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ABSTRACT:
In ultrasonic testing, material and structural properties of a specimen can be derived from the time-of-flight (ToF).

Using signal features, such as the first peak or envelope maximum, to calculate the ToF is error-prone in multipath

arrangements or dispersive and attenuating materials, which is not the case for the signal onset. Borrowing from seis-

mology, researchers used the Akaike information criterion (AIC) picker to automatically determine onset times. The

most commonly used formulation, Maeda’s AIC picker, is reassessed and found to be based on inappropriate

assumptions for signals often used in ultrasonic testing and dependent on arbitrary parameters. Consequently, an

onset picker for ultrasonic through-transmission measurements is proposed, based on a spectral entropy criterion

(SEC) to model the signal using the AIC framework. This SEC picker takes into account the spectral properties of

the ultrasonic signal and is virtually free of arbitrary parameters. Synthetic and experimental data are used to com-

pare the performance of SEC and AIC pickers. It is shown that the accuracy of onset picking is improved for densely

sampled data. VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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I. INTRODUCTION

Time-of-flight (ToF) analysis of an acoustic signal is a

prominent method of investigation in various scientific

domains. Applications include the analysis of earthquakes in

geophysics,1 the prediction of avalanches in glaciology,2 the

localization of cracks in concrete structures by acoustic

emission testing,3 or ultrasonic imaging, both in medical

applications4,5 and in nondestructive testing.6 In this list of

acoustic ToF applications, ultrasonic testing differs from the

remaining ones because the properties of the analyzed

acoustic signal are generally known in advance. When per-

forming ToF measurements, the received ultrasonic pulse is

usually compared to a reference pulse, which may be mod-

eled7 or measured directly.8 This comparison may involve

waveform cross correlation9 or identification of shifts in cer-

tain waveform properties, including first maximum, first

zero crossing, first threshold crossing, or signal onset.10

However, with the exception of the signal onset, using these

properties for ToF measurements can lead to erroneous

results if the pulse propagates through an attenuating and

dispersive medium. In this case, the waveform of broadband

pulses changes according to the distance traveled and fre-

quency content, since dispersivity causes the frequency

components to propagate at different phase velocities while

attenuation affects higher frequency components more than

lower frequency components.11 The signal onset is consid-

ered to be a characteristic waveform property that is largely

unaffected by these effects.12,13 Furthermore, signal onset is

the only signal feature that reliably indicates the shortest

travel path through a material, which is particularly impor-

tant in air-coupled ultrasonic testing where a large differ-

ence exists between the propagation velocities in air and

specimen.14 However, the true value of the signal onset is

difficult to determine in measured signals because it is

always hidden in background noise.

The most common method for finding a signal onset in

ultrasonic testing is the Akaike information criterion picker
(AIC picker).4,6,13,15,16 It is based on an information crite-

rion developed by Akaike17 to compare various statistical

models in terms of error and complexity. It was later trans-

ferred to geophysical applications18,19 to separate waveform

segments that can be described by different models, which

includes onset picking. In this domain, it has been shown to

outperform previous methods, such as the often used short-

term average/long-term average (LTA/STA) technique20,21

or the threshold method.22 Following the rediscovery of

Maeda’s23 simplified approach to the AIC picker 2 decades

ago,24,25 it has become a relevant reference method for

benchmarking of newly developed methods.26–28 This suc-

cess is likely a result of the fact that the algorithm does not

require a priori knowledge about neither signal properties

and measurement setup and is easy to implement. The

importance of Maedas’ AIC Picker is reflected in the fact

that many of the newly developed methods are adaptations

of the AIC Picker4,6,22,29–32 or recombine it with other onset

picking methods.21,33–35 Further onset picking methods rely,

for example, on edge enhancement filter36 or continuousa)Email: benjamin.buehling@bam.de
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wavelet transforms37 and have been comprehensively

reviewed by Das and Leung.30 More recently, deep learning

models38 have been proposed for onset detection, which

provide better results but are more difficult to implement

because they require extensive training on large domain-

specific datasets.

Using the signal properties available in ultrasonic test-

ing, this paper proposes a novel signal onset picker designed

primarily for ultrasonic through-transmission applications.

In Sec. II, the AIC picker is revisited with a special focus on

Maeda’s formulation. Both general implications and the par-

ticular ones concerning ultrasonic measurements that are

resulting from this formulation are discussed. Building on

this discussion, Sec. III introduces the spectral entropy crite-

rion (SEC) picker as a novel method that is methodologi-

cally based on the AIC picker. However, instead of relying

on signal variance, a spectral entropy model is used to detect

a pulse onset. In Sec. IV, the synthetic and experimental

data are described, that are used in Sec. V to compare the

behavior of the AIC picker and the SEC picker and assess

the influence of various parameters on the method to define

its limitations. With this knowledge, the SEC picker is then

applied to experimental data to evaluate its performance in

comparison to the AIC picker.

