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Abstract
Despite the advances in hardware and software techniques, standard numericalmethods fail in providing real-time simulations,
especially for complex processes such as additive manufacturing applications. A real-time simulation enables process control
through the combination of process monitoring and automated feedback, which increases the flexibility and quality of a
process. Typically, before producing a whole additive manufacturing structure, a simplified experiment in the form of a bead-
on-plate experiment is performed to get a first insight into the process and to set parameters suitably. In this work, a reduced
order model for the transient thermal problem of the bead-on-plate weld simulation is developed, allowing an efficient model
calibration and control of the process. The proposed approach applies the proper generalized decomposition (PGD) method,
a popular model order reduction technique, to decrease the computational effort of each model evaluation required multiple
times in parameter estimation, control, and optimization. The welding torch is modeled by a moving heat source, which leads
to difficulties separating space and time, a key ingredient in PGD simulations. A novel approach for separating space and time
is applied and extended to 3D problems allowing the derivation of an efficient separated representation of the temperature.
The results are verified against a standard finite element model showing excellent agreement. The reduced order model is also
leveraged in a Bayesian model parameter estimation setup, speeding up calibrations and ultimately leading to an optimized
real-time simulation approach for welding experiment using synthetic as well as real measurement data.

Keywords Proper generalized decomposition · Model order reduction · Hardly separable problem · Additive manufacturing ·
Model calibration · Wire arc additive manufacturing

1 Introduction

In industrial settings, the driving factor to use a specific pro-
cess is often the achievable benefit. Thus, with the rise of
additive manufacturing in industry, the race for cost reduc-
tion started. Typically, numerical simulations (such as finite
element simulations) are used in the design stage to avoid
an in-series production of real, physical prototypes, which
are nothing but test cases [1]. Such simulations also pro-
vide more flexibility in optimization with the drawback of
heavy computation times as well as a complex implementa-
tion. For the calibration of the simulation (through parameter
estimation) and optimization of the results using real data, in
the context of setting-up a digital twin, additional methods
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are required. These methods are often based on sampling
approaches like Markov chain Monte Carlo (MCMC). Such
approaches require a huge number of evaluations of the
numerical model, with varying parameter sets, resulting in
tremendous computational costs. Therefore, new approaches
are required with the aim of providing real-time simulations
and calibration. A popular concept to decrease the computa-
tional effort is model order reduction, where the evaluation
of the model is faster than classically used approaches, even
for complex processes.
On the other hand, computational weld mechanics [2] has
become a powerful tool to analyze the heat effects during
welding and gaining a deeper understanding of the under-
lying physics, especially in arc welding processes [3–8].
However, due to the necessary simplifications in modelling,
a validation against experimental reference data is compul-
sory [9]. A calibration of numerical models, through param-
eter estimation, is generally performed using deterministic
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model calibration such as least square [10]. An alternative
to deterministic modelling is a Bayesian approach, which
aims to approximate the posterior probability density func-
tion of the model parameters, allowing a full characterization
of the uncertainties, as discussed in detail in [11]. However,
in all cases, the computational cost of the direct simulations
is still a limiting factor. These computational costs can be
decreased by applying reduced order modelling (ROM). Its
goal is to find a lower dimensional representation, which is
able to capture the dominant behavior of the investigated
system. A large variety of different approaches have been
developed in the last decades. One of them is the “a pri-
ori” proper generalized decomposition [12–14], which has
been used in several applications, for example surgery sim-
ulations [15, 16], data-driven applications [17, 18], contact
problems [19, 20], and parameter estimation [21, 22]. Based
on an a priori approximation of the solution field by a sepa-
rated representation given by a number of proper generalized
decomposition (PGD) modes, for all possible model param-
eters, a solution is generated giving all solution fields in a
fixed parameter space. In general, each PGDmode is defined
in a one-dimensional space, but a grouping of parameters,
such as a mode defined in a 3D space, is possible, too. These
additional PGD parameters could be besides the physical
space, the time, and each model parameter. If the problem is
hardly separable, a separation of the PGDweak form into the
chosen PGD parameters is not possible. Novel methods are
published to handle these cases; Ghnatios et al. [23] derived
a method to operate such problems.
In the present paper, a hardly separable problem is addressed
in the context of wire arc additive manufacturing, developing
an efficient reduced ordermodel of the temperature evolution
using the PGD method. Since the welding torch is modeled
by a moving heat source as a function of time, a standard
PGD application will reach its limits [24]. In [23, 25, 26], a
mapping approach is developed with a key idea to map those
hardly separable parametric problem through the use of a
coordinate transformation to a space where the separation
is possible. The PGD calculation is typically computation-

ally more complex than a standard finite element calculation,
which considers a single set of parameters, but afterwards,
the evaluation of the solution field for specific parameter sets
can be done efficiently without solving any equation system.
Thus, PGD is an appealing tool in cases where the same
problem must be evaluated multiple times while varying
its parameters, like model calibration or optimization tasks.
Recently, the PGD approach has also been applied to ther-
mal problems in the context of welding simulations. In Rubio
et al. [22], a PGD model considering the width of a mov-
ing heat source as PGD parameter is discussed. It was also
used as a forward model within a Bayesian model updating
framework, by calling the PGD model in each sample of the
underlying Markov chain sampling approach. In that case,
the moving heat source was handled by a movement of the
global coordinate system instead of a direct movement of the
torch as well as an approximation by an asymptotic series.
Furthermore, Favaretto et al. [27] considered temperature-
dependent material parameters in their PGD model and Lu
et al. [28] a coupling to the mechanical problem.
The aim of this paper is to develop a fast to evaluate digital
numerical reduced order model for arc welding simulations
allowing for an efficient and reliable parameter estimation
and control of the underlying process. Usually, the first step
on the way to implement a wire arc additive manufacturing
production is the bead-on-plate experiment. For that reason,
the paper focuses on this experiment, but the proposed pro-
cedure can be extended to more complex problems. In such
more complex problems, the geometry of the weld penetra-
tion changes completely due to the different heat conduction
in a beat-on-plate seam and a build-up welds in higher layers,
which means that an adapted heat source must be used [29].
Furthermore, in the bead-on-plate weld experiment, conven-
tional technology with thermocouples and a camera is used
to monitor the welding process. In Richter et al. [30], a new
possibility of weld pool monitoring is described.
The related bead-on-plate weld experiment is first described
before a general thermal transient model for its temperature
evolution is derivedwith a finite element referencemodel and

Fig. 1 Experimental setup (left) and the derived parametric problem (right)
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Fig. 2 Experiment’s substrate
plate with thermocouples before
(left) and after (right) the
welding process

the PGD reduced order model. This reduced order model is
coupled to a mapping approach, which handles the hardly
separable parametric problem caused by the moving heat
source. Moreover, this work extends the mapping approach
by Ghnatios et al. [23] to a real 3D bead-on-plate weld prob-
lem. Furthermore, the derived reduced order model is used
in a Bayesian inference setup for a stochastic parameter esti-
mation. Several convergence studies as well as an efficient
parameter estimation leveraging the reduced order model are
performed, showing an excellent performance of the reduced
order model.

