
LobsterPy: A package to automatically analyze
LOBSTER runs
Aakash Ashok Naik 1,2, Katharina Ueltzen 1, Christina Ertural 1, Adam
J. Jackson 3, and Janine George 1,2

1 Federal Institute for Materials Research and Testing, Materials Chemistry Department, Berlin, 12205,
Germany 2 Friedrich Schiller University Jena, Institute of Condensed Matter Theory and Solid-State
Optics, Jena, 07743, Germany 3 Scientific Computing Department, Science and Technology Facilities
Council, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK

DOI: 10.21105/joss.06286

Software
• Review
• Repository
• Archive

Editor: Rocco Meli
Reviewers:

• @berquist
• @srmnitc

Submitted: 19 January 2024
Published: 27 February 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The LOBSTER (Deringer et al., 2011; Maintz et al., 2013, 2016; Nelson et al., 2020) software
aids in extracting quantum-chemical bonding information from materials by projecting the
plane-wave based wave functions from density functional theory (DFT) onto an atomic orbital
basis. LobsterEnv, a module implemented in pymatgen (Ong et al., 2013) by some of the
authors of this package, facilitates the use of quantum-chemical bonding information obtained
from LOBSTER calculations to identify neighbors and coordination environments. LobsterPy
is a Python package that offers a set of convenient tools to further analyze and summarize
the LobsterEnv outputs in the form of JSONs that are easy to interpret and process. These
tools enable the estimation of (anti) bonding contributions, generation of textual descriptions,
and visualization of LOBSTER computation results. Since its first release, both LobsterPy
and LobsterEnv capabilities have been extended significantly. Unlike earlier versions, which
could only automatically analyze Crystal Orbital Hamilton Populations (COHPs) (Dronskowski
& Blöchl, 1993), both can now also analyze Crystal Orbital Overlap Populations (COOP)
(Hughbanks & Hoffmann, 1983) and Crystal Orbital Bond Index (COBI) (Müller et al., 2021).
Extracting the information about the most important orbitals contributing to the bonds is
optional, and users can enable it as needed. Additionally, bonding-based features for machine-
learning (ML) studies can be engineered via the sub-packages “featurize” and “structuregraphs”.
Alongside its Python interface, it also provides an easy-to-use command line interface (CLI)
that runs automatic analysis of the computations and generates a summary of results and
publication-ready figures.

LobsterPy has been used to produce the results in Ngo et al. (2023), Chen et al. (2024), Naik
et al. (2023), and it is also part of Atomate2 (2023) bonding analysis workflow for generating
bonding analysis data in a format compatible with the Materials Project (Jain et al., 2013)
API.

Statement of need
Although the notion of “bonds” might seem unusual from a physicist’s point of view, chemists
have been employing it routinely to explain various chemical phenomena and materials proper-
ties.(Burdett, 1995; Das et al., 2023; Dronskowski, 2023; Ertural et al., 2022; Hoffmann, 1987;
Hu et al., 2023) With the recent advances in automation frameworks for high-throughput
computational investigations, bonding analysis for thousands of crystalline materials can be
performed with few lines of code.(George et al., 2022) This automation helps reduce the
common mistakes inexperienced users make while performing bonding analysis. However, it is

Naik et al. (2024). LobsterPy: A package to automatically analyze LOBSTER runs. Journal of Open Source Software, 9(94), 6286. https:
//doi.org/10.21105/joss.06286.

1

https://orcid.org/0000-0002-6071-6786
https://orcid.org/0009-0003-2967-1182
https://orcid.org/0000-0002-7696-5824
https://orcid.org/0000-0001-5272-6530
https://orcid.org/0000-0001-8907-0336
https://doi.org/10.21105/joss.06286
https://github.com/openjournals/joss-reviews/issues/6286
https://github.com/JaGeo/LobsterPy
https://doi.org/10.5281/zenodo.10713348
https://rmeli.github.io
https://orcid.org/0000-0002-2845-3410
https://github.com/berquist
https://github.com/srmnitc
https://creativecommons.org/licenses/by/4.0/
https://github.com/materialsproject/pymatgen/blob/master/pymatgen/io/lobster/lobsterenv.py
https://doi.org/10.21105/joss.06286
https://doi.org/10.21105/joss.06286


also essential to systematically generate inputs and post-process the output files consistently
to have reliable and reproducible results. Furthermore, transforming the data from these
high-throughput bonding analysis calculations into a format suitable for ML studies should
benefit data-driven material science research. LobsterPy aims to fulfill this need.

Features
• Generate summarized bonding analysis JSONs and text descriptions based on COHPs

(ICOHPs), COBIs (ICOBIs), and COOPs (ICOOPs)
• Generate static and interactive plots of the most relevant COHPs, COBIs, and COOPs
• Customizable plotters for visualization of COHPs (ICOHPs), COBIs (ICOBIs), COOPs

(ICOOPs) and DOS
• Benchmark LOBSTER calculation quality and generate corresponding JSONs and text

descriptions
• Create inputs for LOBSTER calculations from VASP files
• Extract features from LOBSTER calculation files to be used for ML studies
• Perform automatic bonding analysis and plotting via inherent command line interface

app.