II. AKAIKE INFORMATION CRITERION PICKER

The AIC was initially developed to compare and select

statistical models and is still an important tool for this pur-

pose.17,39,40 The criterion is defined as

AIC ¼ �2 ln ðLÞ þ 2p; (1)

where L is the likelihood of the estimated model and p is the

number of model parameters. When comparing different

models, the model with the lowest AIC best represents a

given distribution, making the latter term a penalty term.

If a time signal contains two distinct segments, these

can be interpreted as two distributions that can be modeled.

The best possible approximation of the signal is achieved

when both models fit the distribution. To do this, they must

predict their waveform segment well and must only be com-

pared to the corresponding waveform segment. The error

increases when a model is compared to a waveform partition

that includes a set of values belonging to a segment with a

different distribution. Thus, the signal is best separated

when both models appropriately represent the segment dis-

tributions and are compared to waveform segments that

include the fewest data points belonging to the respective

other distribution. For predefined models, each possible sep-

aration point is tested using Eq. (1). Using the log-

likelihood, the AIC at a tested separation point k in the inter-

val ½1;N� is

AICðkÞ ¼ k log ðr2
1Þ þ ðN � kÞ log ðr2

2Þ; (2)

with mean squared error (MSE) r2
i of the segment models ŝ

compared to the actual data s at points j:

r2
i ¼ meanfðsðtÞ � ŝðtÞÞ2g: (3)

These are evaluated in the interval t ¼ ½1; k � 1� for

i¼ 1 and in the interval t ¼ ½k;N� for i¼ 2. A detailed deri-

vation of Eq. (2) can be found in the original paper by

Kitagawa and Akaike18 as well as in a number of subsequent

publications.3,19 As the AIC value is calculated for an

increasing index k, the first term in Eq. (2) can be interpreted

as a forward running function (FW) since the window size

in which r1 is calculated increases. Accordingly, the second

term can be interpreted as a backward running function

(BW).41 A schematic representation of these functions and

windows is given in Fig. 1. If the first model fits the behav-

ior of the first segment of the time signal, the FW function

gives a constant low or continuously decreasing result. As

the FW windows are increased beyond the true separation

point, the error increases and so does the result of the FW

function. The BW function behaves accordingly: it starts

with a high output when data points from the first segment

are included in the window and decreases to a constant low

value when only points from the second segment are

included. The addition of the FW and BW functions, accord-

ing to Eq. (2), leads to a global minimum at the optimum

separation point.41

In geophysical applications, where the AIC picker was

used to determine onset times and distinguish wave modes

in the years following its original publication, the waveform

segments were usually modeled as autoregressive func-

tions.18,19,41 Accordingly, it was termed an autoregressive

AIC (AR-AIC) picker.25,42 The only exception was

Maeda,23 who published a Japanese-language paper that is

available to the author as a machine-translated version. This

paper included a modification of Eq. (2), that attempted to

model both signal segments as Gaussian processes. Thus,

Maeda’s AIC picker is defined as

AICMðkÞ ¼ k log ðvarfsðt ¼ 1; k � 1½ �ÞgÞ
þ ðN � kÞ log ðvarfsðt ¼ k;N½ �ÞgÞ; (4)

where varfsðtÞg is the empirical variance of the waveform

calculated for each segment before and after separation

point k. Although Maeda found that this approach was bene-

ficial for noisy data, Eq. (4) was not referred to for more

than a decade. Following its rediscovery in 2003,24,25

Maeda’s AIC picker has become the predominant version of

the AIC picker and will be used below under the name AIC

FIG. 1. (Color online) Schematic representation of the Akaike information

criterion (AIC) picker. As k is moved across the entire waveform, the FW

and BW functions are calculated for the signal segments preceding and fol-

lowing k, respectively. When these functions are added, the global mini-

mum gives the signal onset predicted by the AIC.
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picker. Compared to the AR-AIC picker, it has the distinct

advantage that it does not require prior modeling of the sig-

nal segments. Thus, Eq. (4) can be applied to any signal

without prior knowledge or model optimization.

The difference in Eqs. (2) and (4) is the variance terms.