2 Bead-on-plate experiment

The investigated bead-on-plate weld experiment shown in
Fig. 1 (left) is an automated pulsed-MIG process with a M12
(Ar+2.5% CO2) as shielding gas. In the investigated setup, a
6-axis industrial robot moves the welding torch over the x-y-
plane of a plate with dimensions (Lx , Ly, Lz). The welding
torch starts at the point (x0, y0, z0), moves in x-direction
with a prescribed speed v in 1G welding position, and is
turned on at the time ton with average thermal power P ,
which can be determined by measurement of the transient
arc voltage and power. During the movement, the welding
torch passes four type K thermocouples T01, T02, T03, and
T04,whichmeasure the process temperature (see Fig. 2). The
thermocouple T01 is on the bottom of the plate, whereas the

other three are on top of the plate. Furthermore, the ther-
mocouple T04 is inserted directly into the weld pool behind
the welding torch during the welding process. Additionally,
the whole process is captured by several cameras. Alterna-
tively, the welding process can also be monitored using other
approaches as in [30]. The used power source is a Fronius
TPS 500i. Before the welding process starts, the plate has
fully adapted to the ambient temperature T∞. At the bot-
tom of the plate, normal convection occurs, since the plate is
slightly elevated. At the time toff , the welding torch is turned
off and the plate cools down. The plate as well as the deposi-
tionmaterial is 1.4404 (AISI 316L)— an austenitic stainless
steel, which is often used in the chemical industry, due to its
lack of a solid phase transformation as well as its excellent
corrosion resistance. The material properties that are con-
sidered are the density �, the specific heat capacity cp and
the thermal conductivity k. For the numerical analysis these
material parameters are assumed to be temperature indepen-
dent and given. The setup is shown in Fig. 2 before (left) and
after (right) the welding process. Furthermore, Fig. 3 shows
the weld pool size recorded during the experiment. The cor-
responding process parameter values are listed in Table 1.
The effective heat input into the workpiece and the convec-
tion’s heat transfer coefficient are process parameters that are
estimated using the measurement data. For that reason, they
are added as additional variables in the reduced order model
to efficiently solve the forward problem (thermal field as a
function of these parameters) within the inverse parameter

Fig. 3 Measurement of the weld
pool length (left) and weld pool
width (right) by counting pixels
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Table 1 Bead-on-plate experiment’s process parameters

Welding velocity v 0.4m/min

Plate length Lx 266mm

Plate width Ly 150mm

Plate height Lz 8mm

Initial x-position x0 0mm

Initial y-position y0 75mm

Initial z-position z0 8mm

Position of T01 (132.0, 75.0, 0)mm

Position of T02 (127.0, 83.3, 8)mm

Position of T03 (158.0, 84.2, 8)mm

Position of T04 (164.3, 75.4, 8)mm

Activation time ton 5.025s

Deactivation time toff 35.025s

Ambient temperature T∞ 22◦C
Density � 8000kg/m3

Specific heat capacity cp 500 J/kgK

Heat conductivity k 15W/(mK)

Average thermal power P 5000W

Wire feeding rate 6m/min

Gas’ volume flow 30 L/min

Thermocouple wire diameter 0.8mm

Thermocouple sampling time 0.026 mm ≈ 38.46Hz

Weld pool length 26mm

Weld pool width 10mm

estimation problem. The number of forward model evalua-
tions in the solution of the inverse problem depends on the
methodology and ranges from less than a hundred for deter-
ministic gradient based models up to more than a million for
Bayesian inference procedures.

3 Models andmethods

3.1 Thermal transient model

WAAM is often used to produce thick–walled structures;
thus, the heat accumulation is a main issue in the process [31,
32]. A parametric problem for simulating temperature evolu-
tion of the bead-on-plate experiment described in Section 2 is
sketched in Fig. 1 (right). The simulation focuses on the ther-
mal problemas it is one of themost important phenomena and
consists a required input to find other relevant information,
such as the solid phase distribution. The energy input of the
welding torch is modeled by a moving heat source. Hence,

the thermal transient problem with a moving heat source can
be described by the classical heat equation

�cp
∂T

∂t
− k�T = q =

{
qG, t ∈ [ton, toff ]
0, else,

(1)

where T (x, y, z, t) is the temperature field and q(x, y, z, t)
is the heat source in the 3D-domain� = [0, Lx ]×[0, Ly]×
[0, Lz] over a time interval I = [0, tend]. The heat source is
simulated by the commonly used mathematical model pro-
posed by Goldak et al. [33]. Different heat source models are
analyzed in [34, 35]. The Goldak heat source approximates
the energy distribution by a double-ellipsoid Gaussian distri-
bution. Thus, the moving heat source taking the movement
in x-direction with velocity v into account is defined as

qG(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qf (x, t) = 6
√
3ηP

(af+ar)bcπ
3
2
exp

−3
(
x−(x0+vt)

af

)2

exp
−3

(
y−y0
b

)2
exp

−3
(
z−z0
c

)2
, x ≥ x0 + vt

qr(x, t) = 6
√
3ηP

(af+ar)bcπ
3
2
exp

−3
(
x−(x0+vt)

ar

)2

exp
−3

(
y−y0
b

)2
exp

−3
(
z−z0
c

)2
, x < x0 + vt,

(2)

with qf the energy input in the heat source’s front part; qr the
energy input in the heat source’s rear part;η the arc efficiency;
P the thermal power; af , ar, b, and c the spatial distribution
parameters as depicted in Fig. 4 measured via camera pic-
tures during the experiment of Fig. 3; and x = [

x y z
]ᵀ

a vector containing the global spatial coordinates. For the
computation of multiple layers, an adjustment coefficient for
the heat source as in [29] would be necessary, since the weld
penetration changes in higher layers. The coordinate sys-
tem’s origin is located in the lower corner of the plate shown
in Fig. 1 (right). By definition, the energy input of the heat
source reaches 5% intensity at its boundary given by af , ar,
b, and c. Thereafter, it is assumed that the heat source van-
ishes. Figure 5 shows a simplified representation of the heat
source’s movement across the plate. There, the heat source
is active for t ∈ [ton, toff ], that is in the heating phase, and its
path is marked by a solid line. Afterwards, the heat source is
turned off and the plate cools down in the cooling phase.

