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� We comparatively analyze the hydrogen economies of Germany and South Korea.

� We assess the technological innovation systems (TISs) from multiple perspectives.

� We identify the industrial, political, and social determinants of the hydrogen economy.

� Results highlight more advancements in the South Korean hydrogen economy.

� We derive implications for advancing the hydrogen economies of both countries.
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a b s t r a c t

The global trend towards decarbonization and the demand for energy security have put

hydrogen energy into the spotlight of industry, politics, and societies. Numerous govern-

ments worldwide are adopting policies and strategies to facilitate the transition towards

hydrogen-based economies. To assess the determinants of such transition, this study

presents a comparative analysis of the technological innovation systems (TISs) for

hydrogen technologies in Germany and South Korea, both recognized as global front-

runners in advancing and implementing hydrogen-based solutions. By providing a multi-

dimensional assessment of pathways to the hydrogen economy, our analysis introduces

two novel and crucial elements to the TIS analysis: (i) We integrate the concept of ‘quality

infrastructure’ given the relevance of safety and quality assurance for technology adoption

and social acceptance, and (ii) we emphasize the social perspective within the hydrogen

TIS. To this end, we conducted 24 semi-structured expert interviews, applying qualitative

open coding to analyze the data. Our results indicate that the hydrogen TISs in both

countries have undergone significant developments across various dimensions. However,

several barriers still hinder the further realization of a hydrogen economy. Based on our

findings, we propose policy implications that can facilitate informed policy decisions for a

successful hydrogen transition.

© 2023 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/
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1 The selection of industry representatives reflects the whole
hydrogen value chain, including various applications, and, thus,
the sectoral TIS perspective [38].

2 Following Bergek et al. [35]: Knowledge development and
diffusion, influence on the direction of search, entrepreneurial
experimentation, market formation, legitimation, resource
mobilization, and development of positive externalities.
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1. Introduction

Hydrogen is a versatile energy carrier with many potential

applications, including hard-to-abate industrial processes,

mobility, energy storage, heating, and power supply. Coupled

with its potential to decarbonize the energy system, provided

that ‘green’ hydrogen produced from renewable energy

sources is used, and to ensure future clean energy security,

hydrogen is expected to play a pivotal role in the ongoing

energy transition towards net-zero emissions [1e3].

This potential has brought hydrogen into the spotlight of

industry, politics, and societies, with numerous countries

worldwide adopting national hydrogen policies and strate-

gies, which outline pathways to the hydrogen economy [4e7].

Among them, Germany and South Korea assess hydrogen

technologies as essential for the future viability of their

economies [8,9]. Committed to the 2015 Paris Agreement [10],

both countries expect hydrogen to contribute to achieving

greenhouse gas reduction goals [11]. This commitment is re-

flected in massive investments in hydrogen technologies

[12,13], which have led both countries into global leaders in

hydrogen research and innovation [6]. However, in their

transition, both countries differ regarding the objectives and

target sectors, value chain specialization, and market size of

their hydrogen economies. Furthermore, different economic,

political, and social factors have shaped the hydrogen econ-

omies of these two countries to different degrees.

In sustainability transition pathways, previous research

emphasizes the importance of involving all relevant stake-

holder perspectives to comprehensively understand the evo-

lution of niches toward increased technology adoption

[14e16], including the hydrogen transition. While previous

studies have providedmultidimensional stakeholder analyses

related to the hydrogen economy, they consider stakeholder

categories that have already substantially shaped the

hydrogen economy but not those that could become relevant

in the future, such as in the exclusive analysis of themembers

of the Danish hydrogen and fuel cell network [17,18]. Moreover,

these studies are geographically limited to single countries

[17e21], do not capture recent developments following the

adoption of numerous hydrogen strategies [21,22], or focus on

stakeholder communication strategies to increase social

acceptance rather than analyzing hydrogen technology

adoption multidimensionally [23].

Therefore, the significance of this study lies in synthesizing

relevant perspectives from industrial, political, and social

stakeholders in two distinct countries towards the hydrogen

transition by identifying the key drivers and barriers and

deriving accordant policy implications.

To this end, this study comparatively analyzes the

hydrogen technological innovation systems (TIS) in Germany and

South Korea. Previous research has investigated the hydrogen

TIS from various perspectives. However, we identify several

research gaps: 1.) Most studies consider only one specific

sector or hydrogen application [24e26] and only one single

country or region [24,26e29]; 2.) At the theoretical level, no

study applies the TIS life-cycle approach followingMarkard [30]

to comparatively analyze the development stage of the

hydrogen TISs in two countries; 3.) Previous hydrogen TIS
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research has largely neglected the social perspective despite

its importance for TIS development, i.e., the active and pas-

sive acceptance of hydrogen technologies in the general

public.

