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Abstract
Thermal transient problems, essential for modeling applications like welding
and additive metal manufacturing, are characterized by a dynamic evolution
of temperature. Accurately simulating these phenomena is often computation-
ally expensive, thus limiting their applications, for example for model parameter
estimation or online process control. Model order reduction, a solution to pre-
serve the accuracy while reducing the computation time, is explored. This article
addresses challenges in developing reduced order models using the proper gen-
eralized decomposition (PGD) for transient thermal problems with a specific
treatment of the moving heat source within the reduced model. Factors affecting
accuracy, convergence, and computational cost, such as discretization meth-
ods (finite element and finite difference), a dimensionless formulation, the
size of the heat source, and the inclusion of material parameters as additional
PGD variables are examined across progressively complex examples. The results
demonstrate the influence of these factors on the PGD model’s performance
and emphasize the importance of their consideration when implementing such
models. For thermal example, it is demonstrated that a PGD model with a finite
difference discretization in time, a dimensionless representation, a mapping
for a moving heat source, and a spatial domain non-separation yields the best
approximation to the full order model.
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additive manufacturing, mapping for unseparable load, model order reduction (MOR), proper
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1 INTRODUCTION

Numerical simulations, especially finite element simulations, are widely used in the industry to achieve savings in the
product time-to-market and costs.1 Such simulations often require a large computational effort which sums up even more
when a model calibration or optimization process is required. In inverse problems, a large number of evaluations of the
forward model is required – both in deterministic but even more pronounced in stochastic MCMC type of identification
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procedures. Therefore, methods to improve the performance of the simulations are needed. Some proposed methods can
improve the simulation performance based on mesh improvement techniques. These use, for example, adaptive mesh
algorithms, such as a moving mesh algorithm used in Reference 2, octree-based voxelized conforming meshes in Refer-
ence 3, but also element-free algorithms, such as the element-free Galerkin method in References 4 and 5. Furthermore,
semi-analytical approaches as in References 6 and 7, CPU-based implementations as in Reference 8, and data-driven
approaches as in References 9 and 10 are used. Otherwise, reduced order modeling (ROM) is a promising approach
to significantly improve the computational performance. This popular concept can decrease the computation time per
model evaluation, potentially achieving a real-time simulation.11 However, as usual, validation using experimental refer-
ence data is absolutely necessary.12 Furthermore, providing real-time simulations using model order reduction methods
enables an improved process control and builds the foundation for a digital twin of industrial manufacturing processes.13

The goal of reduced order modeling is to find a lower dimensional representation of the original problem, with-
out compromising the physical behavior of the analyzed system. Several “a priori” model order reduction approaches
have been developed and used, such as hyper-reduction in References 14 and 15. A widely used approach is the proper
generalized decomposition (PGD),13,16,17 for example in data-driven applications,18,19 parameter estimations,20,21 surgery
simulations22,23 or contact problems.24,25 The main idea of the a-priori PGD approach is to approximate the solution field
by a separated representation given by a number of modes for each model parameter which are computed based on the
underlying PDE of the problem. The PGD model parameters could be the space, time, boundary conditions or any other
model parameter, like a material parameter which may vary in a certain range. With the derived PGD solution, all possible
solution fields in the defined parameter space can be approximated. The dimension of each PGD mode is defined by the
corresponding PGD model parameter dimension. Except from the physical space, those are usually 1D-spaces allowing
a separation of the complex multi-dimensional problem into a series of simple (1D) problems. For an efficient computa-
tion of the PGD modes, the separation of the whole problem (for example including external loads) with respect to the
chosen PGD model parameters is necessary. A typical example, where the derived PGD weak form is hard to separate, is
a moving load.26 In that regard, novel approaches are derived overcoming this limitation, as Ghnatios et al.27 with a map-
ping approach, Rubio et al.21 with a moving coordinate system, Huerta et al.28 with a domain decomposition strategy and
Favoretto et al.29 with an asymptotic expansion.

The prediction of the temperature evaluation over time is extremely important for various technical problems for
example in welding applications or metal-based additive manufacturing. For those cases, a fast-to-evaluate prediction
model is required for an efficient process control and optimization.30 Especially in welding problems, steep temperature
gradients over time and space as well as moving heat sources occur, leading to challenges in the development of an
appropriate reduced order model.

The aim of this article is to demonstrate and study those challenges by developing a PGD model for the thermal tran-
sient heat equation with a moving heat source. Several aspects are investigated and compared, namely the discretization
method for the time integration to reduce temperature oscillations, a reformulation of the problem in a dimensionless
form to achieve better convergence, the influence of different heat source sizes to get an understanding of occurring
changes, the extension of the PGD variables by material parameters (Fourier number) required for calibration tasks and
the separation of the spatial domain with its influence on the accuracy. In the case of a moving heat source, the map-
ping approach of Ghnatios et al.11,27,31 with a coordinate transformation is applied and the influence of the mapping on
the accuracy is analyzed. These investigations are carried out using examples that gradually increase in complexity. Start-
ing with a 1D thermal transient problem with a stationary heat source over a moving source up to a 3D problem. This
3D problem considers constant material parameters as well as movement of the heat source in one direction for simplic-
ity. However, the methodology shown can be extended to temperature dependent material parameters as well as a free
movement of the source in any direction. The findings are summarized in the conclusion section.