The plate starts at ambient temperature T∞. Thus, the ini-
tial condition is given by

T (x, y, z, t = 0) = T∞. (3)

Heat loss is undergone through convective heat transfer as
boundary condition over ∂� writes:

−k∇Ts · 	n = h(Ts − T∞), (4)
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Fig. 4 Goldak heat source model with moving local coordinate system
x′ = [

x ′ y′ z′
]ᵀ

with Ts the surface temperature and h the heat transfer coef-
ficient. In this work, the radiation boundary condition is not
directly considered; instead, it is combined with the con-
vection boundary condition by linearization of the radiation
through

Q̇total = Q̇conv + Q̇rad = h(Ts − T∞) + εσ (T 4
s − T 4∞)

= hcombined(Ts − T∞), (5)

with ε the emissivity, σ the Stefan-Boltzmann constant, and

hcombined = h + εσ (Ts + T∞)(T 2
s + T 2∞). (6)

3.2 Full order FEmodel

Applying the standard procedure to derive the weak form of
Eq. (1)with the boundary conditions given in Eqs. (3) and (4),
where in the following h = hcombined = const is assumed,
that is multiplying with a test function T ∗, integrating and

Fig. 5 Values of the moving heat source in the heating and cooling
phase. Themovement of the active heat source across the plate ismarked
by a solid line

applying Green’s first identity, yields the weak form of
Eq. (1)

∫
�

�cpT
∗ ∂T

∂t
+ k∇T ∗ · ∇T dV +

∫
∂�

hT ∗(T − T∞)dA =
∫

�

T ∗qdV .

(7)

Furthermore, to increase the stability of numerical methods
solving Eq. (7), the space, time, and temperature in dimen-
sionless form are considered. Thus, defining

ξx := x

Lref
, ξy := y

Lref
, ξz := z

Lref
, τ := t

tref
and � := T

Tref
,

(8)

with arbitrary but fixed L ref , tref , Tref ∈ R
+ yields the dimen-

sionless weak form

∫
Q
T ∗ ∂�

∂τ
+ Fo∇T ∗ · ∇�dV + Bi Fo

∫
∂Q

T ∗�dA

= k

∫
Q
T ∗qdV + Bi Fo

∫
∂Q

T ∗T∞dA, (9)

with the dimensionless spaces Q = �/L ref and I = I/tref ,

Fouriernumber Fo = ktref
�cpL2

ref

,

Biotnumber Bi = hL ref

k

and k = tref
�cpTref

. (10)

As a reference full order model, the dimensionless weak
form given in Eq. (9) is solved by applying the finite ele-
ment method. A backward Euler approach is used for the
time integration

∂�m+1

∂τ
= �m+1 − �m

�τ
. (11)

Hence, the discrete system of the full order model for each
time step m is given as

(M + �τ K )�m+1

= �τ

(
k

∫
Q

Nᵀqm+1dV + Bi Fo
∫

∂Q
NᵀT∞dA

)
+ M �m, (12)

with the mass matrix M and stiffness matrix K . Here, M =∫
Q NᵀNdV and K = Fo

∫
Q BᵀBdV +Bi Fo

∫
∂Q NᵀNdA,

with N = [
φ1 φ2 . . .

]
a vector containing the linear,

second-order finite element shape functions and B =
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[∇φ1 ∇φ2 . . .
]
its space derivatives. The heat source qm+1

is split as in Eq. (1) into

qm+1 =
{
qm+1
G , heating phase

0, cooling phase.
(13)

3.3 PGD reducedmodel withmapping

Examples for deriving a PGD model for various transient
thermal problems can be found in [27, 36]. First, a separate
representation of the unknown temperature field has to be
chosen. Since the arc efficiency η and the heat transfer coef-
ficient h are to be identified based on real measurements,
both parameters η and h are defined as additional PGD coor-
dinates in intervalsN := [ηmin, ηmax] and E := [hmin, hmax]
in addition to the dimensionless space ξx , ξy, ξz and time τ .
The interval boundaries of N and E represent the minimum
and maximum possible inputs into the PGD model. In order
to increase the stability of the PGD model, the heat transfer
coefficient h in dimensionless form is used, that is h = h0h,
h ∈ H := E/h0 with a fixed value h0 ∈ R

+ based on prior
knowledge. Thus, the temperature field will be approximated
as

� ≈ �n(ξx , ξy , ξz , τ, η,h) =
n−1∑
i=1

Fi
1(ξx )F

i
2(ξy)F

i
3(ξz)F

i
4(τ )Fi

5(η)Fi
6(h)

+ X(ξx )Y (ξy)Z(ξz)K (τ )M(η)H(h)

+ Gx (ξx )Gy(ξy)Gz(ξz)Gt (τ )Gη(η)Gh(h)

= �n−1 + XY ZKMH + GxGyGzGtGηGh ,

(14)

with thePGDmodes (old set Fj andnewset X , Y , Z , K , M, H),
homogeneous boundary condition F4(τ = 0) = 0 and the
given inhomogeneous initial condition G separated for each
system parameter. Hence, G holds

Gx (ξx ) = Gy(ξy) = Gz(ξz) = Gη(η) = Gh(h) ≡ 1,

and Gt (τ ) ≡ T∞. (15)

More details of this splitting into homogeneous and inho-
mogeneous part can be found in [36]. Inserting the PGD
approach of Eq. (14) into the dimensionless weak form given
in Eq. (9) yields a nonlinear problem for the PGD modes
Fi
j , j = 1, . . . , 6, i = 1, . . . , n. This nonlinear problem is

solved iteratively for each new mode set X ,Y , Z , K , M, H

assuming the old �n−1 is already known. Furthermore, the
resulting nonlinear problem

