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A B S T R A C T   

Reclassification of bridges, i.e., a change in load rating, using reliability-based methods and a direct update with 
proof load information has been presented by many authors. However, bridge reclassification has hardly been 
studied from a decision analytic perspective, i.e., with quantification of the risks and benefits of different clas
sification choices, and the expected benefit gain from proof loading. We derive, explain and exemplify a decision 
analytic approach for bridge reclassification along with models for (1) elastic and ultimate capacity and their 
adaptation with proof load information, (2) proof load information with classification outcomes accounting for 
target reliabilities and, (3) utilities including socio-economic benefits from reclassification. The approach and 
models are exemplified with a case study based on reclassification of bridges with a low existing classification. 
Decision rules, for practical use by a highway authority to find the optimal classification, are identified and 
documented based on: (1) the measurement of the capacity at elastic limit by proof loading, (2) the bridge 
reclassification benefits, and, (3) the required annual reliability level. From a Value of Information analysis, it is 
concluded that the proof load information is highly valuable for reclassification in cases of high socio-economic 
benefits and high reliability requirements.   

1. Introduction 

Sufficient classification levels (or load rating) of bridges is of high 
importance to society in order to ensure the future service life of a traffic 
infrastructure that suffers from increasing traffic demand and aging 
structures. From the bridge owner’s perspective, the goal is to allow 
transport of more and heavier goods with a higher classification, i.e., 
increasing the traffic efficiency of the bridge. It is often observed that 
existing bridges were designed using conservative methods and without 
explicit consideration of the distribution of internal forces, interaction 
between structural elements, redistribution of stresses, etc., leading to a 
huge potential for reclassification [1,2]. Here, proof load testing may be 
used to obtain information about a bridge’s load carrying capacity. 

The information gained from the proof load test can be incorporated 
in the probabilistic model of the bridge capacity and used in reliability 
assessment. Many researchers have presented approaches for modeling 
proof loading information (see e.g., [3–6]), and of bridge reclassification 

with proof loading using a reliability based approach (see e.g. [7–11]). 
Even the calibration of measurement systems may be achieved via a 
proof loading [12]. A review of proof loading monitoring approaches 
and technologies can be found in [13]. 

Decision analyses, by quantifying, the Value of (obtained or pre
dicted) Information (VoI), enable identifying cost and risk efficient 
strategies for acquiring information (see e.g. [14–16]). In the context of 
decision support for infrastructure systems, VoI based decision analysis 
have been applied e.g., in inspection and maintenance planning (see e.g. 
[17–21]), design and optimization of sensor systems (see e.g. [22–24]), 
structural maintenance using condition assessment (see e.g. [25,26]. 
Implications of regulatory policies on the value of information are dis
cussed in [27]. Chadha et.al. discuss, model and integrate risk percep
tion in the monitoring and maintenance planning [28]. Proof loading 
has been investigated in a decision theoretical context yet solely in the 
pre-construction phase for offshore structures [29]. 

It is noted that in both fields namely reliability-based proof load 
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modeling research, and decision analyses and Value of Information 
research, a bridge reclassification has not been studied. The focus of the 
present study is thus in developing a decision analytic approach and a 
case study for bridge reclassification using information from proof 
loading by building upon and extending [2]. The decision analytic 
approach is based on Bayesian decision theory [30,31] and utility theory 
[32]. 

Proof load tests demonstrate the ability of the bridge to carry a 
specific load but do not directly provide information about the ultimate 
capacity of the structure. The structural response to the loading is closely 
monitored and the loading is stopped when either the elastic limit or a 
target proof load level is reached. Hence, the information from proof 
loading is within the elastic range of structural system behaviour. On the 
other hand, the state-of-the-art for concrete structure design at ultimate 
limit is based on ultimate capacity including plastic methods [33]. 
Modeling the proof loading information for reliability updating while 
accounting for the specifics of structural reliability modeling and the 
underlying mechanical behaviour and design approaches, i.e. the elastic 
and ultimate limit state modeling and information, has to the knowledge 
of the authors hardly been studied in the scientific and engineering 
research literature. This challenge is addressed in this paper by devel
oping a model for the distinction of elastic level proof load information 
and the ultimate capacity of the bridge in conjunction with the intro
duction of a pre-posterior structural reliability updating approach. 

Following the outline of current challenges, the decision analytic 
approach for reclassification of bridges is developed for in-situ and in- 
service proof loading in combination with monitoring during the proof 

load test. The proof load information is modelled by discretization of 
(continuous) distributions following a recently introduced approach 
[34,35]. In the referenced work, monitoring information is modelled as 
realizations of model uncertainty within pre-calibrated thresholds. The 
thresholds are calibrated by setting the posterior probability of struc
tural failure equal to target values (from e.g., EN 1990 [36] or the 
Probabilistic Model Code of the Joint Committee on Structural Safety 
(JCSS) [37]. The probability of an indication is obtained as the proba
bility of a realization within the thresholds discretizing the continuous 
distribution. For the present purpose, the approach for modeling struc
tural measurements is extended for modeling the elastic limit informa
tion from proof loading. 

The paper is structured such that the individual elements for the 
decision analysis, i.e., the decision analytic approach and the probabi
listic models for structural reliability analysis and information modeling 
(Section 2), are described first. This is followed by a detailed reclassi
fication case study in Section 3. The bridge classification approach and 
load modeling in the case study specifically relates to the Danish clas
sification system [38,39] that was developed for the administration of 
heavy vehicles requiring permits. The system is based on a series of 
heavy “standard” vehicles, which are distinguished by their gross 
vehicle weight ranging from 20 t – 500 t. The classification of the bridge 
is equal to the class of the heaviest “standard” vehicle for which an 
adequate reliability can be demonstrated. Finally, Section 4 presents a 
summary of the contents and conclusions are drawn. 

Fig. 1. Flowchart on reclassification decision scenario with elastic limit information from proof loading.  
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2. Decision analytic approach for reclassfication of bridges 

The decision scenario is modelled from the perspective of a highway 
authority (the Decision Maker: DM) who has to choose and adapt the 
classification for an existing bridge (Fig. 1). The choice of capacity 
classification i.e., the permitted traffic load is modelled as the action 
available to the DM. The DM may use in situ and in service proof loading 
testing for acquiring information and deciding the optimal action, i.e., 
the optimal choice of the (re-)classification. 