2 PGD MODEL FOR THERMAL TRANSIENT MODEL

2.1 Thermal transient model

The investigated thermal transient problem with both a standing and moving heat source can be described by the heat
equation

𝜌cp
𝜕T
𝜕t
− kΔT = q, (1)
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where T(x, t) is the temperature field and q(x, t) the heat source with x =
[
x y z

]⊺ ∈ Ω, Ω ∈ R3 (here Ω = [0,Lx] ×
[0,Ly] × [0,Lz]) and time t ∈ [0, tend]. The density 𝜌, specific heat capacity cp and thermal conductivity k are kept constant.
Furthermore, the commonly used Goldak heat source model32 as depicted in Figure 1 with a movement in x-direction is
applied to simulate the heat source

q(x, t) =
6
√

3𝜂P

(af + ar)bc𝜋
3
2

exp−3((x−(x0+vt))∕af)2
exp−3((y−y0)∕b)2

exp−3((z−z0)∕c)2
, (2)

with the arc efficiency 𝜂, the thermal power P, the starting position (x0, y0, z0), the velocity v and the Goldak spatial
distribution parameters af, ar, b, and c. In the following, af and ar are set to be equal, such that the shape of the source is
axisymmetric with respect to the x-axis. A property of the Goldak source is that the energy input drops to 5% intensity at its
boundaries. Using v = 0, a standing heat source at location (x0, y0, z0) can be simulated. The initial condition is assumed
to be the ambient temperature given by:

T(x, y, z, t = 0) = T∞. (3)

The convective heat transfer at the boundary 𝜕Ω writes

−k∇Ts ⋅ n⃗ = h(Ts − T∞) (4)

with the surface temperature Ts and the heat transfer coefficient h. After applying these boundary conditions and
integrating by part, the weak form of Equation (1) reads

∫Ω 𝜌cpT∗ 𝜕T
𝜕t
+ k∇T∗ ⋅ ∇T dV + ∫

𝜕Ω
hT∗(T − T∞) dA = ∫Ω T∗q dV . (5)

Often, Equation (5) is then reformulated again to improve the convergence properties of the numerical methods by
considering the space, time, and temperature in dimensionless form. Hence, defining

𝜉x ∶=
x

Lref
, 𝜉y ∶=

y
Lref

, 𝜉z ∶=
z

Lref
, 𝜏 ∶= t

tref
, and Θ ∶= T

Tref
(6)

with arbitrary Lref, tref,Tref ∈ R+. With a special choice of the reference temperature Tref as Tref = L2
ref∕k and the dimen-

sionless spatial domain, Fourier and Biot number

𝔔 =
{
𝝃 =

[
𝜉x 𝜉y 𝜉z

]⊺
∈ R

3|x ∈ Ω
}
, Fo = ktref

𝜌cpL2
ref

, Bi = hLref

k
(7)

F I G U R E 1 Goldak heat source model with a local coordinate system x′ =
[
x′ y′ z′

]⊺ moving in the global coordinate system x.30
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the number of parameters can be reduced, and the dimensionless weak form can be obtained as

∫𝔔 Fo−1T∗ 𝜕Θ
𝜕𝜏

+ ∇T∗ ⋅ ∇Θ dV + Bi ∫
𝜕𝔔

T∗Θ dA = ∫𝔔 T∗q dV + Bi ∫
𝜕𝔔

T∗T∞ dA. (8)

2.2 Reference solution

As a reference solution, the solution of the full order model is obtained by applying the finite element method solv-
ing the weak form given in Equations (5) and (8) coupled with a backward Euler approach for the time integration
scheme

𝜕Θm+1

𝜕𝜏
= Θm+1 − Θm

Δ𝜏
. (9)

Depending on the dimension of the problem, linear 1D elements or second order tetrahedrons are used to discretize the
physical space. Since the full order model is used to quantify the accuracy of the reduced PGD model, the mesh influence
on the reference solution has to be considered. Either the same mesh discretization is used in the full order model as in
the PGD model thus the influence on the reduction compared to the full order model is analyzed or a convergence study is
used to define an appropriate mesh independent reference solution. In the convergence analysis, the mesh is successively
refined and in each refinement step the solution is compared with the previous solution. The convergence study is only
carried out for the full order finite element solution and the resulting mesh is subsequently applied in the PGD model,
since the same behavior of the PGD solution and the full order solution is assumed.

2.3 PGD model

Deriving a PGD model to handle Equation (1) requires a separate representation of the temperature field T. Besides the
standard space and time parameters, the source efficiency 𝜂 ∈ [𝜂min, 𝜂max] is additionally chosen as a PGD parameter,
where its domain boundaries 𝜂min and 𝜂max represent the possible inputs for the PGD model. This choice is motivated by
the fact that those parameters are uncertain, and are usually identified using measurement data. Different examples for
deriving a PGD model for transient thermal problems can be found in References 29 and 33. With the above-mentioned
parameter selection, T is approximated as

T ≈ Tn(x, t, 𝜂) =
n∑

i=1
Fi

1(x)F
i
2(t)F

i
3(𝜂) + Gx(x)Gt(t)G𝜂(𝜂), (10)

with PGD modes Fi
j . The additional summand G, separated for each PGD variable, is the inhomogeneous initial condition,

which holds

Gx(x) = G𝜂(𝜂) ≡ 1, and Gt(t) ≡ T∞. (11)

Inserting this approach into Equation (5) leads to a nonlinear, multidimensional problem

∫Ω ∫
tend

0 ∫
𝜂max

𝜂min

𝜌cpT∗ 𝜕Tn

𝜕t
+ k∇T∗ ⋅ ∇Tn dV dt d𝜂 = ∫Ω ∫

tend

0 ∫
𝜂max

𝜂min

T∗q dV dt d𝜂. (12)

As long as the heat source q can be separated into the PGD parameters in the same way the temperature is sought, the
integration over q in Equation (12) can be separated, too. For a stationary heat source with v = 0, the heat source is given
by

q(x, t, 𝜂) =
6
√

3P

(af + ar)bc𝜋
3
2

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

q(t)

𝜂

⏟⏟⏟

q(𝜂)

exp−3((x−x0)∕af)2
exp−3((y−y0)∕b)2

exp−3((z−z0)∕c)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

q(x)

, (13)
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which can be easily separated. If v ≠ 0, additional treatment is required (see Section 2.3.3). The PGD weak form Equation
(12) is solved iteratively with an alternated direction fixed-point algorithm, as for example described in Reference 34, with

Tn(x, t, 𝜂) =
n−1∑

i=1
Fi

1(x)F
i
2(t)F

i
3(𝜂) + X(x)K(t)M(𝜂) + Gx(x)Gt(t)G𝜂(𝜂)

= Tn−1 + XKM + GxGtG𝜂,

(14)

where the new modes X, K, and M are computed in each enrichment step based on the old solution Tn−1. The numerical
solution of the occurring separate PDE problems in the PGD solver can be handled individually using, for example finite
elements or finite difference approaches.