Our multidimensional stakeholder analysis addresses

these research gaps at multiple levels: First, we provide a

qualitative analysis of two countries that are expected to

become central players in a global hydrogen economy, which

is, to the best of our knowledge, the first to apply the TIS life-

cycle framework. Herewith, we address the spatial dimen-

sion of a TIS analysis beyond national boundaries [31,32].

Second, we covermajor stakeholder categories relevant to the

development of the hydrogen TIS, specifically addressing the

social acceptance of hydrogen technologies and highlighting

the role of ‘quality infrastructure’ (QI) as ameans of safety and

quality assurance. Third, we derive meaningful policy impli-

cations regarding the determinants of a successful hydrogen

transition. The following research questions specify our

research objectives:

RQ1. What are the drivers and barriers to hydrogen TIS

development in Germany and South Korea from the indus-

trial, political, and social perspectives?

RQ2. How do Germany and South Korea differ in terms of

their TIS development phase?

RQ3. What are the determinants of successful hydrogen TIS

development?

To answer these questions, we conducted and analyzed 24

semi-structured expert interviews with German and South

Korean stakeholders representing the industrial,1 political, and

social perspectives on hydrogen technology adoption and

acceptance. The remainder of this paper is structured as fol-

lows: Section 2 presents the conceptual background, followed

by an overview of the research methods and data in Section 3.

Section 4 is a joint results and discussion section, followed by

concluding remarksandpolicy implications in thefinalSection.
2. Conceptual background

2.1. Technological innovation systems (TIS) approach

The technological innovation systems (TIS) approach has been

increasingly used to analyze emerging, clean technologies in

the context of sustainability transitions [6,33e35]. A TIS con-

sists of various dimensions, i.e., “technologies, actors, net-

works, and institutions, which actively contribute to the

development of a particular technology field” [36]. Previous

TIS research is divided into two major tracks: 1.) TIS analyses

revolving around the seven system functions2 [35,37]; and 2.)
gen economy: A multidimensional analysis of the technological
ional Journal of Hydrogen Energy, https://doi.org/10.1016/
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Fig. 1 e Life cycle of the technological innovation system

(based on Hekkert et al. [39] and Markard [30]).
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analyses of the structural TIS elements [30,36,40,41]. In the

tradition of structural TIS concepts, the TIS life-cycle frame-

work by Markard [30] assesses the development phases of a

TIS. Markard [30] distinguishes four life-cycle phases: the

formative, growth, mature, and decline phase (Fig. 1). The

phases differ with respect to the maturity of the TIS di-

mensions, i.e., the size and actor base, the institutional

structure and networks, technology performance and varia-

tion, and the TIS-context relations. With increased TIS

growth, more actors enter the TIS, networks are formed,

institutional structures and markets increasingly take shape,

technology performance is optimized, variation is reduced,

and the focal TIS increasingly impacts its technological,

geographical, or sectoral context. This development prevails

until the mature phase, when the TIS life cycle starts to

stagnate, followed by a decline across all TIS dimensions in

the final TIS life-cycle phase [30].

Previous research has largely neglected the TIS life-cycle

framework in the analysis of the hydrogen TIS structures,

except for Asna Ashari et al. [6], who applied it for their

quantitative analysis of the global hydrogen TIS.

In the tradition of functional TIS analyses, Bach et al. [24]

comparatively analyzed battery-electric and hydrogen solu-

tions for maritime transport in Norway based on the qualita-

tive analysis of 72 semi-structured interviews, finding that the

TIS functions of hydrogen solutions are weak to intermediate.

In their event history analysis of the UK fuel cell TIS between

1954 and 2012, Hacking et al. [27] find increasingly positive

feedback loops between the fuel cell TIS functions and

enhanced public-private R&D support. Furthermore, the au-

thors highlight spatial differences within the UK regarding the

fulfillment of TIS functions. Expanding the functional analysis

of purely national TISs, Andreasen and Sovacool [34] compare

the fuel cell TISs in Denmark and the USA based on the seven

TIS functions and identify national differences. K€ohler et al.

[25] analyze the TIS functions of various sustainable road-

vehicle technologies in the EU, including fuel-cell electric ve-

hicles (FCEVs). The results demonstrate more mature TIS

functions and higher commercialization of low-carbon vehi-

cles other than FCEVs, such as electric vehicles.