The optimal action is identified by maximizing the aggregated ex
pected value of the utility - in this way the analysis represents a 
normative decision analysis [30] - and ensuring compliance with 
code-based requirements on minimum reliability level. Utility, as 
considered in this paper, is a function that assigns a monetary value to 
the DM choices (of classification level and acquiring information from 
proof loading), and the uncertain bridge performance. 

The DM may choose to (re-)classify the bridge with or without 
acquiring information. The choice of acquiring information is performed 
by quantifying the Value of Information (VoI) defined as the difference 
in maximum aggregated expected utility from a decision scenario with 
and without information. The cost of proof loading information is 
explicitly modelled and included in the utilities. Obtaining a positive or 
zero VoI implies that acquiring information will be beneficial to the DM 
while a negative VoI implies that the cost of the information exceeds any 
expected utility gain to the DM from a change of classification. 

The decision analysis is illustrated using a decision tree in Fig. 2. A 
base scenario without any proof load information is considered. The 
base scenario is formally defined as a predicted action (PA) decision 
analysis [40], where the action is reclassification (al ∈ a). The perfor
mance of the bridge (Xn ∈ X) is modelled by calculating the annual 
probability of the system states, such as e.g., failure (X1) and intact (X2) 
states. The probabilities of failure and intact state with different classi
fication choices is calculated and a decision analysis is performed to 
identify the optimal classification as the one leading to the highest ex
pected utility, within reliability constraints (i.e. for classification choices 
al for which probability of failure PX1 (al) is less than or equal to a 
required target value PT

F ). 
The enhancement scenario includes an information strategy (i ∈ i) i. 

e., the information from in situ and in service proof loading and is 
formally defined as a Predicted Information and Predicted Action (PIPA) 
analysis. In the PIPA decision analysis, the indication from the proof 
loading (Zj ∈ Z) is predicted and the reclassification is optimized in 
compliance with the minimum reliability criterion. 

The expected Value of Information is calculated as the difference 
between the expected utility from the PIPA and PA analysis, respectively 
(see Eq. (3) with E[…] as the expectation operator). It should be noted 
that the information costs are here per definition included for consis
tency with the expected utility theorem (see e.g. [16]). 

U*
PA = max

al

∑tSL

t
EXn [u(al,Xn, t)] s.t. PX1 (al) ≤ PT

F (1)  

U*
PIPA = EZj

[

max
al

∑tSL

t
EXn |Zj [u(i, al,Xn, t)]

]

s.t. PX1 |Zj (al) ≤ PT
F (2)  

VoI = U*
PIPA − U*

PA (3) 

In Eqs. (1)–(3), U*
PA and U*

PIPA are the maximum aggregated expected 
utilities within reliability constraints from PA and PIPA decision ana
lyses, respectively . The utilities u(…) include the failure consequence, 
the benefits from intact operation following (re-) classification to al, and 
information cost. The expected utility is aggregated over a service life 
period, i.e., from the year t to the end of the service life in year tSL. In 
Fig. 2, the dotted lines symbolize the temporal dependency in the annual 
system performances and the expected utility aggregation. The utility 
modeling also accounts for the temporal value of money by using the 
discount rate to discount the future costs/benefits to the decision point 
in time [41]. 

As mentioned above, the probabilistic modeling includes quantifying 
the bridge performance in terms of annual probability of failure. The 
annual probability of failure with respect to the annual maximum traffic 
load, SL,al , is calculated with Eq. (4). 

PX1 (al) = P
(
MRF ⋅RF − MS⋅

(
SD +ϕ⋅SL,al

)
≤ 0

)
(4) 

In the above, RF represents the ultimate load bearing capacity, MRF is 
the model uncertainty related to the ultimate capacity model, SD 

Fig. 2. Illustration of the decision analysis with a decision tree.  
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represents the permanent load effect, SL,al represents the annual 
maximum traffic load effect due to a vehicle of class al, ϕ represents the 
dynamic amplification factor applied to the traffic loading, and MS 

represents the uncertainty related to the load model. The annual prob
ability of failure over time is calculated as the failure rate (see [37]). The 
probabilistic modeling also includes information modeling (see Section 
2.3), which is used, along with Eq. (4), to obtain updated estimates of 
the failure probability. The reliability and information modeling takes 
basis in [37,42,43]. Further studies and examples of model uncertainty 
quantification can be found in [44–46]. 

2.1. Load modeling 

The most important load variables to be modelled for bridge classi
fication are the dead load (self-weight and permanent fixtures) and 
traffic load. The traffic load modeling includes both static and dynamic 
components. The static component of the traffic load effect is calculated 
from a static analysis considering the gross vehicle weight, axle weights, 
axle spacing and vehicle width. However, the actual load effect due to a 
moving vehicle is typically larger than the static live load effect due to 
dynamic interaction between the vehicle and bridge. To this end, a 
Dynamic Amplification Factor (DAF) is used to convert a static to a 
dynamic load effect. 

2.2. Capacity modeling 

In this and the following section, we introduce a distinction between 
the elastic and ultimate capacity model and the proof loading informa
tion, which is on elastic level. The approach and models described are 
developed specifically for structures exhibiting an identifiable elastic 
limit that is lower than the ultimate capacity (e.g., stocky steel beams in 
bending or shear, under- reinforced concrete in bending, decks, etc.). 
This excludes, for instance, stability induced failure mechanisms below 
the elastic limit (e.g., buckling). 

The ultimate capacity RF is defined as a function of parameters, 
including the concrete compressive strength, reinforcement ultimate 
strength, concrete ultimate strain, geometry, reinforcement ratios etc. 
(vector VF) and the elastic range parameters, VE. The elastic limit ca
pacity RE is a function of parameters contained in vector VE, which in
cludes e.g., the concrete compressive strength, reinforcement yield 
strength, strain at yielding, etc. The ultimate load carrying capacity is 
modelled as a function of the elastic limit of capacity, and other addi
tional parameters affecting the ultimate capacity, denoted with the 
function g(…), (Eq. (5)). 

