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Summary
The LOBSTER (Deringer et al., 2011; Maintz et al., 2013, 2016; Nelson et al., 2020) software
aids in extracting quantum-chemical bonding information from materials by projecting the
plane-wave based wave functions from density functional theory (DFT) onto an atomic orbital
basis. LobsterEnv, a module implemented in pymatgen (Ong et al., 2013) by some of the
authors of this package, facilitates the use of quantum-chemical bonding information obtained
from LOBSTER calculations to identify neighbors and coordination environments. LobsterPy
is a Python package that offers a set of convenient tools to further analyze and summarize
the LobsterEnv outputs in the form of JSONs that are easy to interpret and process. These
tools enable the estimation of (anti) bonding contributions, generation of textual descriptions,
and visualization of LOBSTER computation results. Since its first release, both LobsterPy
and LobsterEnv capabilities have been extended significantly. Unlike earlier versions, which
could only automatically analyze Crystal Orbital Hamilton Populations (COHPs) (Dronskowski
& Blöchl, 1993), both can now also analyze Crystal Orbital Overlap Populations (COOP)
(Hughbanks & Hoffmann, 1983) and Crystal Orbital Bond Index (COBI) (Müller et al., 2021).
Extracting the information about the most important orbitals contributing to the bonds is
optional, and users can enable it as needed. Additionally, bonding-based features for machine-
learning (ML) studies can be engineered via the sub-packages “featurize” and “structuregraphs”.
Alongside its Python interface, it also provides an easy-to-use command line interface (CLI)
that runs automatic analysis of the computations and generates a summary of results and
publication-ready figures.

LobsterPy has been used to produce the results in Ngo et al. (2023), Chen et al. (2024), Naik
et al. (2023), and it is also part of Atomate2 (2023) bonding analysis workflow for generating
bonding analysis data in a format compatible with the Materials Project (Jain et al., 2013)
API.

Statement of need
Although the notion of “bonds” might seem unusual from a physicist’s point of view, chemists
have been employing it routinely to explain various chemical phenomena and materials proper-
ties.(Burdett, 1995; Das et al., 2023; Dronskowski, 2023; Ertural et al., 2022; Hoffmann, 1987;
Hu et al., 2023) With the recent advances in automation frameworks for high-throughput
computational investigations, bonding analysis for thousands of crystalline materials can be
performed with few lines of code.(George et al., 2022) This automation helps reduce the
common mistakes inexperienced users make while performing bonding analysis. However, it is
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also essential to systematically generate inputs and post-process the output files consistently
to have reliable and reproducible results. Furthermore, transforming the data from these
high-throughput bonding analysis calculations into a format suitable for ML studies should
benefit data-driven material science research. LobsterPy aims to fulfill this need.

Features
• Generate summarized bonding analysis JSONs and text descriptions based on COHPs

(ICOHPs), COBIs (ICOBIs), and COOPs (ICOOPs)
• Generate static and interactive plots of the most relevant COHPs, COBIs, and COOPs
• Customizable plotters for visualization of COHPs (ICOHPs), COBIs (ICOBIs), COOPs

(ICOOPs) and DOS
• Benchmark LOBSTER calculation quality and generate corresponding JSONs and text

descriptions
• Create inputs for LOBSTER calculations from VASP files
• Extract features from LOBSTER calculation files to be used for ML studies
• Perform automatic bonding analysis and plotting via inherent command line interface

app.

Similar and Related Software
LobsterPy can be seen to be similar in spirit to sumo (Ganose et al., 2018), as both provide
Python tools to analyze and visualize data related to the electronic structure that are based
on ab initio calculations. Other software packages that enable visualizing results specifically
from the LOBSTER software are wxDragon (Eck, 1994–2020) and Abipy (2021). LobsterPy
differs from these two packages by providing further analysis of the calculations, interpretable
text summaries, and featurizers for ML studies besides plotting the data.

Availability
LobsterPy can also be found on PyPI. Detailed software documentation, including installation
instructions and implementation details are provided. The package also includes tutorials
illustrating all the basic and advanced functionalities.
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