While in Eq. (2) the MSE r2
i describes the error of the seg-

ment model compared to the actual data, empirical variance

in Eq. (4) describes the mean squared deviation of the data

from its mean in the respective interval. Therefore, in terms

of the original AIC picker, the model employed in Eq. (4) to

describe both signal segments is ŝðtÞ ¼ meanfsðtÞg, which

corresponds to ŝðtÞ ¼ 0 in most acoustic applications. Both

signal segments are modeled identically, and this model is

constant zero. In cases where the first signal segment con-

tains only noise, this model is a useful approximation.

However, more useful models are required for the second

segment, whether it contains seismic activity or an ultra-

sonic pulse. Moreover, the use of an inappropriate model for

the second signal segment results in a behavior of the AIC

picker that deviates from its original theory. Since the first

signal segment has only little variance and the second seg-

ment after the signal onset has higher variance, Maeda’s

BW function results in continuously increasing values in the

first signal segment. For k¼ 1, the logarithmic variance of

the BW function is calculated for the entire recorded signal.

Figure 2 shows that as k is increased, lower variance sam-

ples in the signal are discarded from the BW function win-

dow and the overall logarithmic variance in the BW

function increases with a slope, depending on the increase in

variance and the length of the first signal segment. While

the FW function generally behaves as expected, the BW

function does not. As shown in Fig. 1, the BW function

should complement the behavior of the FW function so that

a global minimum is formed as both are added. The flawed

modeling of the second signal segment is the reason that the

BW function in Fig. 2 is monotonically increasing around

the onset point instead of exhibiting a change of slope as the

FW function does and as it is intended.

For the original AR-AIC picker, it has been proposed in

the literature to use the FW function only and omit adding a

BW function.19,41 Figure 2 also suggests that this would be

sufficient. However, for noisier signals than the one shown

in Fig. 2, adding the BW function to the FW function para-

doxically increases picking accuracy. Since the first seg-

ment’s variance often increases noticeably only a few

samples after the signal onset, the FW function’s minimum

is also often found a few samples behind the true signal

onset. By adding a continuously increasing function, like the

BW function, the overall AIC picker minimum is slightly

shifted to earlier samples, which tends to increase picking

accuracy. Despite being beneficial for the picking perfor-

mance, this behavior is not intended in the design of the

AIC picker. However, it demonstrates the complex interrela-

tionship between segment variances and segment lengths,

that influence the effect of this unintended behavior.

Given the ease of implementation and satisfying pick-

ing performance, these theoretical issues have been disre-

garded in the literature. However, several authors have

addressed performance issues that are likely due to the sim-

plifications used. The issue of poor onset picking accuracy

in the presence of a low second derivative of the AIC,

already mentioned by Maeda,23 was proposed to be solved

by filtering those values.3 Furthermore, the signal onset

picking accuracy depends on the number of samples in the

waveform preceding and following the true signal onset.

Both Kurz et al.6 and Sedlak et al.22 have proposed methods

that adjust the waveform snippet size. However, both rely

on empirical parameters based on experience and cannot be

easily transferred to other domains and experimental setups

without doing a form of parameter search and stability anal-

ysis. In addition to departing from the original zero-

knowledge approach of Maeda’s formulation, none of these

improvements address the underlying issue of inappropriate

signal modeling.

While passive acoustic methods have limited prior

knowledge of the received signals, active methods, such as

ultrasonic testing, rely on predetermined, reproducible, and

deliberately chosen signal characteristics. Transducer prop-

erties, such as the frequency response, are therefore gener-

ally known in advance and should be included in the onset

picking algorithm.

III. SPECTRAL ENTROPY CRITERION PICKER

The onset-picking algorithm proposed in this paper was

developed to incorporate knowledge of the ultrasonic signal

characteristics while preserving the desirable properties of

the AIC picker. It does not require modeling of the signal or

input of arbitrary empirical parameters.

In ultrasonic testing, especially in through-transmission

setups, it is known that the signal spectrum before onset is

significantly different from the spectrum after onset. In the

first segment, the signal is dominated by white noise with a

flat spectrum. In the second segment, the transmitted ultra-

sonic signal is generally characterized by a spectrum with a

pronounced center frequency. The spectra of these two seg-

ments can be considered stationary in the sense that the flat

spectrum of the first segment and the dominant frequency in

the second segment do not change significantly across the

segment width. Thus, the separation point between these

constant spectrum segments marks the signal onset. In this

paper, the normalized spectral entropy Hs is used as an indi-

cator of a change in a spectrum. The resulting onset picking

method is therefore termed the spectral entropy criterion
picker (SEC picker). The spectral entropy is based on

FIG. 2. (Color online) Behavior of Maeda’s Akaike information criterion

(AIC) picker when applied to a synthetic RCS4 pulse.
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Shannon’s entropy H,43 which, for a set of symbols X of size

m with discrete probabilities pi, is defined as

H ¼ �
Xm

i¼1

pi log2ðpiÞ: (5)

It is a measure for the average information of each

symbol in that set.44 Signal onset pickers based on entropy

measures have been presented before, but almost exclu-

sively calculated entropy measures directly from the time

signal rather than from its spectrum. Exceptions are da

Silva and Corso,45 who use the concept of spectral entropy

in conjunction with the STA/LTA picker and Das et al.
who used spectral entropy as an indicator for concrete dam-

age46 and healing47 in acoustic emission testing.