MRF ⋅RF = Mg⋅g(MRE ⋅RE(VE),VF) (5)  

Here, RE is the capacity at the elastic limit, RF is the ultimate capacity, 
MRE is the model uncertainty related to the elastic capacity model, Mg is 
the model uncertainty related to the function g(…). This relation builds 
upon the usual situation that a statistically significant number of elastic 
and failure load tests is available. Additionally, the model uncertainty 
Mg has been quantified according to [37], based on these tests. 

2.3. Proof load information modeling 

In proof loading, the structural response to the loading is monitored 
to ensure that the structure continues to behave in the linear elastic 
range. With the proof loading and monitoring up to the elastic limit, a 
measurement of the capacity at elastic limit i.e., mRE ⋅rE can be obtained. 
With the measurement mRE ⋅rE, the ultimate capacity (Eq. (5)) can be 
calculated using the function g(…), subjected to the model uncertainty, 
Mg (Eq. (6)). 

MRF ⋅RF(mRE , rE) = Mg⋅g(mRE ⋅rE,VF) (6) 

Note that mRE represents a realisation of the random variable MRE 

and, similarly, rE is a realisation of the random variable RE. 
The uncertainty in the measurement owing to the limited precision 

of the monitoring equipment may also be included in Eq. (6). However, 
as pointed out by Olaszek & Casas [47], the magnitude of the monitoring 
related measurement uncertainty in proof loading is insignificant if 
proper loading protocol is followed and the instruments are well cali
brated. This is assumed to be the case and measurement uncertainty is 
neglected in the information modeling. 

2.3.1. Discretization of probability distribution function 
A significant computational effort would be required to perform the 

decision analysis and optimization for each sampled realization of MRE 

and RE. To overcome the computational challenge in such a brute force 
optimization, we discretise the distribution of (MRE ⋅RE) i.e., the elastic 
limit capacity distribution using thresholds. By using the discretized 
form of the distribution function, the outcomes for the proof loading are 
modelled with a discrete number of indication events. The discretization 
of the elastic limit distribution allows compliance with target re
liabilities and that in a practical application, the decision maker, on 
obtaining an elastic limit measurement (mRE ⋅rE), can refer to the derived 
thresholds and decision rules [34,35]. The procedure for deriving the 
thresholds is described in the following Sections 2.3.1.1 and 2.3.1.2, 
while the derivation of decision rules is illustrated in the case study in 
Section 3. 

Indication events and threshold calibration. The indication events Zj ∈ Z 
correspond to the yet unknown realisations of the elastic limit capacity, 
MRE ⋅RE, within calibrated thresholds. For example, indication event Zj 

would be observed if the elastic limit measurement mRE ⋅rE is within the 
lower (bj,al ) and upper threshold (bj+1,al+1 ). The probability of the indi
cation event PZj is calculated by integrating the elastic limit capacity 
distribution between the thresholds (Eq. (7)). 

PZj =

∫bj+1,al+1

bj,al

fMRE ⋅RE (mRE ⋅rE)d(mRE ⋅rE) (7) 

Considering again the indication event Zj corresponding to the 

random variable for the elastic capacity measurement (MRE ⋅RE)|
bj+1,al+1
bj,al

, 

the posterior probability of failure PX1 |Zj (al) for a load from vehicle class 
al is calculated using Eq. (8). 

PX1 |Zj (al) = P
(

Mg⋅g
(
(MRE ⋅RE)|

bj+1,al+1
bj,al

,VF

)
− MS⋅

(
SD +ϕ⋅SL,al

)
≤ 0

)
(8)  

Here, (MRE ⋅RE)|
bj+1,al+1
bj,al 

is modelled using the jth discretization of the 

normalized elastic capacity distribution. 
The thresholds are calibrated such that the indication events Zj ∈ Z 

classify proof loading information of whether the posterior failure 
probability (Eq. (8)) satisfies the target value for a specific classification. 
The above means that the thresholds (bj,al , bj+1,al+1 ) are obtained such 
that the posterior failure probability PX1 |Zj (al) for load SL,al due to 
vehicle class al is equal to the target annual failure probability PT

F (Eq. 
(9)). 

PX1 |Zj (al) = P
(

Mg⋅g
(
(MRE ⋅RE)|

bj+1,al+1
bj,al

,VF

)
− MS⋅

(
SD +ϕ⋅SL,al

)
≤ 0

)
= PT

F

(9)  

Note that the subscript ‘al+1’ implies a vehicle class higher than al: the 
upper threshold bj+1,al+1 for indication Zj is the lower threshold for the 
next indication Zj+1 that indicates acceptable performance for load 
SL,al+1 . If the next indication event is not defined, the upper threshold 
bj+1,al+1 is the maximum value of the random variable MRE ⋅RE in its 
domain. 
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Illustration. As an illustration, a discretization of the distribution func
tion for MRE ⋅RE is performed (Fig. 3). It is assumed that, based on the 
prior information on the ultimate capacity, the bridge performance i.e., 
failure probability is acceptable for classification al, which it was 
designed for. Now, information, in the form of measurement of capacity 
at the elastic limit, can be obtained from the proof load test. This in
formation is predicted using two indication events: Z1, which indicates 
that the bridge ultimate performance is adequate for a higher classifi
cation al+1, and Z0: which indicates that the performance is not adequate 
for the higher classification. The distribution, corresponding to event Z1, 
has a lower limit b1,al+1 calibrated such that the posterior failure prob
ability for a load due to vehicle class al+1 satisfies the target reliability 
criterion (Eq. (10)). 

P
(

Mg⋅g
(
(MRE ⋅RE)|

∞
b1,al+1

,VF

)
− MS⋅

(
SD +ϕ⋅SL,al+1

)
≤ 0

)
= PT

F (10) 

The distribution corresponding to indication Z0 has the thresholds b0 

= 0 and b1,al+1 (see Fig. 3). 
The corresponding updated ultimate capacity distributions are 

illustrated in Fig. 4, (see Eq. (6)). 