2.3.1 Time integration schemes

Especially in cases with steep temperature gradients, the discretization scheme of the time parameter influences the
solution. Two different time integration schemes are discussed, in other words the problem regarding the time t is solved
by using the finite element (FE) method and by using the finite difference (FD) method.

In FD, the domain of interest is divided into a grid, often uniform, where discrete points represent locations in the
domain. The derivatives in the PDEs are approximated by finite difference equations at these grid points. Different pos-
sibilities to approximate derivatives exist, since the time problem is one-directional, the first-order upwind scheme is
applied

𝜕u
𝜕t
=

un+1
i − un

i

Δt
. (15)

It is well-known that oscillations can be reduced with such an upwind approach. The FE method divides the domain into
elements, and it uses a piecewise approximation with variable polynomial degree of the solution over these elements.
The PDEs are integrated over these elements to obtain a system of equations. The FE method is very flexible in terms
of handling irregular geometries or higher dimensional problems. Since the time problem is a 1D problem, standard 1D
finite elements with linear ansatz functions are used. Nevertheless, finite element formulations are not one-directional
like the upwind approach. Values of both sides of the 1D element will be used in the computation.

The two discretizations are compared in Section 4.1.1 to determine which method is more suitable for solving the
temporal problem.

2.3.2 Dimensionless formulation

As mentioned above, the dimensionless formulation is often used for improving the convergence properties, in the stan-
dard numerical approaches. The dimensionless PGD approach obtained by inserting the definition of the dimensionless
variables Equation (6) into the PGD approach Equation (14) reads

Θ ≈ Θn(𝝃, 𝜏, 𝜂) =
n−1∑

i=1
Fi

1(𝝃)F
i
2(𝜏)F

i
3(𝜂) + X(𝝃)K(𝜏)M(𝜂) + Gx(𝝃)Gt(𝜏)G𝜂(𝜂)

= Θn−1 + XKM + GxGtG𝜂.

(16)

Inserting the approach into the dimensionless weak form Equation (8) the dimensionless PGD problem is obtained as

∫𝔔 ∫
𝔱

0 ∫
𝜂max

𝜂min

Fo−1T∗ 𝜕Θ
n

𝜕𝜏
+ ∇T∗ ⋅ ∇Θn dV d𝜏 d𝜂 + ∫

𝜕𝔔 ∫
𝔱

0 ∫
𝜂max

𝜂min

Bi T∗Θn dA d𝜏 d𝜂

= ∫𝔔 ∫
𝔱

0 ∫
𝜂max

𝜂min

T∗q dV d𝜏 d𝜂 + ∫
𝜕𝔔 ∫

𝔱

0 ∫
𝜂max

𝜂min

Bi T∗T∞ dA d𝜏 d𝜂.
(17)
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The PGD modes in the dimensionless form can be computed in the same way as discussed for the standard form assuming
a separable heat source q. The influence of the dimensionless formulation on the simulation in terms of accuracy and
speed is analyzed in Section 4.1.2.

2.3.3 Mapping

The development of a PGD model for the parametric problem Equation (1) with a moving heat source is more complex.
This is because – to put the formulation in a similar form to Equation (16) – the problem has to be separable for each PGD
variable. But with v ≠ 0, the Goldak heat source Equation (2) is not factorable into space direction x and time t, due to the
squared exponent. Ghnatios et al.27 derived a method to handle such a hardly separable parametric problem. Here, the
main idea is to transform the hardly separable problem by a coordinate transformation to a separable one. For the sake of
simplicity, the mapping is derived directly using the dimensionless formulation, in other words the dimensionless space
and time domain (𝜉x, 𝜏) is mapped into a (s, r) domain in which the moving Goldak heat source function is separable into
r and s demonstrated in Figure 2. The variable r describes the heat source position using 𝜉x0 = x0∕Lref

r ∶= 𝜉x0 +
tref

Lref
v𝜏 ⇔ 𝜏 =

r − 𝜉x0

tref
Lref

v
, r ∈

[
r̂on =

ron

Lref
, r̂off =

roff

Lref

]
. (18)

The activation and deactivation positions ron and roff for the load are the points where the heat source is switched on
and off. These points are mathematically restricted by ron > ar and roff < L − af to avoid division by zero in the mapping.
This means that a heat source that is switched on or off at the edge of the spatial domain cannot be simulated without
artificially expand the domain. Furthermore, the mapped spatial domain s ∈ [smin, smax] = [0, 3] is split into three parts.
These three parts comprise the domain behind the heat source s ∈ [0, 1), the heat source itself s ∈ [1, 2] and the domain
in front of the head source s ∈ (2, 3]. The dimensionless mapping parameter s is defined as

s ∈ [0, 1) ∶s ∶= 𝜉x

h1(r)
⇔ 𝜉x = sh1(r),

s ∈ [1, 2] ∶s ∶= 𝜉x − h1(r)
hg

+ 1 ⇔ 𝜉x = (s − 1)hg + h1(r),

s ∈ (2, 3] ∶s ∶=
𝜉x − hg − h1(r)

h2(r)
+ 2 ⇔ 𝜉x = (s − 2)h2(r) + hg + h1(r),

(19)

with

âf =
af

Lref
, âr =

ar

Lref
, b̂ = b

Lref
, ĉ = c

Lref
(20)

F I G U R E 2 Mapping from the dimensionless space T(𝜉x , 𝜏) (left) to the mapped space T(s, r) (right) adapted from Reference .30
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and

hg = âf + âr, h1(r) = r − âr, and h2(r) =
Lx

Lref
− âf − r (21)

describing the load position. Following the mapping approach, the PGD parameters are now s =
[
s 𝜉y 𝜉z

]⊺, r, and 𝜂
and the mapped PGD approach is given by

Θ ≈ Θn(s, r, 𝜂) =
n∑

i=1
Fi

1(s)F
i
2(r)F

i
3(𝜂) + Gs(s)Gr(r)G𝜂(𝜂)

=
n−1∑

i=1
Fi

1(s)F
i
2(r)F

i
3(𝜂) + S(s)R(r)M(𝜂) + Gs(s)Gr(r)G𝜂(𝜂)

= Θn−1 + SRM + GsGrG𝜂.