∫
Q×F

T ∗ ∂�n

∂τ
+ Fo∇T ∗ · ∇�ndV dτdηdh

+
∫

∂Q×F
Bi Fo T ∗�ndAdτdηdh

= k

∫
Q×F

T ∗qdV dτdηdh +
∫

∂Q×F
Bi Fo T ∗T∞dAdτdηdh, (16)

with F := I × N × H is solved by an iterative scheme. An
alternated directions fixed-point algorithm is used, as pro-
posed in [37]. In this approach, each iteration consists of a
number of steps equal to the number of PGDvariables, which
are repeated until reaching the fixed point. In the first step,
the first PGD variable is updated; thus, T ∗ reduces to

T ∗ = X∗Y ZKMH , (17)

while assuming all modes independent from the current vari-
able as known. Next, the integral is separated into each
variable, leading to a multiparameter solution without solv-
ing a huge multiparameter problem, but rather many small
dimensional problems. These problems can be solved by
standard approaches like finite elements, finite differences,
or similar. The procedure for the first PGD variable’s mode
is then repeated successively for each variable, leading to the
new mode values after convergence. The used algorithm for
that can be found in [38]. In this work, the problem regarding
the time t is solved using finite differences, whereas the other
problems are solved using finite elements.

However, the function describing the moving heat source
given in Eq. (2) is not separable in space and time affine
to the proposed separation in Eq. (14). Therefore, another
approach for the separation is required allowing an efficient
computation of the PGD modes as described above. Ghna-
tios et al. [23] developed a method for such hardly separable
parametric problems. Details related to the derivation of the
weak form are given in Appendix 1. The main idea of that
approach is to map a hardly separable problem into a sep-
arable one by a coordinate transformation. Hence, the time
t is transformed to the position of the heat source r . Addi-
tionally, the domain, where the heat source is moving, is
separated into three parts s, as shown in Fig. 6 (right). The
first part s ∈ [0, 1) comprises everything behind the heat
source, the second part s ∈ [1, 2] depicts the heat source,
and the last part s ∈ (2, 3] comprises everything in front of
the heat source. Hence, this domain splitting is dependent
on the heat source’s current position. When the heat source
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Fig. 6 Mapping from the actual
space T (x, t) (left) to the
mapped space T (s, r) (right)

is turned off, in other words in the cooling phase, the right-
hand side term vanishes and thus, the mapping is no longer
needed.

Making use of this approach for the heating phase with
q = qG leads to the definition of the first mapping parameter
r

r := x0 + vtrefτ ⇔ τ = r − x0
vtref

, r ∈ [ron, roff ] =: R, (18)

where ron and roff are restrictions, which are necessary to
have a well-posed problem. These restrictions represent a
spatial offset at the plate edges, since a weld that protrudes
beyond it cannot be computed with the mapping approach.
The load’s position is described by two functions h1(r), h2(r)
and the constant width hg, as shown in Fig. 6 (left). Here, the
width hg is set to hg = af + ar, since this is the size of the
Goldak heat source in x-direction as shown in Fig. 4, whereas
the functions h1(r) and h2(r) are defined as

h1(r) = r − ar, h2(r) = Lx − af − r ,

∂h1(r)

∂r
= 1,

∂h2(r)

∂r
= −1. (19)

The second mapping parameter s, which separates the
domain into three parts, is then defined as

s ∈ [0, 1) :s := L refξx

h1(r)
⇔ξx = sh1(r)

L ref
,

s ∈ [1, 2] :s := L refξx − h1(r)

hg
+ 1 ⇔ξx = (s − 1)hg + h1(r)

L ref
,

s ∈ (2, 3] :s := L refξx − hg − h1(r)

h2(r)
+ 2 ⇔ξx = (s − 2)h2(r) + hg + h1(r)

L ref
.

(20)

Since it is not allowed to divide by zero, the restrictions ron
and roff need to hold h1(ron) > 0 and h2(roff) > 0 and thus
ron > ar and Lx − roff > af . However, if the heat source
is switched on at time ton, such that the whole weld pool is
on the plate, then ron = x0 + vton > ar is a suitable choice.
Correspondingly, if the source is switched off before the plate
edge at time toff , roff = x0 + vtoff < Lx − af is a suitable
choice. These choices also fit the performed experiment.

Transforming the �(ξx , ξy, ξz, τ, η, h) problem to the
mapped �(s, ξy, ξz, r , η, h) problem is given by coordinate
transformation

dξxdξydξzdτdηdh = det(J)dsdξydξzdrdηdh.

Details of that transformation, as well as the definition of
the simplifications ∇ξr� and Bτ∇sr� can be found in
Appendix 2.

Applying the mapped PGD approach

� ≈ �n(s, ξy , ξz, r , η, h) =
n−1∑
i=1

Fi
1(s)F

i
2(ξy)F

i
3(ξz)F

i
4(r)F

i
5(η)Fi

6(h)

+ S(s)Y (ξy)Z(ξz)R(r)M(η)H(h)

+ Gs(s)Gy(ξy)Gz(ξz)Gr (r)Gη(η)Gh(h)

= �n−1 + SY Z RMH + GsGyGzGrGηGh

(21)

to the dimensionless weak form given in Eq. (16) yields the
mapped weak form

∫
O×A

T ∗Bτ ∇sr�
n det(J) + Fo∇ξr T

∗ · ∇ξr�
n det(J)dV drdηdh

+
∫

∂O×A
Bi Fo T ∗�n det(J)dAdrdηdh

= k

∫
O×A

T ∗q det(J)dV drdηdh

+
∫

∂O×A
Bi Fo T ∗T∞ det(J)dAdrdηdh, (22)

with O := [0, 3] × [0, Ly/L ref ] × [0, Lz/L ref ] and A :=
R × N × H. The calculation of the required Jacobian and
derivatives can be found in Appendix 2. On the weak form’s
right-hand side of Eq. (22), the heat source q must bemapped
accordingly. Therefore, applying the mapping for s ∈ [1, 2],
that is

τ = r − x0
vtref

and ξx = (s − 1)hg + h1(r)

L ref
= (s − 1)hg + r − ar

L ref
(23)
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to the Goldak heat source given in Eq. (2) leads to

q̄G(s, ξy , ξz , r , η,h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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q̄r = 6
√
3P

(af + ar)bcπ
3
2︸ ︷︷ ︸

=:q̄4(r)q̄6(h)
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)2
︸ ︷︷ ︸
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+ 1,

(24)

with s ∈ [1, 2]. The mapping is not required for the right-
hand side, sinceq = 0 is assumed for s ∈ [0, 1)⋃(2, 3]. This
transformed equation can easily be separated for each param-
eter into

∏6
i=1 q̄i — the reason why the mapping approach

was introduced — and is furthermore independent of r .
The model including the mapping cannot be extended to

take the cooling phase into account, due to its restriction
in r . Thus, a second PGD model is added for the cooling
phase given Eq. (16) with q = 0, t ∈ (toff , tend] and as initial
condition the temperature at the last time point of the heating
phase.