2.4. Utility model 

The utility model for a bridge reclassification should encompass the 
total benefits, costs and consequences to the -DM throughout the 
bridge’s remaining service life. 

The failure consequence is modelled with a cost (CF) including direct 
consequences of loss of investment and costs of replacement as well as 
the indirect consequences due to diversion and restriction of traffic, 
increased travel time, etc. [48]. The costs also include the costs of 

information i.e., the proof load test cost (CTest). 
The socio-economic benefits from intact bridge operation with a 

reclassification (Bal ) are attributed to an increased efficiency in goods 
transport. Increased bridge carrying capacity implies that more and 
heavier goods can be transported, leading to a higher ton-volume per 
kilometre for the goods transport vehicles. By modeling the monetary 
impact of increased goods transport efficiency from an increase in the 
classification level, a quantification and direct comparison between 
benefits for different classifications is performed. It may be noted that 
such socio-economic benefits related to transport efficiency are also 
conventionally included in cost-benefit analysis of traffic infrastructure 
projects [49,50]. 

All costs and benefits are discounted to their present value, i.e., the 
decision point in time. As the decision maker for the reclassification of 
bridges constitutes usually a public authority, the discounting rate (r)
should correspond to the real rate of economic growth per capita [41]. 

3. Case study 

3.1. Decision scenario 

Let us consider an existing single span bridge that has initial capacity 
classified as Class 50, i.e., the capacity was initially designed for a load 
from a vehicle of Class 50. The span of the bridge is 8 m. For the purpose 
of illustration, we consider loading from the heavy vehicle in one lane 
only. This can be, for example, a conditional passage situation according 
to the Danish classification approach [39]. 

The decision point in time is at the end of the bridge’s service life 
when an assessment has to be made for the next 15 years of service. The 

Fig. 3. Illustration of discretised distribution of elastic limit capacity and indication events.  
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highway authority has the choice (contained in set of actions, a) of 
classifications between 50 and 200 Fig. 5) as well as the choice of 
acquiring proof load information. The information is modelled with the 
definition of indication events Zj, as described previously. The bridge 

performance, with respect to the load due to the different classification 
choices, is modelled with the probabilities of failure (event X1) and 
survival (event X2) until the end of the projected service life. The ex
pected utilities are calculated by aggregating the annual failure risks and 

Fig. 4. Illustration of ultimate capacity distribution and updating following indications.  

Fig. 5. Visualisation of the decision scenario in case study.  
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expected annual benefits (see Eqs. (1) and ((2), Section 2). This is 
symbolized in Fig. 5 with dotted lines between the bridge performance 
outcome and utility nodes in the years following proof loading. 

The models used in the case study for calculating the probabilities of 
system failure and intact operation are detailed below and summarized 
in Tables 1 and 2. 

3.2. Capacity modeling 

The considered bridge was initially designed as a Class 50 bridge. 
This is the prior information available to the DM and is used for the prior 
failure probability calculations. Hence, the mean of the prior model for 
RF is calibrated such that annual failure probability for traffic load due 
to a Class 50 vehicle (Eq. (4)) is equal to a target value ≈ 10− 7, corre
sponding to βT ≈ 5.2 for new bridges in Consequence Class 3 for a 1 year 
reference period, see EN 1990 DK NA  [52]. This prior model (based on 
the calibration to βT and implying no gross errors in the design and 
construction) is later updated with in situ proof loading information 
facilitating an uncertainty reduction in regard to the conservativeness of 
engineering models and potential design and as-built deviations. 

The ultimate capacity model is related to the elastic capacity using a 
function g(…) (Section 2.2, Eq. (5)). As a starting point, the function g(… 
) is defined generically with a linear relation between the ultimate and 
elastic capacity and omitting an explcit model of the variables in vector 
VF (Eq. (11)). 

MRF ⋅RF = k⋅Mg⋅MRE ⋅RE (11) 

The model of the ultimate capacity MRF ⋅RF is used along with k and 
Mg to model the distribution for the elastic capacity, MRE ⋅RE. This dis
tribution is required for sampling the elastic limit measurements (Sec
tion 2.3). 

Following Eq. (11), k is by definition the bias in the ultimate capacity 
prediction, when extrapolating from elastic capacity estimate. k = 1.5 is 
chosen considering experimental evaluations of elastic limit and failure 
load in short span concrete bridges [53,1]. For practical application, its 

value would require to be quantified with laboratory and in-situ load 
tests on similar bridges. In the extrapolation, it would be required to 
account for uncertainties related to the failure mode (different re
alizations of the physical uncertainties: e.g., concrete compression 
strength, may trigger different failure modes) and type of bridge. These 
(model) uncertainties are accounted for in the modeling by Mg. 

The resistance model uncertainties, MRF and Mg are modelled with a 
lognormal distribution [37]. The prior model for RF is assumed to be 
conservative, hence a bias is included in the model uncertainty (see e.g. 
[44,45]). The model uncertainty MRF is modelled with a CoV of 0.15 
following JCSS Probabilistic Model Code Part 3.9 [37] for concrete 
resistance models. 

3.3. Load modeling 

For load modeling on bridges, the ratio of dead to live loads in design 
varies with the span. Live loads dominate for short spans [54]. This fact 
is represented by modeling the characteristic value of the dead load 
effect SD as ρ = 1/2 times the characteristic value of the annual 
maximum live load effect due to a Class 50 vehicle, SL,50 [8]. The 
characteristic values for the heavy vehicles are defined in Vejdirektor
atet [39] and e.g., are used as basis for the calibration of partial factors in 
the Danish National Annex to EN 1990 (part relevant to applications for 
bridges). It is to be noted that the characteristic value in the Eurocode 
EN 1991–2 is defined on the basis of a 1000-year return period. How
ever, this definition is for ordinary traffic, not for heavy vehicles in Load 
Model 3 as introduced in the Danish National Annex. 