Similar and Related Software
LobsterPy can be seen to be similar in spirit to sumo (Ganose et al., 2018), as both provide
Python tools to analyze and visualize data related to the electronic structure that are based
on ab initio calculations. Other software packages that enable visualizing results specifically
from the LOBSTER software are wxDragon (Eck, 1994–2020) and Abipy (2021). LobsterPy
differs from these two packages by providing further analysis of the calculations, interpretable
text summaries, and featurizers for ML studies besides plotting the data.

Availability
LobsterPy can also be found on PyPI. Detailed software documentation, including installation
instructions and implementation details are provided. The package also includes tutorials
illustrating all the basic and advanced functionalities.

Acknowledgements
The authors would like to acknowledge the Gauss Centre for Super computing e.V. (www.gauss-
centre.eu) for funding this project by providing generous computing time on the GCS Super-
computer SuperMUC-NG at Leibniz Supercomputing Centre (www.lrz.de) (project pn73da)
that enabled rigorous testing of this package on a diverse set of compounds. The authors thank
Jonas Grandel for reviewing the docstrings and testing package functionalities and tutorials.
The authors would also like to acknowledge the maintainers of pymatgen and LOBSTER
program developers. The authors also greatly appreciate the contributions of the reviewers,
who have helped to make this code more user and developer friendly.

References
Abipy. (2021). https://github.com/abinit/abipy

Atomate2. (2023). https://github.com/materialsproject/atomate2

Burdett, J. K. (1995). Chemical bonding in solids. Oxford University Press.

Naik et al. (2024). LobsterPy: A package to automatically analyze LOBSTER runs. Journal of Open Source Software, 9(94), 6286. https:
//doi.org/10.21105/joss.06286.

2

https://pypi.org/project/lobsterpy/
https://jageo.github.io/LobsterPy/installation/index.html
https://jageo.github.io/LobsterPy/installation/index.html
https://jageo.github.io/LobsterPy/fundamentals/index.html
https://jageo.github.io/LobsterPy/tutorial/index.html
https://github.com/abinit/abipy
https://github.com/materialsproject/atomate2
https://doi.org/10.21105/joss.06286
https://doi.org/10.21105/joss.06286


Chen, B., Li, J., Wang, X., Shi, M., Sun, T., Xia, M., Ding, K., Liu, J., Li, J., Tian, H., &
others. (2024). Insights into the heterogeneous nuclei of an ultrafast-crystallizing glassy
solid. Advanced Functional Materials, 2314565. https://doi.org/10.1002/adfm.202314565

Das, A., Pal, K., Acharyya, P., Das, S., Maji, K., & Biswas, K. (2023). Strong antibonding i
(p)–cu (d) states lead to intrinsically low thermal conductivity in CuBiI4. Journal of the
American Chemical Society, 145(2), 1349–1358. https://doi.org/10.1021/jacs.2c11908

Deringer, V. L., Tchougréeff, A. L., & Dronskowski, R. (2011). Crystal orbital hamilton
population (COHP) analysis as projected from plane-wave basis sets. The Journal of
Physical Chemistry A, 115(21), 5461–5466. https://doi.org/10.1021/jp202489s

Dronskowski, R. (2023). Chemical bonding: From plane waves via atomic orbitals. Walter de
Gruyter GmbH & Co KG. https://doi.org/10.1515/9783111167213

Dronskowski, R., & Blöchl, P. E. (1993). Crystal orbital hamilton populations (COHP):
Energy-resolved visualization of chemical bonding in solids based on density-functional
calculations. The Journal of Physical Chemistry, 97 (33), 8617–8624. https://doi.org/10.
1021/j100135a014

Eck, B. (1994–2020). wxDragon, version 2.2.2. RWTH Aachen University. https://schmeling.
ac.rwth-aachen.de/cohp/index.php?menuID=6

Ertural, C., Stoffel, R. P., Müller, P. C., Vogt, C. A., & Dronskowski, R. (2022). First-
principles plane-wave-based exploration of cathode and anode materials for li-and na-ion
batteries involving complex nitrogen-based anions. Chemistry of Materials, 34(2), 652–668.
https://doi.org/10.1021/acs.chemmater.1c03349

Ganose, A. M., Jackson, A. J., & Scanlon, D. O. (2018). Sumo: Command-line tools for
plotting and analysis of periodic *ab initio* calculations. Journal of Open Source Software,
3(28), 717. https://doi.org/10.21105/joss.00717

George, J., Petretto, G., Naik, A., Esters, M., Jackson, A. J., Nelson, R., Dronskowski, R.,
Rignanese, G.-M., & Hautier, G. (2022). Automated bonding analysis with crystal orbital
hamilton populations. ChemPlusChem, 87(11), e202200123. https://doi.org/10.1002/
cplu.202200123