(22)

Applying the coordinate transformation from the dimensionless space to the dimensionless mapped space given by

dV𝝃 d𝜏 d𝜂 = det(J) dVs dr d𝜂, (23)

with the Jacobian matrix J and the mapped PGD approach Equation (22) to the dimensionless weak form Equation (17)
yields the mapped dimensionless weak form

∫𝔄 ∫
r̂off

r̂on
∫

𝜂max

𝜂min

Fo−1T∗B𝜏∇srΘn det(J) + ∇𝝃rT∗ ⋅ ∇𝝃rΘn det(J) dV dr d𝜂 + ∫
𝜕𝔄 ∫

r̂off

r̂on
∫

𝜂max

𝜂min

Bi T∗Θn det(J) dA dr d𝜂

= ∫𝔄 ∫
r̂off

r̂on
∫

𝜂max

𝜂min

T∗q det(J) dV dr d𝜂 + ∫
𝜕𝔄 ∫

r̂off

r̂on
∫

𝜂max

𝜂min

Bi T∗T∞ det(J) dA dr d𝜂,
(24)

with the dimensionless mapped space𝔄 ∶= [smin, smax] × [0,Ly∕Lref] × [0,Lz∕Lref] and

B𝜏 ∶=
[
𝜕s
𝜕𝜏

𝜕r
𝜕𝜏

]
, B𝜉x ∶=

[
𝜕s
𝜕𝜉x

𝜕r
𝜕𝜉x

]
, ∇srΘ ∶=

[
𝜕Θ
𝜕s
𝜕Θ
𝜕r

]

and ∇𝝃rΘ ∶=

⎡
⎢
⎢
⎢
⎢
⎣

B𝜉x∇srΘ
𝜕Θ
𝜕𝜉y
𝜕Θ
𝜕𝜉z

⎤
⎥
⎥
⎥
⎥
⎦

. (25)

Where, due to the mapping the heat source is separable in (s, r, 𝜂)

q(s, r, 𝜂) =
6
√

3P

(âf + âr)b̂ĉ𝜋
3
2

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

q(r)

𝜂

⏟⏟⏟

q(𝜂)

exp−3(((s−1)hg−âr)∕âf)2
exp−3

(
(𝜉y−𝜉y0 )∕b̂

)2

exp−3
(
(𝜉z−𝜉z0 )∕ĉ

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

q(s)

, (26)

with 𝜉y0 = y0∕Lref and 𝜉z0 = z0∕Lref. This mapping approach has another benefit when it comes to the discretization of the
heat source. Due to the splitting of the spatial domain 𝜉x into three parts, the heat source itself is automatically refined
adaptively.

A more detailed example on how to apply this mapping can be found in Reference 30. The effect of the mapping
approach on the solution is discussed in Section 4.2.2.

2.3.4 Material parameter as PGD variable

Due to the concept of PGD, other model parameters like material parameters can be easily added as PGD parameters
allowing an efficient computation of the solution field with regard of its value.35 Having material parameters as PGD



8 of 22 STROBL et al.

variables enables, for example its identification based on measured data in a calibration process. Moreover, the result-
ing PGD model can directly handle different material parameters without resolving any equation systems. Using the
dimensionless formulation, the original material parameters 𝜌, cp, k and h are reduced to the dimensionless model param-
eters Fourier and Biot number. Here, the Fourier number Fo and Biot number Bi are added as PGD variables to the
model to be able to adapt to any situation in combination with the heat source efficiency 𝜂. More specifically, scal-
ing parameters 𝔣 for the Fourier number and 𝔟 for the Biot number are added, that is Fo = 𝔣 ⋅ Foref, 𝔣 ∈ [𝔣min, 𝔣max] and
Bi = 𝔟 ⋅ Biref, 𝔟 ∈ [𝔟min, 𝔟max]with fixed values Foref,Biref ∈ R+ based on prior knowledge. Extending the PGD approach as
in Equation (22)

Θ ≈ Θn(s, r, 𝜂, 𝔣, 𝔟) =
n∑

i=1
Fi

1(s)F
i
2(r)F

i
3(𝜂)F

i
4(𝔣)F

i
5(𝔟) + Gs(s)Gr(r)G𝜂(𝜂)G𝔣(𝔣)G𝔟(𝔟) (27)

and inserting that into Equation (24) yields

∫𝔄 ∫
r̂off

r̂on
∫𝔘 Fo−1T∗B𝜏∇srΘn det(J) + ∇𝝃rT∗ ⋅ ∇𝝃rΘn det(J) dV dr d𝜂 d𝔣 d𝔟 + ∫

𝜕𝔄 ∫
r̂off

r̂on
∫𝔘 Bi T∗Θn det(J) dA dr d𝜂 d𝔣 d𝔟

= ∫𝔄 ∫
r̂off

r̂on
∫𝔘 T∗q det(J) dV dr d𝜂 d𝔣 d𝔟 + ∫

𝜕𝔄 ∫
r̂off

r̂on
∫𝔘 Bi T∗T∞ det(J) dA dr d𝜂 d𝔣 d𝔟,

(28)

which is simplified by defining𝔘 ∶= [𝜂min, 𝜂max] × [𝔣min, 𝔣max] × [𝔟min, 𝔟max]. Note, the extension of the PGD approach for
material parameters like the Fourier number can also be done without applying the mapping approach using Equation
(17). This extended model is then compared in Section 4.2.3 to reference solutions to analyze the accuracy of the PGD
model for various material parameter values.