Calculating Shannon entropy directly from the waveform,

however, poses a challenge. Given the typically high bit

depth of measurements, a windowed signal taken from a

single waveform usually includes insufficient samples to

produce reliable statistics on its entropy. This contrasts

with the number of possible unique frequency components

obtained from a discrete Fourier transform (DFT), accord-

ing to Eq. (7), which is half the window size if zero padding

is not applied. To approximate waveform signal entropy,

various contrast functions have been developed as part of

independent component analysis (ICA).48 These functions

aim at determining the “Gaussianity” of a function and

thereby its entropy relative to a white noise signal. This rel-

ative entropy is called negentropy and is conceptually dif-

ferent to the negative spectral entropy later used for SECFW

in Eq. (12). Li et al.26 used this negentropy to determine

signal onsets. While the proposed method is significantly

better than the AIC picker, it requires a new empirical

parameter for threshold setting to be identified from experi-

ence, which makes it tedious to apply to new applications.

Without an explicit link to negentropy, Xu et al.49 selected

onsets in financial time series in an inconclusive manner by

using the signal kurtosis instead of variance in the AIC

picker, which is one of the weaker contrast functions used

for ICA.48 Other entropy measures, such as Tsallis entropy

and permutation entropy, were also introduced in that

paper, and the results showed similar behavior as the

kurtosis-based AIC picker. K€uperkoch et al.50 combined

signal kurtosis with the STA/LTA picker instead of the AIC

picker. Using eight empirical parameters, they significantly

outperform the classical STA/LTA picker. The derivative

of entropy was used by Sabbione and Velis51 along with

two empirical parameters as an indicator of signal onset,

giving satisfactory results that, unfortunately, were not

compared to traditional onset pickers. In contrast to the pre-

sent study, all of these entropy-based methods were applied

to signals that were unknown a priori. Given the knowledge

of the peak-like frequency spectrum of the expected signal,

spectral entropy is used here instead.

To calculate spectral entropy,52 a discrete power spec-

trum Sxxðf Þ is used, which is calculated from the discrete

Fourier transform X(f) of a signal sequence s(t):

Sxxðf Þ ¼ jXðf Þj2 (6)

with

Xðf Þ ¼
XN�1

t¼0

sðtÞejð2p=NÞft; (7)

where N is the number of samples in the signal sequence, t
is the sample index, and f is the Fourier component index.53

Its discrete frequencies, f are interpreted as the set of

symbols and their probabilities are the normalized ampli-

tudes P(f) of the power spectrum:

Pðf Þ ¼ Sxxðf ÞX
f

Sxxðf Þ: (8)

Thus, the spectral entropy is

Ĥs ¼ �
Xm

i¼1

Pi log2ðPiÞ: (9)

The normalized spectral entropy is then

Hs ¼
Ĥs

log2ðNÞ
: (10)

Of all distributions in a finite interval, uniform distribu-

tions have the largest entropy.54 If a distribution contains

symbols that have larger probabilities than others, the

entropy decreases to the point of a degenerate distribution

with singular support that has entropy minimum.55

Therefore, for ultrasound data, it is expected that Hs ! 1 for

the first segment, which mainly contains white noise, and

Hs ! 0 in the second segment, which contains a distinct fre-

quency peak. Analogous to the BW function of the AIC

picker, moving a window from the right across the wave-

form would generate a constant low result, since the window

contains only the ultrasound pulse, up until the onset point

where increasingly white noise is added, increasing Hs. This

is shown in Fig. 3. Moving a window from the left across

the waveform conversely produces a mirror image result

compared to the AIC picker FW function, where Hs is con-

stantly high while the window contains only white noise,

and decreases when the window includes a portion of the

FIG. 3. (Color online) Schematic representation of the spectral entropy cri-

terion (SEC) picker. While k is moved over the entire waveform, the FW

and BW functions are calculated for signal windows of fixed length W pre-

ceding and following k, respectively. The dotted lines indicate sample

points for which no SEC can be calculated as their distance to the start or

end of the signal is less than the window length W. When these functions

are added, the global minimum gives the signal onset predicted by the SEC.
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ultrasonic signal. For convenience, a structure for the SEC

picker is created that resembles the structure of the AIC

picker and contains forward and backward running

functions:

SECFWðkÞ ¼ �Hsðt ¼ k �W � 1; k � 1½ �Þ;
SECBWðkÞ ¼ Hsðt ¼ k; k þW½ �Þ: (11)

Here, W is a constant window size in which Hs is evalu-

ated, which is equal for both windows. Consequently,

SECFW is defined only for k>W and SECBW only for

k < N �W. The deviation from the variable window size of

the AIC picker was chosen since Hs is usually calculated

from the DFT of a windowed signal, with a frequency reso-

lution depending on the number of samples in that window,

given zero-padding is not applied. Enforcing an equal and

constant window size makes the results of the FW and BW

functions comparable. To achieve behavior analogous to the

AIC picker, in which a summation of the FW and BW func-

tion yields a global minimum at the signal onset point,

SECFW contains the negative spectral entropy. Using Eqs.

(6)–(10), the full SEC picker can be written as follows:

SECðkÞ ¼ SECFWðkÞ þ SECBWðkÞ
¼ �Hsðt ¼ k �W � 1; k � 1½ �Þ
þ Hsðt ¼ k; k þW½ �Þ: (12)

This essentially just contains a set of operations per-

formed on two sliding DFT windows that can be easily

implemented with a few lines of code using a loop function.

A more efficient implementation is described in Sec. V A 4.

IV. METHODS

To evaluate the performance of the SEC picker and

compare it to the AIC picker, both synthetic signals and

experimental data are used. This section describes how these

data are generated.

For the synthetic signals, ultrasonic pulses were mod-

eled as modified raised cosine (RCN) pulses. This type of

pulse is usually generated by modulating a cosine signal

with np periods with a cosine window and is a standard func-

tion for simulating ultrasonic pulses.56,57 To increase the

rather flat slope of the RCN functions after onset, they were

modified to a cosine window sine function (RCSN) defined

as

RCSNðtÞ ¼

1þ cos
x0

np
t

� �
sin x0t;

for� np
p
x0

� t � np
p
x0

;

0 else;

8>>>>><
>>>>>:

(13)

where x0 is the base frequency of the pulse, which is not

important for the SEC by per se, since it only scales the

width of the pulse. More important is the relation to the sam-

pling frequency of the measurement, as shown in Sec.

V A 2. Thus, only the number of samples NT per wave period

T is controlled, while the base frequency is fixed at

x0 ¼ 2p. In order to simulate the onset of an acoustic signal,

an RCS4 pulse (with np¼ 4) is generated, scaled to the range

½�1; 1�, and appended to a zero vector of length 0:75NT . For

all tests run on synthetic signals (Sec. V A), both scale and

relative position in the signal were fixed for all RCS4 pulses.

Gaussian noise was then added to the resulting waveform.

For correct onset picking, the global signal-to-noise

ratio (SNR) is less significant than the noise relative to the

pulse slope and the amplitudes immediately following the

signal onset, since it aims at detecting the low amplitude

start of a signal burst, which is not influenced by the global

signal amplitude. Acknowledging that it reflects this rela-

tionship only partially, we define a more local SNR that

relates the standard deviation of the white noise rw to the

absolute amplitude of the first local extremum of the signal

A1, which has a value of A1 ¼ �0:06 for the RCS4 pulse:

SNR ¼ jA1j
rw

: (14)

Using this procedure of artificial pulse generation,

Monte Carlo (MC) simulations were conducted with 104 tri-

als. In these simulations, the SEC window width W, the

number of samples per wave period NT, and the SNR were

varied. No further modifications were applied to the wave-

forms or the picker parameters. The results are discussed in

Secs. V A 1–V A 3. Figure 4 shows a sample signal with

SNR¼ 2 and NT¼ 200. The SEC was applied using a win-

dow width of W¼NT. Although the forward and backward

functions do not immediately change their behavior at the

simulated onset point at sample 400, by adding their results

according to Eq. (12), the global minimum is found with

only one sample error.