Hoffmann, R. (1987). How chemistry and physics meet in the solid state. Angewandte Chemie
International Edition in English, 26(9), 846–878. https://doi.org/10.1002/anie.198708461

Hu, C., Zhou, L., Hu, X., Lv, B., & Gao, Z. (2023). Mechanism of the low thermal
conductivity in novel two-dimensional NaCuSe. Applied Surface Science, 613, 156064.
https://doi.org/10.1016/j.apsusc.2022.156064

Hughbanks, T., & Hoffmann, R. (1983). Chains of trans-edge-sharing molybdenum octahedra:
Metal-metal bonding in extended systems. Journal of the American Chemical Society,
105(11), 3528–3537. https://doi.org/10.1021/ja00349a027

Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter,
D., Skinner, D., Ceder, G., & Persson, K. A. (2013). Commentary: The materials project:
A materials genome approach to accelerating materials innovation. APL Materials, 1(1).
https://doi.org/10.1063/1.4812323

Maintz, S., Deringer, V. L., Tchougréeff, A. L., & Dronskowski, R. (2013). Analytic projection
from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in
solids. Journal of Computational Chemistry, 34(29), 2557–2567. https://doi.org/10.1002/
jcc.23424

Maintz, S., Deringer, V. L., Tchougréeff, A. L., & Dronskowski, R. (2016). LOBSTER: A tool
to extract chemical bonding from plane-wave based DFT. In Journal of Computational
Chemistry (No. 11; Vol. 37, pp. 1030–1035). Wiley Online Library. https://doi.org/10.
1002/jcc.24300

Naik et al. (2024). LobsterPy: A package to automatically analyze LOBSTER runs. Journal of Open Source Software, 9(94), 6286. https:
//doi.org/10.21105/joss.06286.

3

https://doi.org/10.1002/adfm.202314565
https://doi.org/10.1021/jacs.2c11908
https://doi.org/10.1021/jp202489s
https://doi.org/10.1515/9783111167213
https://doi.org/10.1021/j100135a014
https://doi.org/10.1021/j100135a014
https://schmeling.ac.rwth-aachen.de/cohp/index.php?menuID=6
https://schmeling.ac.rwth-aachen.de/cohp/index.php?menuID=6
https://doi.org/10.1021/acs.chemmater.1c03349
https://doi.org/10.21105/joss.00717
https://doi.org/10.1002/cplu.202200123
https://doi.org/10.1002/cplu.202200123
https://doi.org/10.1002/anie.198708461
https://doi.org/10.1016/j.apsusc.2022.156064
https://doi.org/10.1021/ja00349a027
https://doi.org/10.1063/1.4812323
https://doi.org/10.1002/jcc.23424
https://doi.org/10.1002/jcc.23424
https://doi.org/10.1002/jcc.24300
https://doi.org/10.1002/jcc.24300
https://doi.org/10.21105/joss.06286
https://doi.org/10.21105/joss.06286


Müller, P. C., Ertural, C., Hempelmann, J., & Dronskowski, R. (2021). Crystal orbital bond
index: Covalent bond orders in solids. The Journal of Physical Chemistry C, 125(14),
7959–7970. https://doi.org/10.1021/acs.jpcc.1c00718

Naik, Aakash Ashok, Ertural, Christina, Dhamrait, N., Benner, P., & George, J. (2023). A
quantum-chemical bonding database for solid-state materials. Scientific Data, 10(1), 610.
https://doi.org/10.1038/s41597-023-02477-5

Nelson, R., Ertural, C., George, J., Deringer, V. L., Hautier, G., & Dronskowski, R. (2020).
LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from
projector-augmented-wave-based density-functional theory. Journal of Computational
Chemistry, 41(21), 1931–1940.

Ngo, H. M., Pal, U., Kang, Y. S., & Ok, K. M. (2023). DFT-based study for the enhancement
of CO2 adsorption on metal-doped nitrogen-enriched polytriazines. ACS Omega, 8(9),
8876–8884. https://doi.org/10.1021/acsomega.3c00395

Ong, S. P., Richards, W. D., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier,
V. L., Persson, K. A., & Ceder, G. (2013). Python materials genomics (pymatgen): A
robust, open-source python library for materials analysis. Computational Materials Science,
68, 314–319. https://doi.org/10.1016/j.commatsci.2012.10.028

Naik et al. (2024). LobsterPy: A package to automatically analyze LOBSTER runs. Journal of Open Source Software, 9(94), 6286. https:
//doi.org/10.21105/joss.06286.

4

https://doi.org/10.1021/acs.jpcc.1c00718
https://doi.org/10.1038/s41597-023-02477-5
https://doi.org/10.1021/acsomega.3c00395
https://doi.org/10.1016/j.commatsci.2012.10.028
https://doi.org/10.21105/joss.06286
https://doi.org/10.21105/joss.06286

	Summary
	Statement of need
	Features
	Similar and Related Software
	Availability
	Acknowledgements
	References