2.3.5 Spatial domain splitting

The spatial domain plays a special role in PGD because it can be held together as a usual 3D space or decomposed into a
2D and a 1D space or even into three 1D spaces. Whether such a decomposition is possible depends mainly on the given
geometry. Decomposing the spatial domain leads to tremendous savings in computation time, but potentially accompa-
nied by a reduction in the accuracy of the model. Applying the PGD approach with a spatial domain divided into three
1D intervals

Θ ≈ Θn(s, 𝜉y, 𝜉z, r, 𝜂, 𝔣, 𝔟) =
n∑

i=1
Fi

1(s)F
i
2(𝜉y)Fi

3(𝜉z)Fi
4(r)F

i
5(𝜂)F

i
6(𝔣)F

i
7(𝔟) + Gs(s)G𝜉y (𝜉y)G𝜉z (𝜉z)Gr(r)G𝜂(𝜂)G𝔣(𝔣)G𝔟(𝔟) (29)

to Equation (28) yields the dimensionless mapped weak form with decomposed spatial domain

∫𝔄 ∫
r̂off

r̂on
∫𝔘 Fo−1T∗B𝜏∇srΘn det(J) + ∇𝝃rT∗ ⋅ ∇𝝃rΘn det(J) ds d𝜉y d𝜉z dr d𝜂 d𝔣 d𝔟

+ ∫
𝜕𝔄 ∫

r̂off

r̂on
∫𝔘 Bi T∗Θn det(J) dA dr d𝜂 d𝔣 d𝔟

= ∫𝔄 ∫
r̂off

r̂on
∫𝔘 T∗q det(J) ds d𝜉y d𝜉z dr d𝜂 d𝔣 d𝔟 + ∫

𝜕𝔄 ∫
r̂off

r̂on
∫𝔘 Bi T∗T∞ det(J) dA dr d𝜂 d𝔣 d𝔟.

(30)

Assuming the same separation as in Equation (29) for the heat source q, Equation (30) can be split into one-dimensional
problems for each parameter (s, 𝜉y, 𝜉z, r, 𝜂, 𝔣) in the fixed-point algorithm problem allowing an efficient way to compute
the PDG modes involving only 1D integrals. As already discussed, the numerical solution of the single one-dimensional
problems in the PGD solver can be handled individually using, for example finite elements or finite difference approaches.
The influence of the splitting combined with different discretization methods on the accuracy of the solution is discussed
in Section 4.3.
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2.4 Error measurement

Each model comparison of two models M1 and M2 is carried out by calculating the mean of the relative error for 𝜂 ∈ E =
{0.2, 0.4, 0.6, 0.8, 1} over space x at a given time point tfixed

𝜀x =
1
|E|

∑

𝜂∈E

||TM1(x, tfixed, 𝜂) − TM2(x, tfixed, 𝜂)||L2(x)

||TM2(x, tfixed, 𝜂)||L2(x)
, (31)

or over time t at a given space point xfixed

𝜀t =
1
|E|

∑

𝜂∈E

||TM1(xfixed, t, 𝜂) − TM2(xfixed, t, 𝜂)||L2(t)

||TM2(xfixed, t, 𝜂)||L2(t)
, (32)

where |E| represents the cardinality of E. If either model M1 or M2 is a PGD model, the error depends on the number
of modes n used to compute the PGD model solution. In the case of a moving heat source, the error is affected by the
mapping approach resulting in the relative error over the mapped spatial domain s at a given heat source position rfixed

𝜀s =
1
|E|

∑

𝜂∈E

||TM1(s, rfixed, 𝜂) − TM2(s, rfixed, 𝜂)||L2(s)

||TM2(s, rfixed, 𝜂)||L2(s)
, (33)

and over the heat source position r at a given mapped space point sfixed

𝜀r =
1
|E|

∑

𝜂∈E

||TM1(sfixed, r, 𝜂) − TM2(sfixed, r, 𝜂)||L2(r)

||TM2(sfixed, r, 𝜂)||L2(r)
. (34)

These errors are necessary for an analysis in the mapped space.
In addition, the relative absolute error with a fixed position xfixed, fixed time tfixed and fixed energy input 𝜂fixed

𝜀 = |TM1(xfixed, tfixed, 𝜂fixed) − TM2(xfixed, tfixed, 𝜂fixed)|
|TM2(xfixed, tfixed, 𝜂fixed)|

(35)

is introduced for a detailed analysis of the temperature on the plate.
The models M1 and M2 in the error measures 𝜀s, 𝜀r, and 𝜀will later be extended with the material parameters Fourier

and Biot number as variables, which are treated as fixed parameters in the error, denoted as 𝔣fixed and 𝔟fixed.

3 NUMERICAL IMPLEMENTATION

The whole code is implemented in python–version 3.8. The PGD module PGDrome developed by the authors and pub-
lished as open source package 36 is used. The finite difference approach with the necessary matrices is implemented in this
package. As the finite element tool, it uses FEniCS 37–version 2019.1. All full order simulations are done using FEniCS.
The simulations are performed on an Ubuntu system with 8 cores and 7.7 GB of memory.

4 NUMERICAL RESULTS AND DISCUSSION

In this section, the challenges described in Section 2 are discussed and examined using three examples of the introduced
thermal transient problem with increasing complexity. Thereby, a plate—in 1D or 3D—is loaded by a standing or moving
heat source. The parameters that are kept constant throughout all examples are listed in Table 1. To illustrate the solution
with realistic material parameters, the material parameters of 1.4404 (AISI 316L) are chosen – an austenitic stainless steel
often used in the chemical industry. The influence of these material parameters on temperature is neglected. A realistic
average thermal power P of the heat source for these material parameters is 5250 W as in Reference 30, but in 1D case



10 of 22 STROBL et al.

T A B L E 1 Parametric problem’s parameters.

Welding velocity v 0.01 m s−1

Plate length Lx 0.1 m

Initial x-position x0 0 m

Activation time ton 2 s

Deactivation time toff 8 s

Ambient temperature T∞ 25◦C

Density 𝜌 7950 kg/m3

Specific heat capacity cp 475 J/(kgK)

Heat conductivity k 14.3 W/(mK)

Average thermal power P 2625 W

Activation position ron 0.02 m

Deactivation position roff 0.08 m

Last time point tend 10 s

Reference length Lref 0.1 m

Reference temperature Tref 1372◦C

Reference time tref 10 s

Minimal efficiency 𝜂min 0

Maximal efficiency 𝜂max 1.1

Number of elements in 𝜂-mesh 100

studies this value is reduced to 2625 W. This choice is due to the lack of a heat flux in y- and z-direction. Thus, this choice
leads to an overall temperature in the 1D case similar to the full 3D case. Furthermore, the one-dimensional problems of
the proper generalized decomposition method are solved here using first-order lineat finite elements.