In addition to simulations using synthetic signals, the

SEC picker was also compared to the AIC picker using

experimental ultrasonic data to verify its performance under

more realistic conditions. The dataset was acquired at the

Bundesanstalt f€ur Materialforschung und Pr€ufung (BAM)

(Federal Institute for Materials Research and Testing) as

FIG. 4. (Color online) Exemplary synthetic signal (W¼T, NT¼ 200 sam-

ples/T, SNR¼ 2) for the MC simulations, including the SEC FW and BW

functions, as well as their sum and the resulting signal onset. The location

of first minimum of the RSC4 pulse is indicated as A1.
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part of an interlaboratory test initiated by Technische

Universit€at Dresden.58 The ultrasonic signal was acquired

using a USG 40 ultrasound generator (Geotron Elektronik,

Germany) at a sending frequency of 64 kHz in conjunction

with Geotron UPG-D ultrasound transducers in a through-

transmission setup. The ultrasonic signal was propagated

through 18 concrete drill cores with a length of 200 mm and

a width of 100 mm at varying radial positions, resulting in

216 waveforms containing 5000 samples, recorded at

10 MHz. More detailed information of the specimens and

data acquisition procedure is given by Gebauer et al.58

Onset times were manually picked for these waveforms to

compare the SEC and AIC picker results.

V. RESULTS AND DISCUSSION

A. Monte-Carlo simulations using synthetic signals

1. Influence of window size

A major criticism of the AIC picker is its instability in

relation to the size of the recorded signal snipped both

before and after the true onset, which has resulted in the

introduction of free parameters in both adaptations of the

AIC picker (refer to Sec. II) and alternative onset pickers

(refer to Sec. III). Thus, one of the performance require-

ments of the SEC picker is that it does not require any free

parameters. Contrary to the AIC picker, the SEC picker

does not include all samples in the computation, but only

those covered by the moving windows, making their equal

and fixed width the only free parameter. Before other perfor-

mance characteristics can be evaluated, an optimal choice to

constrain this parameter needs to be found. For this purpose,

the window width was varied while the sampling rate and

SNR were kept constant with NT¼ 150 and SNR ¼ 8:6.

Figure 5 shows that the onset picking error as a function of

W follows a periodic sawtooth-like behavior with a fre-

quency of 2fc. In this behavior, crossings of the zero-error

line occur at integer multiples of T=2 and 2T=3. However,

only the former are characterized by a very narrowband dis-

tribution, as indicated by the interdecile ratio (IDR):

IDR ¼ p0:9 � p0:1: (15)

Here, p0:1 and p0:9 are the first and ninth deciles of the

distributions of the results of the MC simulations. The range

of promising window width parameters can thus be nar-

rowed down to

W ¼ mT

2
; (16)

where m is a positive integer. In practice, therefore, the

parameter W may not be considered as a free parameter any-

more, since it is constrained by the transducer characteristics

and sample frequency used. Thus, not only the modeling

concept itself, but also the choice of parameters is based on

prior knowledge. The only arbitrary component of the win-

dow width is the integer factor m. However, since a large m
would require a large signal length before and after the true

onset (see Fig. 3), choosing a low single-digit m value is

advisable. For convenience, in the remainder of this study,

the window width is chosen to be m¼ 2, so that W¼ T.

2. Influence of the sampling rate

Defining the required number of samples to be included

in the spectral entropy calculation windows, only in relation

to the dominant period, is not sufficient to characterize the

quality of results alone—since the actual number of samples

included is then also a function of the sampling rate.

According to the Nyquist sampling theorem, more than two

samples per period must be recorded for the waveform to be

faithfully reconstructed from its Fourier components.

However, since spectral entropy is calculated from the

Fourier transform, the number of Fourier components is

additionally related to the amount of information entering

the calculation in Eq. (9). The SEC picker is based on the

assumption that the first signal segment contains a mainly

flat white noise spectrum, resulting in Hs ! 1 (refer to Sec.

III). However, this behavior might not be reflected in the

spectrum when it contains only a small number of Fourier

components. Due to the stochastic behavior of the measured

samples, the Fourier components may not form a flat distri-

bution so that this assumption may not hold. As a result, the

contrast between FW and BW function, and with it the onset

picking quality, may deteriorate. Thus, the spectral resolu-

tion, being a function of the number of samples nw included

in each evaluation window, may influence the onset picking

quality of the proposed SEC picker.

To investigate its influence using a MC simulation, the

number of samples in the evaluation window nw is varied

while choosing a constant window width of W¼ T and

SNR¼ 8.6. Figure 6 shows the results from the MC simula-

tion. Since the window width is equal to the fundamental

period of the pulse, the given sampling rate NT is equal to

the number of samples included in each evaluation window

nw. The results of the SEC picker are compared to those of

the AIC picker. They show that the SEC picker exhibits

higher errors of onset picks than the AIC picker at low sam-

pling rates, including higher fluctuation in results. The

median results of the SEC picker outperform the AIC picker

FIG. 5. (Color online) SEC onset picking error as a function of window

width. The zero crossings occur exactly at multiples of the T=2 half-period

of the RCS4 synthetic pulse.
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from a sampling rate of 18 samples/T and reach almost zero

errors. A sampling rate of 18 samples/T results in only nine

Fourier components per evaluation window. At this order of

components, one outlier may drastically shift the result of

Eq. (9). Starting from 27 samples/T, the main part of the

SEC distribution has lower errors than the median of the

AIC in this simulation. These results show that significant

oversampling of the recorded signal is required for the SEC

picker to outperform the AIC picker. When this oversam-

pling is achieved, the SEC picker exhibits a very low error

rate with very little variation. However, it is not possible to

define a minimum oversampling required to achieve such

accuracy, as further experiments have shown that it is addi-

tionally influenced by the noise level. Higher noise levels

require higher oversampling.