For traffic load modeling, only the load effects due to individual 
heavy vehicles are considered as the critical loading events in short 
spans (up to 20 m) can be attributed to transits of heavy vehicles [55]. 
The modeling for the heavy vehicles includes the Gross Vehicle Weight 
(GVW), its distribution to the individual axles, axle configuration and 
spacing. The probabilistic models for the vehicle weight as recom
mended in the guideline for assessment of existing bridges by the Danish 
Road Directorate are used [39]. Fig. 6 shows the representative axle 
configuration and width of selected vehicles, according to this docu
ment. The probabilistic model for the GVW is presented in Table 1. The 
load effect due to a single heavy vehicle Qal is calculated using the 
probabilistic model for the GVW and an axle configuration equivalent to 
those illustrated in Fig. 6. Samples from the distribution function Qal is 
obtained in three steps: i) random GVWs are sampled using the proba
bilistic model in Table 1, ii) for each sampled value, random axle loads 
are simulated assuming the same ratio to the GVW as in the Fig. 6, iii) 
the load effect is calculated by longitudinally and laterally positioning 
the vehicle for maximum bending moment in the span. 

Considering Nal yearly crossings of a heavy vehicle of a specific class, 
the distribution of the annual maximum load effect SL,al due to the class 
al vehicle is obtained by modeling the vehicle crossings using a thinned 
Poisson distribution (Eq. (12)). It is assumed with the modeling that the 
vehicle crossings are independent and that the number of passages per 
year (Nal ) is constant [56]. The ‘thinning’ of the Poisson process implies 
that the distribution accounts for loads due to vehicles of a specific type 
(class al). 

Table 1 
wt and annual frequency for heavy “standard” vehicles [39].  

Vehicle Class 
al 

Gross Vehicle Weight (in tons and 
kN (in brackets)) 

Number of yearly crossings 
Nal 

Mean Standard 
Deviation 

Class 50 53.1 (520.4) 5 (49) 200 
Class 80 82.5 (808.5) 5 (49) 150 
Class 90 95.4 (934.9) 5 (49) 150 
Class 100 109.2 

(1070.2) 
5 (49) 100 

Class 125 131.4 
(1287.7) 

5 (49) 50 

Class 150 157.6 
(1544.5) 

5 (49) 50 

Class 175 170.2 (1668) 5 (49) 50 
Class 200 201.0 

(1968.9) 
5 (49) 50  

Table 2 
Probabilistic model used in the case study for bridge performance modeling.  

Quantity Symbol Distribution Mean Std. Dev. Reference 

Ultimate capacity RF Lognormal Calibrated 0.14⋅μ(RF) [7] 
Model uncertainty MRF Lognormal 1.1 0.15 (M [44]; Milan [45]; Probabilistic Model Code Part 3.9) 
Model uncertainty Mg Lognormal 1 0.10 (JCSS Probabilistic Model Code) 
Load model uncertainty MS Normal 1 0.10 [39] 
Dead Load SD Normal ρ⋅SL,50,k 0.05⋅μ(SD) [39] 
Live load due to Class al vehicle SL,al According to Eq. (13) 
DAF for ϕ Normal 1.091* / 1.024** 0.0348* / 0.0015** [51]  

* For Class 50 Vehicle. 
** For Class 80 – 200 Vehicle. 
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Fig. 6. Configuration of “standard” vehicle classes according to Danish classification system [39].  
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FSL,al

(
qal

)
= exp

(
−
(

1 − FQal

(
qal

))
Nal

)
(12) 

The Dynamic Amplification Factors used are based on models 
developed by Kirkegaard et al. [51] from a simulation study of the 
transit of heavy transport vehicles on a simply supported bridge with the 
road roughness profile of a typical Danish road. The study presented the 
dynamic amplification of load effects due to a heavy vehicle with gross 
weight ~100 tons at different speeds. Alternatively, the probabilistic 
models in the Danish Road Directorate guideline [39] may be used. 
However, the DAF from those models may be conservative with respect 
to the heavy vehicles, which have a low dynamic impact [57] A low load 
model uncertainty is used since the model is limited to loading in one 
lane [39] . 

3.4. Information indication events and calibration of thresholds 

As described in Section 2.3, indication events Zj ∈ Z are modelled 
such that they categorise the proof load information in terms of the 
performance for load from different vehicle classes. In Denmark, clas
sification of existing bridges to Class 100 is of interest to the Danish Road 
Directorate. This is because the bridge can then be included into the so- 

called ‘Blue road’ network, comprising of bridges with Class higher than 
100. The network includes all motorways and major roads and provides 
ease of administration for goods transport using heavy vehicles [38]. 
Hence, an adequate reliability level for load from vehicle Class lower 
than 100 and for vehicle Class(es) higher than 100, respectively, is used 
to categorize the information. 

The indication events are distinguished as follows:  

• Z3: Posterior failure probability is acceptable for the load due to a 
vehicle Class 200. The threshold a3,200 is calculated such that: 

P
(

k⋅Mg⋅(MRE ⋅RE)|
∞
a3,200

− MS⋅
(
SD +ϕ⋅SL,200

)
≤ 0

)
= PT

F (13)    

• Z2: Posterior failure probability is acceptable for the load due to a 
vehicle Class 150. The threshold a2,150 is calculated such that: 

P
(

k⋅Mg⋅(MRE ⋅RE)|
a3,200
a2,150

− MS⋅
(
SD +ϕ⋅SL,150

)
≤ 0

)
= PT

F (14)   

Table 3 
Benefit model for bridge classification.   

Annual traffic volume of heavy vehicles* 
Benefit Model Annual benefit/ 

vehicle 
Bridge Class 80 Bridge Class 90 Bridge Class 100 Bridge Class 125 Bridge Class 150 Bridge Class 175 Bridge Class 200 
750 900 1000 1050 1100 1150 1200 
Total benefit in remaining service life (Monetary Unit = 105€) 

Model 1 10− 6 1.04E-02 1.25E-02 1.38E-02 1.45E-02 1.52E-02 1.59E-02 1.66E-02 
Model 2 10− 5 1.04E-01 1.25E-01 1.38E-01 1.45E-01 1.52E-01 1.59E-01 1.66E-01 
Model 3 10− 4 1.04E+00 1.25E+00 1.38E+00 1.45E+00 1.52E+00 1.59E+00 1.66E+00 
Model 4 10− 3 1.04E+01 1.25E+01 1.38E+01 1.45E+01 1.52E+01 1.59E+01 1.66E+01 
Model 5 10− 2 1.04E+02 1.25E+02 1.38E+02 1.45E+02 1.52E+02 1.59E+02 1.66E+02  

* Sum of yearly crossings of “standard” vehicles on bridge span with a specific classification. 