4.1 Case study 1: 1D PGD model with fixed heat source position

At first, the problem with a stationary heat source is analyzed. For the sake of simplicity, this parametric problem is
considered in 1D and sketched in Figure 3. The x-mesh consists of 600 and the t-mesh of 100 linear elements. The temper-
ature distribution of the reference solution over space at 8 s and over time at 0.05 m with heat source size af = 0.005 m
and heat source efficiency 𝜂 = 1 is depicted in Figure 4. Very steep temperature gradients in space can be observed with
a peek temperature that propagates in time (with the heat source). The resolution of those steep gradients is challeng-
ing for numerical methods. Thus, the choice of the applied numerical method is of utmost importance and the effects of
different time integration schemes are discussed first.

4.1.1 Time integration schemes

Two different PGD solutions, one per time integration scheme (FE and FD) as introduced in Section 2.3.1, are computed,
and compared with a reference full order FE solution with backward Euler time integration, which uses the same x- and
t-mesh as the reduced order model. Furthermore, the size of the Goldak heat source is kept constant at af = 0.005 m
for this analysis and the computations are done with the non-dimensionless formulation. The heat source is positioned
at x = 0.05 m. The relative error over space at fixed time t = 8s and over time at fixed space x = 0.05 m is depicted in
Figure 5 for both PGD solution approaches. On the left, the mean relative error over space and on the right, the mean
relative error over time for increasing number of PGD modes is shown. In both cases, the PGD solution with FD in time
(FE for all other PGD parameters) shows a better convergence behavior to the full order solution than the PGD solution



STROBL et al. 11 of 22

F I G U R E 3 Boundary and geometry conditions of the problem with a fixed heat source.

F I G U R E 4 Temperature distribution over space at 8 s (left) and over time at 0.05 m (right) with af = 0.005 m and 𝜂 = 1.

with FE in time. After a certain number of modes, the error of the latter case does not further decrease, since the PGD
solution oscillates around the full order solution and therefore the convergence stagnates. Moreover, the relative absolute
error in space at 8 s and in time at 0.05 m with af = 0.005 m and 𝜂 = 1 is depicted in Figure 6 using 30 PGD modes. This
shows that the solution using FE in time oscillates much more than the solution using FD in time, right before the steep
temperature gradient occurs. Hence, the faster convergence of the PGD solution with FD in time can be seen. Thus, from
now on, all PGD solutions are computed with the more accurate FD approach in time.

4.1.2 Dimensionless formulation

Next, the effect of the dimensionless approach Section 2.3.2 is analyzed. Hence, a non-dimensionless and dimensionless
PGD solution is computed and compared to the same reference non-dimensionless full order FE solution as above. Again,
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F I G U R E 5 Error over space 𝜀x at fixed time t = 8 s per mode of the PGD solution to the reference full order FE solution for different
time integration schemes (left) and the corresponding error over time 𝜀t at fixed space x = 0.05 m (right).

F I G U R E 6 Relative absolute error 𝜀 in space at 8 s (left) and in time at 0.05 m (right) with af = 0.005 m and 𝜂 = 1.
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F I G U R E 7 Error over space 𝜀x at 8 s (left) per mode of the PGD solution to the reference FE solution for the dimensionless
formulation and non-dimensionless formulation and the corresponding error over time 𝜀t at 0.05 m (middle), as well as the sum of used
fixed-point iterations up to a given mode to reach the threshold of 10−9 (right).

the size of the Goldak heat source is kept constant at af = 0.005 m and the convergence threshold of the fixed-point itera-
tion per mode is 10−9. The comparison of both approaches over space at 8 s and over time at 0.05 m is depicted in Figure 7.
The error plots show that the actual error of the models is the same per mode. This is expected since the fixed-point iter-
ation in both PGD models converged and the dimensionless formulation does not change the PDE. But the difference is
the number of fixed-point iterations needed to converge per mode. The third plot shows that the dimensionless solution
requires less fixed-point iterations overall, thus converges faster and saves computation time. In addition, the dimen-
sionless approach reduces the number of parameters when taking these into account, which in turn leads to savings in
computation time. Therefore, from now on, all PGD solutions are computed using the dimensionless formulation.

4.1.3 Heat source size

Finally, the effect of different heat source sizes on the temperature field is studied using the findings of the previous
analyses, in other words, using the dimensionless problem formulation and FD as time discretization whereas the other
parameters are discretized via FE. For this, the property of a symmetric heat source is kept, that is af and ar are always the
same. Here, the size af is chosen as af ∈ {0.002 m, 0.005 m, 0.009 m}. The overall energy input into the system is kept the
same for each af by changing the thermal power P respectively. Thus, the smaller the size of the heat source the higher
the temperature rises, which leads to steeper gradients for smaller af. This behavior leads to slightly larger inaccuracies,
which is reflected in the errors compared to the reference full order solution as depicted in Figure 8 over space at 8 s (left)
and over time at 0.05 m (right). Thus, for smaller af more modes are necessary to achieve the same accuracy. Overall, the
PGD solution shows good approximation results with errors smaller than 10−3 for each investigated heat source size.

4.2 Case study 2: 1D PGD model with moving heat source

In a second example, the problem with a moving heat source is analyzed. This parametric problem is also considered
in 1D and sketched in Figure 9. In this whole subsection, the results of the previous Section 4.1 are taken into account.
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F I G U R E 8 Mean relative error over space 𝜀x at 8 s per mode of the PGD solution to the reference full order FE solution for different
heat source sizes af (left) and the corresponding error over time 𝜀t at 0.05 m (right).

F I G U R E 9 Boundary and geometry conditions of the problem with a moving heat source.

Thus, all the computations are performed with the finite difference upwind scheme in time considering the dimensionless
formulation Equation (24) and using af = 0.005 m as the heat source size.

Applying the mapping approach to handle the moving heat source as discussed in Section 2.3.3 leads to a PGD solution
which converges to a solution in the mapped space. But this does not need to be the same as the reference solution in
the original space due to different meshes. Therefore, a mesh convergence study in both spaces is performed for the full
order model.