In summary, two coupled PGDmodels are introduced. On
the one hand, a model (�1) with the mapping for the heating
phase and, on the other hand, a model (�2) without the map-
ping for the cooling phase. These problems are summarized
as:

Heating phase

∂�n
1

∂τ
− Fo��n

1 = kq̄G

�n
1(s, ξy, ξz, r = ron, η, h) = T∞

�n
1(s, ξy , ξz, r , η, h) =

n∑
i=1

Fi
1(s)F

i
2(ξy)F

i
3(ξz)F

i
4(r)F

i
5(η)Fi

6(h) (25)

+ Gs(s)Gy(ξy)Gz(ξz)Gr (r)Gη(η)Gh(h),

Cooling phase

∂�n
2

∂τ
− Fo��n

2 = 0

�n
2(ξx , ξy, ξz, τ = toff

tref
, η, h) = �n

1(s, ξy, ξz, r = roff , η, h)

�n
2(ξx , ξy , ξz, τ, η, h) =

n∑
i=1

Fi
1(ξx )F

i
2(ξy)F

i
3(ξz)F

i
4(τ )Fi

5(η)Fi
6(h)

(26)

+ Gx (ξx )Gy(ξy)Gz(ξz)Gt (τ )Gη(η)Gh(h).

3.4 Bayesianmodel calibration

Afrequently appliedmethod to estimate a simulationmodel’s
parameters while accounting for the associated uncertainties
is Bayesian parameter estimation. In this approach, based on
some prior knowledgewith respect to themodel’s parameters
in combinationwith given observations, the parameter’s joint
posterior probability distribution is computed using Bayes’
rule via

p(θ |D) = p(D | θ) p(θ)∫
p(D | θ) p(θ) dθ

. (27)

In this equation, θ ∈ R
n , n ∈ N represents the vector of

model parameters, p(θ) the corresponding prior distribution,
p(θ |D) the parameter’s posterior distribution and p(D | θ)

the likelihood function, in other words the probability that
themodel has generated the data given themodel parameters.
Note that the computed posterior distribution may be seen as
an update of the prior distribution given the provided obser-
vationsD. More details on the mathematical background can
be found for example in [39].

In order to evaluate Eq. (27), several approaches are avail-
able, for example direct computation, approximations [40],
or sampling-based methods [41]. Note that the main effort
in this evaluation is associated with the possibly high-
dimensional integral over the parameter space in the denom-
inator of the right-hand-side expression. In this work, a
sampling-based approach in the formofMarkov chainMonte
Carlo (MCMC) sampling [42, 43] is applied.The correspond-
ing computations are conducted using probeye [44], a Python
package developed at the corresponding author’s department
for defining and solving parameter estimation problems.

Those calibration approaches are usually very time-
consuming, since a huge number of problem evaluations
often in the order of 104–106 with different parameter values

123



Welding in the World

are required. Here, the derived PGD reduced model is used,
which allows real-time evaluation for all parameter values
in a prescribed range leading to a very efficient parameter
estimation setup.

3.5 Error measurement

Ensuring that a model creates trustworthy data is mandatory.
This can be achieved with convergence analysis and error
measurement. For this purpose, a mesh convergence analysis
should be carried out for the FEM model, which ensures
that the generated data no longer changes. Here, the error
between different solutions is given as the local relative error
integrated in time:

ε(x, y, z, η, h) = ‖TM1(x, y, z, t, η, h) − TM2(x, y, z, t, η, h)‖L2(I )

‖TM2(x, y, z, t, η, h)‖L2(I )
.

(28)

This error should decrease in each step of a mesh conver-
gence study with M1 the FE model at iteration l − 1 and
M2 the FE model at iteration l. As soon as this difference is
below a user-defined threshold, the solution is assumed to be
converged. Furthermore, checking the accuracy of a model
against another model, for example with M1 the PGDmodel
andM2 the reference FEmodel, the smaller the error defined
in Eq. (28) is, the better the models fit to each other.

4 Results and discussion

4.1 Experimental results

During the experiment described in Section 2, the temper-
ature evolution was measured by several thermocouples.
Figure7 shows measured temperature data at three thermo-
couples for this experiment, where the heating and cooling
phase is separated by a dashed line. In the heating phase,

Fig. 7 The real measurement data over the whole time domain. The
beginning of the cooling phase is marked by the dashed line

Table 2 Bead-on-plate model parameters

Goldak front length parameter af 3.5mm

Goldak rear length parameter ar 21.5mm

Goldak width parameter b 4.5mm

Goldak hight parameter c 2mm

Activation position ron 33.5mm

Deactivation position roff 233.5mm

Last time point tend 1500s

Reference length L ref 266mm

Reference temperature Tref 1372◦C
Reference time tref 1500s

Prior knowledge convection term h0 15W/(m2K)

Minimal convection hmin 4.5W/(m2K)

Maximal convection hmax 22.5W/(m2K)

Minimal efficiency ηmin 0

Maximal efficiency ηmax 1.1

the thermocouple T04 is inserted directly into the weld
pool behind the welding torch during the welding process.
Hence, for this thermocouple, the relevant data starts after
the breakdown of all thermocouples, since this breakdown
of all the thermocouples is a consequence of the insertion
of the thermocouple T04 into the molten steel. For the other
thermocouples, the temperature peak is reached when the
arc is as close as possible to them. Furthermore, it can be
observed that in the heating phase, after the temperature peak
has been reached, the temperature drops much faster at the
thermocouples which are on the top of the plate than for the
thermocouple at the bottom of the plate.