Fig. 7. Annual failure probabilities with target PT
F = 10− 6.
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• Z1 : Posterior failure probability is acceptable for the load due to a 
vehicle Class 100. The threshold a1,100 is calculated such that: 

P
(

k⋅Mg⋅(MRE ⋅RE)|
a2,150
a1,100

− MS⋅
(
SD +ϕ⋅SL,100

)
≤ 0

)
= PT

F (15)    

• Z0 : Posterior failure probability not acceptable for the load due to a 
vehicle Class 100 

The annual target failure probability of PT
F = 10− 6 is used for the 

above calibration, based on Danish National Annex to the EN1991 [58]. 
The national annex states that, for existing bridges, the target reliability 
level can be calculated with one Consequence Class lower than for a new 
bridge structure. Assuming that the new structure was designed for CC3, 
the value for PT

F is based on the reliability criterion for CC2. 

3.5. Consequence, cost and benefit model 

The total expected utility corresponding to a choice of classification 
al ∈ a is calculated by aggregating the expected annual failure conse
quence and the expected annual benefit accruing over the remaining 15 
years’ service life of the bridge. 

The failure consequence is modelled with a cost CF = 107€, taken as 
an estimate from studies in Denmark for monetary consequences of 
bridge failure and replacement (see [59,60]). 

The cost of information CTest , inclusive of the costs of loading and 
monitoring equipment and the human resources involved in performing 
the test and processing results, is chosen equal to 104€ [1]. 

The annual benefit from bridge operation Bal is modelled using the 
annual benefit per goods vehicle (see e.g., Thoft-Christensen [50], De 
Brito et al. [61]) multiplied by the annual traffic volume of goods 

vehicles for a specific classification level. The annual traffic volume of 
goods vehicles for a specific bridge classification level is obtained by 
summing the number of yearly crossings of the heavy “standard” vehi
cles that can be allowed on the bridge (last column, Table 1). In this way, 
the socio-economic benefits are modelled proportional to the traffic 
volume of goods vehicles, allowing a quantification and comparison of 
benefits from different classification levels. 

Five values are modelled for the annual benefit per goods vehicle and 
labelled “Benefit Model”, see Table 3, to represent the effects of negli
gible reclassification benefits (Benefit Model 1) to very high benefits 
(Benefit Model 5) on the expected utilities. The total remaining service 
life benefit i.e., the aggregation of the annual benefits Bal over 15 years 
remaining service life for each bridge classification level and Benefit 
Model is also shown in Table 3. A discount rate r = 2%, considered to be 
representative of the rate of economic growth per capita in Denmark is 
used, see also Section 2.4. 

3.6. Results & discussion 

3.6.1. Reliability analysis 
The reliability analysis is performed for the consideration of bridge 

failure probability constraints, to which the DM may by law and regu
lations be restricted to. These failure probability constraints can be 
complied with by prior and posterior failure probabilities, which ne
cessitates the utilization of the extensive form of decision analysis or the 
separate calculation of posterior probabilities in a normal form decision 
analysis. 

In Fig. 7, the prior and posterior annual failure probabilities for each 
capacity classification are plotted. For comparison, the recommended 
minimum target value is also shown. From the figure, the maximum 
classification that satisfies the reliability criterion is identified for each 

Fig. 8. Expected utilities from the PA analysis as a function of benefit models 1–3 and classification.  
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indication. It is observed that the classification may not be increased to 
Class 80 or above for indication Z0 (indication of unsafe performance for 
Class 100 vehicle). The posterior failure probabilities given indication Z0 

are high as compared to the prior failure probabilities. For example, the 
posterior failure probability PX1 |Z0 is ≈ 10− 5 for Class 50. This means that 
the initial classification cannot be maintained in order to comply with 
the minimum reliability level and the expected utilities are calculated 
assuming a replacement with costs CF. However, the DM may alterna
tively opt – if at all possible - for analysing and planning adaptive actions 
such as reducing the classification level, repairs or replacement. 

3.6.2. Expected utility calculation and decision rules 
Figs. 8 and 9 present the expected utilities as a function of the clas

sification and benefit model from the PA decision analysis (base sce
nario). It can be observed that the expected utility is sensitive to the 
socio-economic benefits. The structural failure risks contribute more 
to the expected utility when the annual benefit/vehicle is low. As the 
benefit increases (as indicated by the Benefit Model indices), the ex
pected benefits from reclassification dominate over the structural failure 
risks from allowing a higher vehicle load. The expected utility is directly 
proportional to the benefits for Benefit Models 4 & 5 (Fig. 9). 

For the enhancement scenario (PIPA decision analysis), the classifi
cation choices leading to the maximum aggregated expected utility and 

Fig. 9. Expected utilities from the PA analysis as a function of benefit models 4–5 and classification.  

Table 4 
Decision Rules: Optimal choice of classification for different indications with 
constraints on annual failure probability.  

Benefit 
Model 

Decision Rules (βT = 4.7 or PT
f ≅ 10− 6) 

Without 
Information (Base 
Scenario) 

With 
Indication Z1 

With 
Indication Z2 

With 
Indication Z3 

(Enhancement Scenario)* 

Model 1 Class 80 Class 100 Class 125 Class 175 
Model 2 Class 80 Class 100 Class 150 Class 200 
Model 3 Class 80 Class 100 Class 150 Class 200 
Model 4 Class 80 Class 100 Class 150 Class 200 
Model 5 Class 80 Class 100 Class 150 Class 200  

* Indication Z0 implies a replacement due to exceedance of PT
f for existing 

classification.  

Table 5 
Classifications for maximum aggregated expected utility from PIPA analysis without constraints on annual failure probability.  