4.2.1 Mesh convergence

The analysis in the mapped space compares the full order FE solution in each refinement step to the previous solution.
Here, the spaces s and r are analyzed separately. Thus, for the s-space analysis, the initial discretization has 6 elements in
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F I G U R E 10 Mesh convergence analysis in the mapped space of the s-mesh (left) and r-mesh (right) over heat source positions 𝜀r at
s = 1.2. The full order FE solution in each refinement step is compared to the previous solution.

the s-mesh, which are doubled in each refinement step, and 2560 elements in the r-mesh, which are fixed. In the r-space
analysis the initial discretization has 10 elements in the r-mesh, which are doubled in each refinement step, and 480
elements in the s-mesh, which are fixed. For both spaces, eleven refinement steps are performed. The results of this study
in the mapped space are depicted in Figure 10, which shows the errors over the heat source position r at s = 1.2 for the
successively refined solutions to each other. It can be observed that in both spaces the solution converges nicely. The error
in the r-mesh analysis reaches 10−4 and in the s-mesh analysis 10−7 after eleven refinement steps. Hence, a mesh with
6144 elements in the s-mesh and 2560 elements in the r-mesh is considered as converged and used later on.

In the mesh convergence study in the real space, both the x- and t-spaces are again considered separately. Moreover,
the used x-space discretization is not equidistant. A refined grid around the current position of the heat source is used as
automatically induced by the mapping approach. The initial discretizations are based on the converged solution in the
mapped space. Starting from this, the meshes are both coarsened and refined three times to analyze which discretization
should be applied in the real space. For each of these operations, the resulting full order FE solution is directly compared
to the converged solution in the mapped space. This leads to an error representing how good the solutions in both the
mapped and real space coincide with each other. The results of this study are depicted in Figure 11, which shows the
errors over the time t at s = 1.2. It can be observed that the error in both cases is of magnitude 10−3 and that further
refinements are not necessary. This though is because the refinement given by the mapping approach is applied in the
real space. Besides that, using a finer temporal resolution mesh leads to problems in the solution, such that the resulting
error does not decrease further. The full order FE solution in the real space is considered as converged with 6144 elements
in the x-mesh using a refinement around the heat source and 2560 elements in the t-mesh.

Since the PGD solution approximates the full order solution in the mapped space, the error of the PGD solution to the
full order solution in the real space is limited by the error of the full order solutions to each other. Hence, the magnitude of
the error between the PGD solution and the full order FE solution in the real space reaches at most 10−3, when a sufficient
number of modes is taken into account in the PGD solution.

4.2.2 Mapping

With the information of an optimal mesh discretization, a PGD solution is computed with the PGD variables s, r and
𝜂 (see Section 2.3.3). This model consists of 70 modes computed within a fixed-point algorithm using a convergence
threshold of 10−10 and a maximum of 150 iterations per mode. The 1D problems regarding s and 𝜂 are solved with first
order finite elements, whereas the r problem is solved with the FD upwind scheme. For each number of modes up to 70,
the resulting PGD solution is then compared to a reference full order FE solution in the mapped space. The relative errors
over s at source position 0.064 m and over r at s = 1.2 are plotted in Figure 12. It can be observed that the error decreases
using more modes in the typical non-monotonically behavior of the PGD approach. After reaching 70 modes, this error
is around 10−2.
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F I G U R E 11 Mesh convergence analysis in the real space of the x-mesh (left) and t-mesh (right) over time 𝜀t at s = 1.2. The full order
FE solution in each refinement step is compared to the converged solution in the mapped space.

F I G U R E 12 Error over s 𝜀s at source position 0.064 m (left) per mode of the PGD solution to the reference FE solution in the mapped
space and the corresponding error over r 𝜀r at s = 1.2 (right).

The difference in accuracy between stationary and moving cases in Figures 5 and 12 arises from the greatly increased
complexity of the problem as soon as the heat source moves. Therefore, a lower accuracy than before was to be expected
even with an increased total number of modes.

4.2.3 Material parameter as PGD variable

Finally, the factor of the Fourier number 𝔣 is added as a PGD variable to the model as described in Section 2.3.4.
The new 𝔣-space [𝔣min, 𝔣max] = [0.5, 1.5] is discretized equidistantly using 100 linear finite elements. Once more, a
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F I G U R E 13 Error over s 𝜀s at source position 0.064 m (left) per mode of the PGD solution to the reference FE solution in the mapped
space for different values of 𝔣 and the corresponding error over r 𝜀r at s = 1.2 (right).

PGD solution with the same settings as before is computed. This solution is evaluated at 𝔣 ∈ {0.6, 0.8, 1, 1.2, 1.4} and
compared to reference full order FE solutions with the corresponding factor 𝔣 to show that the PGD model can adapt
correctly to different material parameters. The results are depicted in Figure 13, which shows the error over s at heat
source position 0.064 m and over r at s = 1.2. It can be observed that the error is decreasing slower as in Figure 12 but
still reaching a suitable accuracy for, for example, a model calibration procedure. That is because the PGD model became
more complex with the additional PGD variable 𝔣, hence needs more modes to achieve the same accuracy. When using
only a few modes, the error is slightly increasing with decreasing 𝔣, since the maximal temperature increases and with
it the maximal temperature gradient. Though, this effect can be compensated with more modes. Thus, the extended
model is able to capture a change in the material parameters given by the Fourier number without the need of perform-
ing new computations. In that way, the derived PGD model can be used for efficient material parameter estimation with
measured data.