3. Influence of noise

To assess the performance of the SEC picker in the

presence of noise, the background noise was varied over the

whole synthetic signal snippet. Figure 7 shows the onset

picking error of the SEC picker compared to that of the AIC

picker. In this MC simulation, the window width was fixed

at W¼T and a high sampling rate of 150 samples/T was

chosen. The results show that the median AIC picker error

decreases continually from 82 samples to three samples with

increasing SNR, starting from SNR¼ 4.5. The SEC picker

error remains flat at one sample error starting from

SNR¼ 2.8. When reducing SNR below these respective

levels, both pickers exhibit step increases of the picking

error. These step increases are likely a result of the algo-

rithms completely missing the onset and treating the follow-

ing half period of the signal as part of the noise. When the

signal is drowned out by the noise like this, only the second

half period of the signal after the first zero crossing is recog-

nized as distinct from the noise. The error steps are thus half

period shifts of the true onset. Although this is the case for

both the AIC and SEC pickers, Fig. 7 shows that the SEC

picker outperforms the AIC picker at all SNR levels, given

an appropriate window width and high sampling rate.

4. Computational efficiency

In general, the concept of the SEC picker is easy to

implement using moving windows, where a Fourier trans-

form is first performed and then the spectral entropy is cal-

culated. However, it is expected that calculating a large

number of Fourier transforms is computationally expensive.

To reduce the computational load, the SEC picker can be

implemented using highly efficient implementations of the

spectrogram function, which are available as packages for

many higher programming languages. Here, the Python

SciPy package59 is used. The spectral power calculation for

further entropy calculation can be conducted by setting the

spectrogram function to give an output that is not frequency

normalized, a boxcar window function, a window width of

W, and a window overlap of W – 1. Furthermore, this spec-

trogram, and subsequently the spectral entropy, only needs

to be calculated once, since the forward SEC function at

sample k is the same as the backward SEC function at sam-

ple k – W (see Fig. 3). After the calculation of the forward

function is performed, the results only need to be shifted to

obtain the backward function.

To benchmark the execution time, the SEC and AIC

pickers in Python were compared using the process_time
function of the time package on a standard laptop personal

computer with an Intel Core i5-8250U CPU (Intel Corp.,

Santa Clara, CA) at 1.6GHz and 8 GB RAM, using a 64 bit

Windows 10 operating system (Microsoft Corp., Redmond,

WA). To provide a relational comparison of the computa-

tional cost, the SEC picker was tested against two imple-

mentations of AIC picker. The first was a naive

implementation in which Eq. (4) is simply looped over the

whole signal. This is an obvious implementation that has

been used repeatedly in the literature.60,61 The second AIC

implementation is part of the open source package vallenae
0.7.062 and is based on numba.63 Given its easy accessibil-

ity, this implementation was preferred over the algorithm

proposed by Long et al.,64 which also aims to improve the

execution time of the AIC picker. While both AIC pickers

and the SEC picker were tested for varying signal lengths

[Fig. 8(a)], the SEC picker was also tested for varying win-

dow widths [Fig. 8(b)].

The results show that the mean execution time of the

SEC picker increases almost linearly with the signal length

[Fig. 8(a)] and the window width [Fig. 8(b)]. This is the

FIG. 6. (Color online) Absolute onset picking error of SEC and AIC pickers

as a function of samples per wave period using a synthetic RCS4 pulse.

FIG. 7. (Color online) Absolute onset picking error of SEC and AIC pickers

as a function of Gaussian noise added to the synthetics RCS4 pulse.
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case, especially for high values of the respective other

parameters, while the execution time increases more slowly

in the lower range. The execution times could not be calcu-

lated for all parameter combinations, since for the SEC

picker, a smaller signal length needs to be at least twice the

window width. When comparing with the AIC picker, the

results show that the SEC picker executes faster than a naive

implementation of the AIC picker. However, an optimized

implementation of the AIC picker is significantly more effi-

cient than the SEC picker, executing three orders of magni-

tude faster for long signals and wide windows.