4.2 Numerical results

The validation of the proposed PGD model, which extends
the mapping approach by Ghnatios et al. [23] to a real 3D
bead-on-plate weld problem, is first performed by a compar-
ison with the FEM solution without taking the experimental

Fig. 8 Reduced order model’s temperature field at t = 25s
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Fig. 9 Mean over all four sensor positions of the relative error ε of the space mesh (left) and time mesh (right) analysis with η = 0.8 and
h = 15W/(m2K)

data into account. The goal is to analyze the quality of the
reduced order model with a sensitivity analysis related to the
numerical parameters such as the number of modes or the
meshdiscretization. For this validation, themodel parameters
are set according to Table 2. Even though the arc efficiency
η (PGD variable) is in general less than 1, the model should
be able to notice untypical cases with η ≥ 1, where most
likely inaccuracies in the experimental setup occurred. Thus,
ηmax is chosen larger than 1, such that the PGD model is
able to handle these cases. Additionally, the heat transfer
is represented by convection and linearized radiation with
a combined and constant heat transfer coefficient h (PGD
variable). For illustration purposes, a snapshot of the PGD
model solution is plotted in Fig. 8. It shows the reduced order
model’s temperature field at a specific time point (25s) in the
heating phase. Here, the extreme local temperature changes
typical of the experiment can be observed.

The numerical accuracy of a PGD model depends on the
discretization of each PGD parameter space as well as on

the number of PGD modes. A typical approach for a PGD
convergence analysis is to compare the PGD solution with a
full order model solution with parameters in the PGD space
to show that the PGD solution can adapt to different settings
correctly. To obtain such a reference FEM solution, a mesh
convergence study is required. Figure9 shows the averaged
error according to Eq. (28) over the refinement steps with
fixed parameters η = 0.8 and h = 15W/(m2K). Here, the
initial spatial discretization has 40 elements in x-direction,
20 in y-direction, and 2 in z-direction. In each refinement
step, the number of elements is doubled. The error in the
time mesh analysis converges after 8 refinement steps with
an error of 10−3. The same magnitude of the error in the
space mesh analysis is reached after 6 refinement steps. For
both meshes, the last but one refinement is used as mesh
discretization for the FEM reference solution, respectively.

Based on the FEM mesh convergence analysis, the num-
ber of elements of the corresponding PGD meshes is chosen
as s : 3945, ξy : 640, ξz : 44, r : 1280, η : 200, andh :

Fig. 10 Mean relative local error integrated in time over a data set (six parameter combinations) in the heating (left) and in the cooling (right)
phase. T01 to T04 are the available measurement sensors
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Fig. 11 Comparison of FEM and PGD solution at thermocouples T02 and T04 with η = 0.8, h = 15W/(m2K) and 60 modes in the heating (left)
and 30 modes in the cooling (right) phase

140. Figure10 shows the decrease of the mean local error
according to Eq. (28) integrated in time for six sets of chosen
parameters (η, h) at the four thermocouples, as the number
of PGD modes in the heating as well as in the cooling phase
increases. In the heating phase, within the first 60 modes, a
typical non-monotonic convergence to around 3% accuracy
can be observed. The PGD modes in the cooling phase con-
verge in the first 30 modes to the FEM reference solution
up to an accuracy of around 4%. The different behavior in
terms of a more monotonic decrease of the error in the cool-
ing phase results from the absence of the large temperature
gradients in the heating phase.

In Fig. 11, the temperature evolution over time computed
with the PGDmodel comparedwith the reference FEMsimu-
lation at thermocouples T02 and T04 is plotted for a specific

parameter set (η = 0.8, h = 15W/(m2K). An excellent
agreement of the solutions can be observed.

4.3 Bead-on-plate calibration

The performed calibration of the proposed bead-on-plate
experiment aims to identify the heat transfer coefficient h as
well as the arc efficiencyη from the experiment’s temperature
data described in Section 4.1. The calibration is indepen-
dent of the temperature measurement method, in other words
independent of whether a conventional approach with ther-
mocouples or a newer approachwith a pyrometer as in [30] is
used to measure the temperature. The calibration of the heat
transfer coefficient h needs an understanding of the welding
process itself. Even though the convection has an effect all

Fig. 12 Pair plot of the predicted posteriori (left) and calibrated PGD approximation with 1.0 standard deviations of the mean at thermocouple T02
(right) of the reference FE model value calibration
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the time, it ismarginal as long as the heat source is still active.
This behavior is reflected in the PGD modes in h, which are
almost constant in the heating phase. Thus, the convection is
marginal in this phase and a calibration of h would be inac-
curate. Hence, to identify the heat transfer coefficient h, the
cooling phase needs to be considered as also done in [45].

First, a calibrationwith syntheticmeasurement data is per-
formed. Thus, the temperature values of the reference FE
model (cooling phase) at all thermocouples, with η = 0.8
and h = 15W/(m2K), are used as measured data by adding
a normal distributed measurement noise with zero mean and
standard deviation σ = 15◦C. The usage of virtual data
allows to validate the developed model as well as to do
some parametric studies, for example an investigation of the
influence on the number of data points. The calibration is
performed using MCMC with 20 chains, 1000 samples in
the burn in phase, and 10,000 samples afterwards using

η ∼ T N (1, 0.3, ηmin, ηmax), (29)

h ∼ T N (12, 4.5, hmin, hmax) and (30)

σ ∼ U(0, 30) (31)

as prior distributions. The definition of the used likelihood
function can be found in Appendix 3, where ye denotes
the measurement data at all thermocouples. The identified
posteriori is depicted in Fig. 12 (left). Due to the applied

probabilistic approach, the result is again a probability dis-
tribution instead of a single set on parameter values resulting
from the usual deterministic approaches as in [45, 46]. Fur-
thermore, the used measured data is compared to the PGD
model evaluated at the identified mean parameter values,
which is shown in Fig. 12 (right) for the thermocouple T02.
There, an excellent accuracy can be observed. Additionally,
due to the properties of the MCMC method, the added noise
is identified as well.

