.

Characterization of the serum samples with external 
calibration

Besides ID analysis, nine reference serum samples were 
characterized with external calibration to validate the 
observed matrix tolerance of MICAP-MS in Na matrix. The 
higher-order, traceability, and commutability of the studied 
certified reference materials assure their representability 
as clinical human serum samples [33–36]. The choice of 
isotopes was based on their abundance and the absence of 
polyatomic interferences. Calibration standards were pre-
pared with 2% HNO3 containing 50 mg L−1 NaCl to match 
the Na matrix in the serum samples. 6Li, 45Sc, 89Y, 115In, 
159 Tb, and 209Bi were used as IS. The results obtained are 
the average values of the triplicate measurements.

Figure 3 shows the results obtained with the serum 
samples Seronorm L-1 and ClinChek-1, demonstrating 
the percentage deviations in mass concentrations of the 
selected elements determined by external calibration com-
pared to their reference values. For most of the elements, 
the results lie mostly within the reference ranges. How-
ever, the mass concentrations of Cr, Se, As, and Zn were 
significantly higher than their reference values. Similar 
results were also obtained with other serum samples (see 
Table S1). Although 52Cr suffers from polyatomic inter-
ference by 40Ar12C+, the effect of this interference should 
be negligible in MICAP-MS due to the low abundance 
of Ar in the N2 plasma gas. Other interferences might be 
35Cl16O1H+ and 40Ca12C+. The isotope ratio of 52Cr/50Cr 
was observed 53% (29.6) higher than the natural isotope 
ratio (19.3). This might indicate that the main interfer-
ence was 40Ca12C+ since 50Cr was interfered by 35Cl15N 
but not by Ca and C. The overestimation of Se, As, and 
Zn could be due to a signal enhancement effect since the 
same enhancement magnitude was noted with 80Se and 
78Se. It was observed that the average C intensity in the 
serum samples was approximately 13 times higher than 
that in the blank, potentially indicating the presence of 
organic residue. Ionization of hard-to-ionize elements like 
Se, As, and Zn can significantly be improved by C ions in 
the conventional Ar plasma, because the electrons of these 
elements can be transferred to the C ions through a charge 

Fig. 2   Variations in isotope ratios of 40Ca/44Ca, 57Fe/56Fe, and 
82Se/80Se at different NaCl mass concentrations. The lines with light 
color represent the standard deviation, and the dashed lines indicate 
their natural isotope ratios
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transfer reaction [13, 14, 37]. The Limits of detection 
(LOD) and limits of quantification (LOQ) of the applied 
method in Na matrix are shown in Table S6. To investigate 
whether C can enhance the intensity of these elements in 
MICAP-MS, matrix tolerance of 82Se, 75As, and 66Zn in 
2% HNO3 with methanol concentrations ranging from 0 
to 10% was measured using MICAP-Ms and the obtained 
results are shown in Fig. 4.

It can be observed that the signal intensities of Se, As, 
and Zn enhanced with the increasing methanol concentra-
tion. In the 4% v/v methanol solution, the signal inten-
sity of Se was enhanced by a factor of 2.2, which is 1.3 
for As and 1.1 for Zn, respectively. Further increase the 
concentration of the methanol further enhanced the signal 
intensity. However, the extent of this enhancement was 
less pronounced. This result could support our hypoth-
esis, suggesting that C may enhance the ionization of hard-
to-ionize elements in MICAP-MS. However, additional 
research is needed to elucidate the underlying principles 
of this effect, since methanol could not totally simulate the 
matrix in serum samples.

Characterization of the serum samples with isotope 
dilution analysis

To investigate the performance of MICAP-MS for ID analy-
sis, isotope ratios of 40Ca/44Ca, 57Fe/56Fe, and 82Se/80Se were 
measured to determine the Ca, Fe, and Se mass concentra-
tions in the corresponding serum samples. Sample brack-
eting was performed with a solution containing naturally 
abundant Ca, Fe, and Se to correct the mass bias and signal 
drift. The average values of the triplicate ID analysis were 
compared with the reference values and those obtained with 
external calibration (see Table 2). The metrological compat-
ibility of the data with the certified values was evaluated 
by calculating their En value. The results are considered 
metrologically compatible, if the absolute value of the En 
value is less or equal to 1 [18, 38].

Table 2 reveals that the Ca and Fe mass concentrations 
determined with ID analysis and external calibration were 
comparable and matched closely with the reference values. 
Compared to those obtained with external calibration, the Se 
mass concentrations determined with ID analysis align well 
with the reference values. This suggests that ID analysis was 
not obviously influenced by the serum matrix. All of the En 
values from the ID analysis were below 1, which confirms 
the metrological compatibility of these results

Conclusions

We found that MICAP-MS combined with ID analysis 
proves to be a reliable technique for precise Ca, Fe, and 
Se quantification in blood serum. Different from Ar-based 

Fig. 3   Percentage deviation in mass concentrations of the selected 
elements in serum samples: a Seronorm L-1 and b ClinChek-1 deter-
mined by external calibration (blue) compared to their reference val-
ues (green). The black lines represent the upper and lower limit of the 
reference ranges

Fig. 4   Matrix tolerance of 82Se, 75As, and 66Zn in 2% HNO3 with dif-
ferent methanol concentrations. The lines with light color represent 
the standard deviation
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ICP-MS, MICAP-MS allows the determination of the most 
abundant isotopes of these elements, which generally inter-
fere with Ar, thereby facilitating their use in ID analysis.

The matrix tolerance of MICAP-MS to Na was investi-
gated by measuring the intensity recovery of 6Li, 45Sc, 89Y, 
115In, 159 Tb, and 209Bi at increasing Na concentration. Like 
Ar-based ICP-MS, high Na concentration could result in 
intensity suppression in MICAP-MS, possibly due to the 
plasma loading and the space charge effect. At 50 mg L−1 
Na concentration, the intensity recovery for most elements 
ranged between 70 and 75%. Over 60% suppression was 
found at a Na concentration of 2 g L−1. The Na matrix did 
not significantly affect the isotope ratios of 57Fe/56Fe and 
82Se/80Se. However, higher Na concentration was found to 
cause isotopic fractionation for 40Ca and 44Ca, which might 
result from the space charge effect.

By external calibration, the obtained mass concentrations 
of most elements were consistent with their reference values. 
However, overestimation was observed in the results of Cr, 
Zn, As, and Se. The interferences of 52Cr could result from 
polyatomic species 40Ca12C+, 40Ar12C+, and 35Cl16O1H+, 
with 40Ca12C+ being the most likely contributor. The overes-
timation of Se, As, and Zn might be due to a signal enhance-
ment effect, likely caused by the organic residues in the 
samples. Additional investigations performed with methanol 
showed a similar effect, supporting this assumption.

By ID analysis, the obtained Ca, Fe, and Se mass con-
centrations in the nine reference serum samples were com-
parable with the reference values. Most of the absolute 
values of En were below 1, confirming the metrological 

compatibility of the results. Combining MICAP-MS with 
ID analysis reduced the influences of matrix effects, ena-
bling the analysis of samples in complex matrix effec-
tively. Further research could build upon this work by 
delving into the carbon-containing matrix, potentially 
extending the applicability of MICAP-MS even further.
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