B. Verification on experimental data

After the successful numerical trials with the SEC

picker, its performance was tested on experimental data for

which the signal onsets were manually picked. Figures 9(a)

and 9(b) show an example signal from the dataset with the

manual pick and the AIC and SEC picks marked. Since the

sampling frequency of the data acquisition system and the

transducer center frequency are known, the SEC window

width can be set accordingly. In this case, the window width

is set to one period, so the window width of W¼ 156 sam-

ples additionally represents a dense sampling. Figure 9(c)

shows the results of both the SEC picker and the AIC picker

for the whole dataset. While the AIC picker has a median

error of 30 samples with a spread of IDR¼ 25 samples, the

SEC picker produces a median error of only 17 samples

with a spread of IDR¼ 21 samples. With a comparable devi-

ation from the median, the results show that SEC picker out-

performs the AIC picker also for the given experimental

data. The reduction in SEC performance advantage

compared to simulation results is likely caused by the signal

spectrum containing more than a single frequency, resulting

in a bell-shaped frequency distribution. Thus, the optimal

window length cannot be set, which may cause onset pick-

ing errors (refer to Sec. V A 1). Additionally, the spectral

entropy contrast between the white noise segment of the

waveform and the dominant frequency pulse is reduced,

which may increase sensitivity to spectral variations and

subsequently reduce accuracy. Similar behavior is expected

when the SEC is applied to reflection measurements in scat-

tering media. In this case, the first waveform segment may

deviate from the white noise assumption made in Sec. III

since scatterers cause early reflections of the sent signal,

resulting in a spectral peak in this segment. This is also

expected to reduce the spectral entropy contrast between the

signal segments, which persists due to the low SNR in the

segment preceding the onset.

VI. CONCLUSIONS

We present a new signal onset picker specifically

designed for ultrasonic measurements, based on the calcula-

tion of the spectral entropy of signal segments to separate

segments containing the ultrasonic pulse from segments

containing only white noise. This SEC picker was developed

because the commonly used AIC picker in Maeda’s formu-

lation was based on inappropriate assumptions.

Additionally, Maeda’s AIC picker was initially designed to

detect previously unknown signals, so the prior knowledge

available in ultrasonic measurements was not included in

the algorithm. The presented SEC picker is based on the

assumption that the received ultrasonic pulse has low

FIG. 8. (Color online) Mean execution time of the SEC and AIC pickers. If

the signal length � 2W, no SEC can be calculated. The AIC picker perfor-

mance is evaluated for a naive (n) and an optimized (vae) implementation.

(a) Execution time as a function of signal length, (b) execution time as a

function of W, which varies only for the SEC picker.

FIG. 9. (Color online) Experimental verification of the SEC picker: (a)

exemplary through-transmission signal with marked onset as found by man-

ual picking, the SEC picker, and the AIC picker; (b) section of signal shown

in (a), zoomed in to the onset region; (c) absolute errors of both pickers

compared to the manual picks for the whole dataset.
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spectral entropy, i.e., the signal spectrum contains only few

dominant frequency peaks, contrary to the wideband noise

preceding the pulse. Based on this assumption, the method

follows the general moving-window approach of the AIC

picker. Monte-Carlo simulations have shown that the arbi-

trary window width parameter can be reasonably restricted

to a low single-digit positive integer, so that the method has

virtually no free parameters. Furthermore, simulations have

shown that the SEC picker performs best when the sampling

rate is at least about 1 order of magnitude higher than

Nyquist frequency. If this condition is satisfied, the SEC

picker outperforms the AIC picker on synthetic signals at all

SNR levels tested while being computationally more effi-

cient than naive implementations of the AIC picker.

Application to an experimental dataset of ultrasonic

through-transmission measurements has shown that the SEC

picker outperforms the AIC picker also in real-life settings.

For both synthetic and real ultrasonic through-transmission

data, the SEC picker presented here provides a significant

improvement in automated signal onset picking over the

current standard AIC picker due to its efficient implementa-

tion and higher accuracy for densely sampled data. In future

research, these promising results should be further validated

in different ultrasonic through-transmission applications,

such as damage detection or monitoring of material proper-

ties, using both experimental and numerical setups, to

enable adaption of this easy-to-use method in real-world use

cases. Additionally, future research should use the analysis

of the flawed premises of Maeda’s AIC picker to develop

onset pickers for further domains, such as ultrasonic pitch-

catch measurements, acoustic emission testing, or geophysi-

cal applications. Similar to the SEC picker for ultrasonic

through-transmission testing, these onset pickers should be

tailored to their respective domain while remaining simple,

robust, and conceptually sound.
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