Second, a calibration with real measurement data given in
Fig. 7 splitted in training and testing is performed. The train-
ing is performed at the thermocouples T03 andT04, using the
same settings as before, in other words the same priors and
the same number of chains and samples. In the likelihood,
the vector ye is filled with temperature values measured by
the thermocouples T03 and T04, considering only the cool-
ing phase. The testing is then done at the thermocouple T01.
In the process, the inference estimates the posteriori param-
eter distribution for the reduced model to fit the real data. In
Fig. 13, the identified posteriori is depicted. The identified
means of the parameters are

η̄ = 0.995 and h̄ = 6, 694W/(m2K).

Figure14 shows the validation of the calibrated PGD
model at thermocouple T01, which is not included in the
parameter estimation. The predictive posterior is computed

Fig. 13 Pair plot of the
predicted posteriori of the PGD
model calibration using real
measurement data
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Fig. 14 Calibrated PGD model approximation using real measurement data at thermocouple T01 for the heating (left) and cooling (right) phase,
with 1.0 and 2.0 standard deviations of the mean

by the samples of theMCMC algorithm. Since the parameter
distributions are narrow, which is favored by a time correla-
tion through a large number of data points, the uncertainty
of the parameters is low. Thus, the standard deviation of the
predictive posterior is dominated by the identified measure-
ment noise with mean σ̄ = 12.32◦C. Several things can be
observed. First, on the left is the heating phase, which is not
included in the calibration procedure. The error of the model
to themeasurement data is expected, since themodel contains
temperature independent material parameters as well as no
furtherweld pool analysis and awelding process is a complex
procedure, for example with an influence of the temperature
dependencyof thematerial parameters, especially in the heat-
ing phase. The focus here lies on the cooling phase, which is
depicted on the right. There, a good agreement with the real
cooling temperature decrease can be observed. Thus, even
though the investigated models only use temperature inde-
pendent material parameters as well as no further weld pool
analysis, the approximation of real temperature data in the
cooling phase of such a wire arc welding process is possible.

The great advantage lies in the computational time sav-
ing. A full order model like a FE model, which is the usual
model for a welding simulation as in [34, 35, 47, 48], needs
several hours for a single computation, whereas the reduced
model only takes milliseconds for one evaluation, for exam-
ple a computation of the temperature for the full time domain
takes around 3.7ms per thermocouple for the presented PGD
model, and thus the complete calibration lasts minutes. Such
high-speed parameter estimations were done using analyti-
cal models as in [49, 50], which come with a big trade-off
in the amount of assumptions needed to set them up. Thus,
the usage of the reduced order model combines the advan-
tages of the accuracy of a FEM model with the speed of an
analytical model.With that, the proposedmethodology using
the reduced order model enables an efficient model parame-
ter estimation and builds the basis for the usage of a future

digital twin in process control, where real-timemeasurement
data is fed into a numerical model that augments the sensor
data by computing additional indicators that can then be used
for direct process control. However, the heat source has to
be adjusted for a multi-layer simulation, since the geome-
try of the weld penetration changes due to the different heat
conduction. A fitting approach for this is discussed in [29],
where an adjustment term is added in the heat source model,
which could be treated as an additional PGD variable.

5 Conclusion

In the present paper, a PGD forward model with a map-
ping capturing the hardly separable moving heat source for
the temperature field of the wire arc additive manufacturing
bead-on-plateweld problem is introduced and combinedwith
a model calibration process. The hardly separable moving
heat source term is handled by a mapping approach, which
is extended to a 3D problem allowing the derivation of an
efficient separated representation of the temperature. The
proposed methods form the basis for a future digital twin
regarding the real-time wire arc additive manufacturing pro-
cess control.

Convergence studies are performed for the presentedmod-
els showing good agreement of the PGD and FE model. A
comparison of the PGD model to real measurement data
shows an expected error in the heating phase due to the
assumption of temperature independent material parameters
as well as no further weld pool analysis, but also shows a
good approximation in the cooling phase.

Furthermore, an efficient Bayesian model calibration by
using the PGD forward model is performed. This enables a
calibration procedure with several thousand samplings eval-
uated in some minutes. Here, the PGD model calibration
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process with reference FE model data shows an excellent
accuracy of the estimated parameters heat power η and heat
transfer coefficient h. Finally, the calibration process with
realmeasurement data is performed leading to a good approx-
imation of the cooling phase. Due to the superb operational
time of the reduced model, the model calibration process
is fast as well. The reduction of the computational effort
through reduced order models yields an excellent calibration
possibility, inspiring the use of reduced order models as a
tool for future digital twins as defined in [51].

Appendix 1. Extended PGD formulation

Solving Eq. (16) (no mapping applied) requires a choice for
the test function T ∗. A possibility is

T ∗ = X∗Y ZKMH + XY ∗ZKMH + · · · + XY ZKMH∗. (32)

To solve the resulting nonlinear problem, an alternated direc-
tions fixed-point algorithm is applied. Therefore, the test
function considering x as variable reduces to

T ∗ = X∗Y ZKMH , (33)

while assuming all modes independent from the current vari-
able as known. Inserting this approach in the homogeneous
form of Eq. (16), that is with q = 0, and separate it for
each model parameter, yields (for the sake of simplicity, the
integral limits are not given)
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i=1

∫
X∗Fi
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∫
Y Fi
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3(ξz)dξz
∫
K Fi

4(τ )dτ∫
MFi

5(η)dη
∫
Bi Fo HFi

6(h)dh

+ [X∗X ]ξx=ξxmin

∫
YYdξy

∫
Z Zdξz

∫
KKdτ

∫
MMdη

∫
Bi Fo HHdh

+ [X∗Gx ]ξx=ξxmin

∫
YGydξy

∫
ZGzdξz

∫
KGtdτ

∫
MGηdη

∫
Bi Fo HGhdh

= T∞
∫
X∗dξx

∫
Ydξy [Z ]ξz=ξzmax

∫
Kdτ

∫
Mdη

∫
Bi Fo Hdh

+ T∞
∫
X∗dξx

∫
Ydξy [Z ]ξz=ξzmin

∫
Kdτ

∫
Mdη

∫
Bi Fo Hdh

+ T∞
∫
X∗dξx [Y ]ξy=ξymax

∫
Zdξz

∫
Kdτ

∫
Mdη

∫
Bi Fo Hdh

+ T∞
∫
X∗dξx [Y ]ξy=ξymin

∫
Zdξz

∫
Kdτ

∫
Mdη

∫
Bi Fo Hdh

+ T∞[X∗]ξx=ξxmax

∫
Ydξy

∫
Zdξz

∫
Kdτ

∫
Mdη

∫
Bi Fo Hdh

+ T∞[X∗]ξx=ξxmin

∫
Ydξy

∫
Zdξz

∫
Kdτ

∫
Mdη

∫
Bi Fo Hdh, (34)

which can be solved for X∗. The procedure for the first PGD
variable’s mode is then repeated successively for each vari-
able, leading to the new mode values after convergence.