4.3 Case study 3: 3D PGD model with moving heat source

Lastly, the 3D parametric problem is considered, which is sketched in Figure 14. The parameters for this analysis are listed
in Table 2. Two different PGD models are considered. In the first PGD model, the spatial domain is divided into three 1D
intervals, where the number of elements of the meshes is chosen as s ∶ 800, 𝜉y ∶ 200, 𝜉z ∶ 20. In this case, the problems
regarding space and time are solved with FD and 100 modes are computed. A contour plot of the corresponding PGD
solution at 8 s with 𝜂 = 0.8, 𝔣 = 1, 𝔟 = 1 and 100 modes, mapped back to the physical space (x, y, z), is shown in Figure 15.
In the second PGD model, the spatial domain is kept together as a 3D domain, where the number of elements of the
mesh is chosen as s ∶ 90, 𝜉y ∶ 20, 𝜉z ∶ 4. In this case, the problem regarding space is solved with second order FE and 40
modes are computed. These models are compared to a reference full order FE solution, where the number of elements of
the space mesh is chosen as s ∶ 90, 𝜉y ∶ 20, 𝜉z ∶ 4, with quadratic elements, 𝜂 = 0.8, 𝔣 = 1 and 𝔟 = 1. The relative error
of the PGD solutions to the reference solution mapped back to the original space up to 20% error is depicted in Figure 16
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F I G U R E 14 Derived parametric problem for a moving heat source in the 3D-case.

T A B L E 2 Parameters for the 3D parametric problem.

Plate length Lx 0.1 m

Plate width Ly 0.05 m

Plate height Lz 0.008 m

Initial x-position x0 0 m

Initial y-position y0 0.025 m

Initial z-position z0 0.008 m

Goldak front length parameter af 0.005 m

Goldak rear length parameter ar 0.005 m

Goldak width parameter b 0.005 m

Goldak height parameter c 0.002 m

Average thermal power P 5250 W

Number of elements in 𝔯-mesh 600

Number of elements in 𝜂-mesh 20

Minimal Fourier number factor 𝔣min 0.5

Maximal Fourier number factor 𝔣max 1.5

Number of elements in 𝔣-mesh 20

Minimal Biot number factor 𝔟min 0.5

Maximal Biot number factor 𝔟max 1.5

Number of elements in 𝔟-mesh 20

on the left, for the first PGD model with the divided domain, and in Figure 16 on the right, for the second PGD model
with the 3D domain, as a contour plot.

In Figure 16 on the left, it can be observed that the error in the zone with the highest temperature is the lowest and rises
in y-direction in the heat-affected zone. Furthermore, an error peak is located at the beginning of the plate in x-direction.
Both of these areas with a high error are heated up only by heat conduction, which seems to need many modes for an
accurate approximation. In comparison to this, the error depicted in Figure 16 on the right is significantly lower. Only
at the beginning of the plate in x-direction a slightly different error occurs. This error discrepancy is expected, since the
splitting of the 3D spatial domain into single 1D domains is another approximation to the real solution, which mainly
increases computation time and the required number of modes in the PGD solution. Whether a division of the spatial
domain should be used or not depends heavily on the problem, as the error discrepancy may not be as pronounced in
general. In this case, the computation of both PGD models, each of which is an equivalent of 8000 3D finite element
solutions with different parameters, requires approximately 5 h, whereas the full order model requires approximately 1 h
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F I G U R E 15 Contour plot of the 3D PGD solution at t = 8 s with 𝜂 = 0.8, 𝔣 = 1, 𝔟 = 1 and 100 modes, where the spatial domain is
divided in three 1D intervals.

F I G U R E 16 Contour plot of the relative error 𝜀 at t = 8 s between the PGD model with a divided spatial domain with 100 modes and a
reference full order model (left) and the corresponding relative error between the PGD model with a 3D spatial domain with 40 modes and a
reference full order model (right) with 𝜂 = 0.8, 𝔣 = 1 and 𝔟 = 1 for up to 20% error.

for a single parameter set. However, any change in the Fourier number, for example by changing the material parameters,
in the Biot number, for example by changing the heat transfer coefficient for the convection boundary condition, or in the
energy input leads to a completely new simulation with the full order model. For the PGD model, changing such a value
only requires milliseconds to compute the new solution. Therefore, after computing the full order FE model 5 times, the
PGD model is computationally more efficient. This speed up is a great benefit in parameter estimation problems, since
in these problems, the model is evaluated a lot of times for different parameter settings.

5 CONCLUSIONS

In the present article, various challenges in developing a reduced order model using the proper generalized decomposition
for a temperature field with steep gradients described by a transient thermal problem are discussed. The investigations
and studies illustrated with examples of increasing different complexity demonstrate the significant influence of various
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aspects—from the formulation of the problem over the discretization to the choice of the considered parameters—on the
convergence and accuracy, as well as the computational speed-up of the derived PGD model. The following conclusions
can be drawn from this work for the analyzed thermal problems:

• A more accurate PGD solution is reached by using the finite difference method in the temporal discretization. This
effect is influenced by the steepness of the gradients in time. The benefits are particularly clear for steep gradients.

• A dimensionless formulation of the thermal problem saves computational time, since fewer fixed-point iterations are
required for the same accuracy and the number of variables is reduced.

• When dealing with a moving heat source, the presented mapping approach leads to an accurate and efficient PGD
approximation of the temperature field. Additionally, it provides an integrated adaptive mesh refinement for the heat
source location.

• The PGD model is efficiently extended by additional variables, for example material and process parameters. Therefore,
the great benefits of the PGD model, like real-time computation speed, are capable of forming the basis of parameter
estimation and model calibration procedures as well as in future digital twins. Thus, these simulations lead to great
savings in computation time and energy cost for the industry.

• Splitting the 3D spatial domain into several one-dimensional domains is always a compromise between a loss in accu-
racy and an immense gain in computational speed, which should be discussed on a case-by-case basis. In the selected
problem, not splitting the spatial domains leads to a PGD model with smaller approximation error, even when using a
lower number of PGD modes, and a similar overall computational cost, as compared to splitting the domain.

Overall, a good agreement to reference solutions from full order models can be reached by the derived PGD models
with enormous reductions in computational time. Nevertheless, this discussion underlines the importance to reconsider
the multiple influences of numerical as well as problem dependent factors on a problem specific level. For applications in
welding or WAAM, the methodology needs to be further extended to allow non-linear model parameters, a layer build-up,
and flexible movement of the heat source along complex manufacturing paths. In conclusion, a PGD model is a reduced
order model involving approximations, but depending on the use case, a PGD model can be very powerful regarding its
superior computation speed. Thus, when setting up such a model, especially for the thermal problem, this article presents
useful tips and tricks to improve the implementation, the convergence, and the overall performance of the model.
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