Benefit Model Classification levels for maximum aggregated expected utility from PIPA analysis 
Without Information With Indication Z0 With Indication Z1 With Indication Z2 With Indication Z3 

(Base Scenario) (Enhancement Scenario) 

Model 1 Class 100 Class 80 Class 100 Class 125 Class 175 
Model 2 Class 100 Class 80 Class 100 Class 150 Class 200 
Model 3 Class 150 Class 80 Class 125 Class 200 Class 200 
Model 4 Class 200 Class 100 Class 150 Class 200 Class 200 
Model 5 Class 200 Class 100 Class 200 Class 200 Class 200  
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satisfying the target reliability criteria, are identified for each indication 
(Table 4). Substantial increase in classification levels is observed when 
using proof loading information (Table 4). This is often seen in practice 
as load tests reveal capacities much higher than expected with conser
vative design or assessment methods [1,62]. 

The Benefit Model influences the classification choice, as would be 
explained by the relative contributions of the risks and expected benefits 
to the expected utility, which vary with the Benefit Model. In compar
ison with the classifications leading to the maximum aggregated ex
pected utility in the enhancement scenario (Table 5), we can observe 
that the optimal classification choice is governed by the target reliability 
criterion. For example, with indication Z0 (performance not safe for 
Class 100), the classification can be increased to Class 80 and higher 
from the perspective of maximizing expected utility (Table 5). However, 
this does not meet the target reliability boundary condition, as the 
posterior failure probability is quite high (Fig. 7) and would rather point 
to a replacement of the bridge. 

A further example that target reliability constraints lead to a 
decrease in the classification choice is depicted in Fig. 10. Here, the 
expected utilities for the base scenario calculated with Benefit Model 3 
are depcited together with the failure probability values. The target 
reliability criterion is satisfied only for Class 80, whereas the maximum 
expected utility corresponds to Class 150. 

The initial target reliability calibration of the ultimate capacity 
model (see Section 3.2) has minor influence due to the relatively high 
precision of proof load information. 

Two cases can be identified where the optimal choice of classifica
tion is governed by maximization of the expected utility rather than the 
target reliability criterion: 

(1) The classification following indication Z2 (acceptable perfor
mance for the Class 150 vehicle) may not be increased to Class 

150, even though the target reliability criterion is met, because 
the expected utility with Class 150 is not maximum (Fig. 11). 
With a different Benefit Model (e.g., Benefit Models 2 – 4), the 
increase in classification to Class 150 is optimal from the 
perspective of expected utility maximization as well.  

(2) With indication Z3 (indication of acceptable performance for load 
due to Class 200 vehicle) and Benefit Model 1, the optimal clas
sification is not Class 200, even though the target reliability cri
terion is met (Fig. 12). 

3.6.3. Value of information 
The Value of Information obtained from proof loading is presented in 

Table 6. The VoI increases with increase in the socio-economic benefit 
from reclassification. The expected utility gain from proof load infor
mation is attributed to the facts that 1) a higher classification may be 
obtained using the proof load information, as compared to the base 
scenario, and 2) a higher classifications are allotted to a higher utility in 
the form of a higher total service life benefit (see Table 3). With 
increasing classification level, the expected benefits and structural fail
ure risks both increase. However, for the cases of high reclassification 
benefits, specifically as considered in Benefit Models 3–5, the structural 
failure risks are dominated in magnitude by the expected benefits (see 
also Section 3.6.2, Figs. 8 and 9). In these cases of high reclassification 
benefits, the proof load information lead to higher classifications and is 
thus highly (monetarily) valuable (Table 6). The expected utility U*

PIPA is 
lower than the cost of the proof load test CTest for Benefit Models 1 & 2, 
causing the VoI to be negative. Even though the proof load information 
leads to higher classifications, the low magnitude of the reclassification 
benefits (Benefit Models 1 & 2) lead to U*

PIPA being exceeded by the proof 
load test costs. This results in the optimal decision to not perform proof 
loading when the socio-economic benefit from the reclassification action 
is low. 

Fig. 10. Expected utility and annual failure probability for base scenario with Benefit Model 3 (Monetary unit = E[105€]).  
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The target annual reliability level affects the analysis results on two 
levels: i) calibration of the thresholds, and ii) as constraints on the de
cision analysis. In order to examine the influence of the target reliability 
boundary condition on the results, the thresholds are re-calibrated for a 
lower target annual reliability level βT = 3.7, corresponding to a struc
ture in Consequence Class 3 with large relative costs of safety measure 
[41]. The threshold recalibration is followed by re-calculation of the 
posterior probabilities of failure and intact system state, expected util
ities, and optimal classification levels. 

With a target annual reliability level of βT = 3.7, the optimal clas
sification level in the base scenario is Class 100 (Benefit Models 1 & 2) 
and Class 150 (Benefit Models 3–5). This is because with a lowering of 
the minimum annual reliability level, the classification level can be 
increased even without using information from proof loading (see also 
Fig. 7 for the prior reliability analysis). Consequently, the VoI decreases 
considerably (Table 7). 

The proof load test costs, relative to the failure cost of the bridge, 
considerably affect the Value of Information, see Tables 8(a) & (b) for 
the VoI for different ratios of test costs CTest to the failure costs CF. The 
test cost range represents testing costs from 5000 € to 500,000 €. We can 
observe that, for high socio-economic benefit (e.g., Benefit Model 5), the 
optimal decision for the highway authority is to obtain information with 
proof loading, even with very high test costs. 

4. Summary and conclusions 

This paper contains the development and application of a decision 
analytic approach for the reclassification of the bridge capacity with 
quantification of the structural risks and socio-economic benefits. The 

approach enables identifying an optimal capacity reclassification with 
quantification and maximization of expected service life utility, 
including structural risks and expected benefits from bridge operation. 

The approach includes a novel and explicit differentiation of 
modeling and adaptation of elastic and ultimate capacity models with 
elastic limit information from proof load testing. In this way – beyond 
the current common scientific literature in this field – a model is 
introduced, which explicitly accounts for the fact that in-situ and in- 
service proof loading is on elastic level and the bridge capacity 
including the determination of target reliabilities relies on its ultimate 
capacity. In this way, the developed approach contributes – in the view 
of authors – to a more rational modeling of proof load information and to 
harmonizing structural design, reliability and decision analytic 
principles. 