Appendix 2. Coordinate transformation

Transforming the dimensionless �(ξx , ξy, ξz, τ, η, h) prob-
lem to the mapped �(s, ξy, ξz, r , η, h) problem is given by
coordinate transformation

dξxdξydξzdτdηdh = det(J)dsdξydξzdrdηdh, with
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J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ξx
∂s

∂ξx
∂ξy

∂ξx
∂ξz

∂ξx
∂r

∂ξx
∂η

∂ξx
∂h

∂ξy
∂s

∂ξy
∂ξy

∂ξy
∂ξz

∂ξy
∂r

∂ξy
∂η

∂ξy
∂h

∂ξz
∂s

∂ξz
∂ξy

∂ξz
∂ξz

∂ξz
∂r

∂ξz
∂η

∂ξz
∂h

∂τ
∂s

∂τ
∂ξy

∂τ
∂ξz

∂τ
∂r

∂τ
∂η

∂τ
∂h

∂η
∂s

∂η
∂ξy

∂η
∂ξz

∂η
∂r

∂η
∂η

∂η
∂h

∂h
∂s

∂h
∂ξy

∂h
∂ξz

∂h
∂r

∂h
∂η

∂h
∂h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂ξx
∂s 0 0 ∂ξx

∂r 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 ∂τ

∂r 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (35)

∂�

∂ξx
= ∂�

∂s

∂s

∂ξx
+ ∂�

∂ξy

∂ξy

∂ξx
+ ∂�

∂ξz

∂ξz

∂ξx
+ ∂�

∂r

∂r

∂ξx

=
[

∂s
∂ξx

∂r
∂ξx

]
︸ ︷︷ ︸

=:Bξx

[
∂�
∂s
∂�
∂r

]
︸ ︷︷ ︸
=:∇sr�

= Bξx∇sr�,

∂�

∂ξy
= ∂�

∂s

∂s

∂ξy
+ ∂�

∂ξy

∂ξy

∂ξy
+ ∂�

∂ξz

∂ξz

∂ξy
+ ∂�

∂r

∂r

∂ξy
= ∂�

∂ξy
,

∂�

∂ξz
= ∂�

∂s

∂s

∂ξz
+ ∂�

∂ξy

∂ξy

∂ξz
+ ∂�

∂ξz

∂ξz

∂ξz
+ ∂�

∂r

∂r

∂ξz
= ∂�

∂ξz
,

∂�

∂τ
= ∂�

∂s

∂s

∂τ
+ ∂�

∂ξy

∂ξy

∂τ
+ ∂�

∂ξz

∂ξz

∂τ
+ ∂�

∂r

∂r

∂τ

= [
∂s
∂τ

∂r
∂τ

]
︸ ︷︷ ︸

=:Bτ

[
∂�
∂s
∂�
∂r

]
= Bτ∇sr�. (36)

Thus, it holds

∇� =
⎡
⎢⎣

∂�
∂ξx
∂�
∂ξy
∂�
∂ξz

⎤
⎥⎦ =

⎡
⎢⎣
Bξx∇sr�

∂�
∂ξy
∂�
∂ξz

⎤
⎥⎦

︸ ︷︷ ︸
=:∇ξr�

. (37)

All these derivatives occurred in the weak form given in Eq.
(22) and need to be calculated in each of the three s-parts,
but are trivial with one exception, the first entry of Bτ :

s ∈ [0, 1) : ∂s

∂τ
= ∂

∂τ

(
Lref ξx
h1

)
= − Lref ξx

h21

∂h1
∂τ

= − Lref ξx

h21

∂h1
∂r︸︷︷︸
=1

∂r

∂τ

= − vtref Lref ξx

h21
= − vtref s

h1

s ∈ [1, 2] : ∂s

∂τ
= ∂

∂τ

(
Lref ξx − h1

hg
+ 1

)
= − 1

hg

∂h1
∂r︸︷︷︸
=1

∂r

∂τ
= − vtref

hg

s ∈ (2, 3] : ∂s

∂τ
= ∂

∂τ

(
Lref ξx − hg − h1

h2
+ 2

)

= − Lref ξx − hg − h1

h22

∂h2
∂r︸︷︷︸

=−1

∂r

∂τ
− 1

h2

∂h1
∂r︸︷︷︸
=1

∂r

∂τ

= vtref
h2

Lref ξx − hg − h1
h2

− vtref
h2

= vtref (s − 3)

h2
(38)

Considering the above computation yields

s ∈ [0, 1) : det(J) = h1
L refvtref

, Bξx = L ref

[
1
h1

0
]
, Bτ = tref

[
− vs

h1
v
]
,

s ∈ [1, 2] : det(J) = hg
L refvtref

, Bξx = L ref

[
1
hg

0
]
, Bτ = tref

[
− v

hg
v
]
,

s ∈ (2, 3] : det(J) = h2
L refvtref

, Bξx = L ref

[
1
h2

0
]
, Bτ = tref

[
v(s−3)
h2

v
]
.

(39)

Appendix 3. Likelihood function

Let ye ∈ R
d , d ∈ N denote the measurement data that

depends on a set of input data xe = (x, y, z, t), where
(x, y, z) describe the position of all thermocouples and t the
time interval. Furthermore, the output of the PGD forward
model y at any sensor and at any time is defined as

μ(xe) = y(xe, η, h), (40)

and the additive covariance matrix as

�(xe) = �model(xe, η, h) + diag(σ 2). (41)

With these definitions, the likelihood function is defined as

L(xe, η, h) = exp
(− 1

2 (ye − μ(xe))ᵀ�(xe)−1(ye − μ(xe))
)

√
(2π)d det�(xe)

. (42)

These definitions are based on the more general case
noted down in the probeye documentation https://probeye.
readthedocs.io/en/latest/mathematics.html, last checked on
16.12.2022.
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