In-situ and in-service proof load testing constitutes in conjunction 
with monitoring, information about the capacity at elastic limit. The 
proof load testing outcomes are defined by discretizing the distribution 
of the elastic capacity and calibrating the discretization thresholds to 
satisfy target reliability for different traffic loads. This facilitates that the 
proof loading information are modelled as indications of load bearing 
classes, which can be directly used as decision rules and account at the 
same time for reliability requirements based on a macroeconomic and 
life safety optimization ([36], and the JCSS Probabilistic Model Code, 
Part I), and eventually Life Quality Index considerations [41,63]. 

An illustrative decision analysis for a highway authority, responsible 
for strategy development for the reclassification of bridges with a low 
existing classification, is performed. The benefit from bridge reclassifi
cation is modelled proportional to the traffic frequency and allowable 
weight of goods vehicles i.e., that an increase in allowable weight 

Fig. 11. Expected utility and annual failure probability given indication Z2 and Benefit Model 1 (Monetary unit = E[105€]).  
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extends the heavy vehicle traffic volume and leads to higher benefits. 
Using five benefit models, the effects of negligible to very high reclas
sification benefits on the expected utilities are modelled allowing for 
flexibly adapting to different highway network utilization scenarios. 

With a pre-posterior decision analysis and by utilizing the (1) elastic 
and ultimate capacity models and its adaptation with elastic proof load 
information, (2) the proof load information model with classification 
outcomes accounting for target reliabilities and (3) the utility model 
including the socio-economic benefits from reclassification, the optimal 
classification choice is identified. For the practical use of the decision 

analyses for a highway authority, decision rules are identified and 
documented. The decision rules can help a highway authority to find the 
optimal classification or load rating, based on (1) the measurement of 
the capacity at elastic limit by proof loading, (2) the bridge reclassifi
cation benefits, and, (3) the required annual reliability level. 

A value of information analysis revealed that proof loading for 
reclassification may only be used when the socio-economic benefits are 
high i.e., higher than 105 € for the projected 15 years remaining bridge 

Fig. 12. Expected utility and annual failure probability given indication Z3 and Benefit Model 1 (Monetary unit = E[105€]).  

Table 6 
Expected and Relative Value of Information (Monetary unit = E[105€].

Benefit 
Model 

Expected Value of Information 
(U*

PIPA − U*
PA)

Relative Value of Information 
U*

PIPA − U*
PA

U*
PA

% 

Model 1 − 0.295 – 
Model 2 − 0.242 – 
Model 3 0.290 27.9% 
Model 4 5.614 54.0% 
Model 5 58.858 56.8%  

Table 7 
Value of Information in relation to target annual reliability level (Monetary unit 
= E[105€]).  

Benefit Model Expected Value of Information 
(U*

PIPA − U*
PA)

Relative Value of Information 
U*

PIPA − U*
PA

U*
PA

% 

βT = 4.7 βT = 3.7 βT = 4.7 βT = 3.7 

Model 1 − 0.295 − 0.030 – – 
Model 2 − 0.242 − 0.019 – – 
Model 3 0.290 0.095 27.9% 6.7% 
Model 4 5.614 1.118 54.0% 7.3% 
Model 5 58.858 12.550 56.8% 8.3%  

Table 8 
(a) Value of Information in relation to testing costs, annual target reliability level 
4.7 (Monetary unit = E[105€]).  

CTest

CF 

Benefit 
Model 1 

Benefit 
Model 2 

Benefit 
Model 3 

Benefit 
Model 4 

Benefit 
Model 5 

0.05% − 0.25 − 0.19 0.34 5.66 58.91 
0.10% − 0.30 − 0.24 0.29 5.61 58.86 
0.20% − 0.40 − 0.24 0.19 5.51 58.76 
0.50% − 0.70 − 0.64 − 0.11 5.21 58.46 
1.00% − 1.20 − 1.14 − 0.61 4.71 57.96 
2.50% − 2.70 − 2.64 − 2.11 3.21 56.46 
5.00% − 5.20 − 5.14 − 4.61 0.71 53.96  

Table 8 
(b) Value of Information to testing costs, annual target reliability level 3.7  
(Monetary unit = E[105€])  

CTest

CF 

Benefit 
Model 1 

Benefit 
Model 2 

Benefit 
Model 3 

Benefit 
Model 4 

Benefit 
Model 5 

0.05% 0.02 0.03 0.14 1.17 12.60 
0.10% − 0.03 − 0.02 0.09 1.12 12.55 
0.20% − 0.13 − 0.12 − 0.01 1.02 12.45 
0.50% − 0.43 − 0.42 − 0.31 0.72 12.15 
1.00% − 0.93 − 0.92 − 0.81 0.22 11.65 
2.50% − 2.43 − 2.42 − 2.31 − 1.28 10.15 
5.00% − 4.93 − 4.92 − 4.81 − 3.78 7.65  
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service life, relative to a bridge failure cost of 107 € and proof load test 
costs of 104 €. For the information to be (monetarily) valuable, the proof 
loading should lead to higher classifications, and the expected benefits 
from the higher classification should also compensate for the structural 
failure risks due to the increased load level and proof load test costs. 

With a parametric study, it is concluded that the expected utility gain 
from the proof load information is sensitive to (1) the costs of proof 
loading relative to the bridge failure cost and (2) the target reliability 
requirements. The target reliability level requirements, which serve as 
constraints to the decision analysis, generally lead to choosing a classi
fication level lower than what would be the optimum if only expected 
utility maximization is considered. If a lower target annual reliability 
level is used as the constraint, a higher classification level can be chosen 
in the base scenario itself i.e., without the need for proof loading. This 
has a significant impact on the Value of Information from proof loading, 
which is reduced by 75% on average following a reduction in target 
annual reliability level requirement from 4.7 to 3.7. This further implies 
that proof loading for reclassification has a high value when the target 
reliability requirement is high. 
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