Kushnir et al. [26] studied the deployment of hydrogen

technologies in the Swedish steel industry by analyzing the

TIS structures and functions qualitatively and literature-

based, complemented by a quantitative publication and
Please cite this article as: Asna Ashari P et al., Pathways to the hydro
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patent analysis of the ‘knowledge development’ function.

Similarly, the analysis of the European power-to-X TIS by

Decourt [28] combines functional and structural TIS elements.

The author highlights that the power-to-X TIS, with hydrogen

as a substantial pillar, is increasingly growing but showing

weaknesses in terms of market formation, conflicts in the

actor base, and matters of social acceptance. Suurs et al. [42]

analyzed the TIS functions and structures of the hydrogen and

fuel cell TIS in the Netherlands between 1980 and 2007. The

results point to the long evolution of TIS development but the

yet limited TIS maturity. In their structural TIS analysis,

Musiolik and Markard [29] investigated formal networks in

Germany's stationary fuel cell TIS based on interviewees'
motives to engage in networks and explore new technological

fields, finding a complex and fragmented network structure of

the German TIS that hampers overall TIS development.

Previous research contributes to a better understanding of

the hydrogen TIS in various single countries, sectors, and

applications. However, no TIS study covers the scope of all

value chain activities, including the production, storage,

transport, and use of hydrogen. Furthermore, we find no

comparative analyses of two countries' TIS life cycles and the

social perspective within the TIS. Therefore, the work pre-

sented in this paper aims to address this research gap by

comprehensively synthesizing the determinants of the

hydrogen transition from multiple perspectives.

2.2. Quality infrastructure, safety, social acceptance

Previous research has highlighted the importance of social

acceptance for the diffusion of hydrogen technologies, espe-

cially those in proximity to the general public, such as

hydrogen refueling stations (HRSs) or FCEVs [43,44]. Since both

Germany and South Korea target the mobility and power

sectors with their hydrogen activities, among others, the

proximity of these hydrogen applications to the general public

can influence active and passive social acceptance, which can,

in turn, affect TIS development.

Although Markard [30] describes “collective expectations,

cognitive frames, user practices, social norms or culture” as

part of the institutional structure of a TIS, empirical hydrogen

TIS research considers the social perspective only marginally

(e.g., Refs. [26,28]). Instead, the perspectives of selected in-

dustries and markets on the use of hydrogen energy [24e26],

policies [24,34,42], and R&D [6,27] have been in focus. While

safety and trust have largely been overlooked in previous TIS

research, they are crucial to the sustained social acceptance

and adoption of hydrogen technologies [6,58,104]. Therefore,

we integrate a strong focus on safety into our TIS life-cycle

approach, specifically to account for the crucial social

perspective. To adequately address the link between safety

and social acceptance, we refer to ‘quality infrastructure’ (QI),

integrating it into the TIS framework. UNIDO defines QI as the

“system comprising the organizations (public and private),

together with the policies, relevant legal and regulatory

framework, and practices needed to support and enhance the

quality, safety and environmental soundness of goods, ser-

vices and processes” [45]. The QI consists of five elements,

each contributing to the set objectives: standards and regu-

lations containing requirements on products, processes, and
gen economy: A multidimensional analysis of the technological
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Fig. 2 e Overview of the research procedure.
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services; conformity assessment; accreditation; market sur-

veillance; andmetrology [46,47]. QI contributes to the safety of

products, processes, and services [47,48], and increases trust,

transparency, and thus acceptance of technologies [46,49,50].

Given these features and objectives, QI closely relates to the

institutional structure of a TIS, defined as “the degree of

structuration of a TIS, including different kinds of institutions

and their coherence and impact” [30]. Markard [30] proposes,

among others, the regulatory and legal framework and stan-

dardization e thus core QI elements e as indicators of the

institutional structure. Therefore, we integrate the QI and the

associated social acceptance implications into the TIS's insti-

tutional structure.
3 Note: For data protection reasons, information about the in-
terviewees is fully anonymized.

4 Note: The coding schemes were independently validated by
two authors of this study and one external researcher.
3. Research setting, data, and methods

The research setting of our analysis is the hydrogen TISs in

Germany and South Korea, i.e., the TISs surrounding the use

of hydrogen and all relevant technologies along the hydrogen

value chain. In the global trend towards promoting hydrogen

technologies and the development of hydrogen economies,

both countries have been global frontrunners in hydrogen-

related research and innovation [6,51] and have adopted na-

tional hydrogen strategies [4,5,52].

To comprehensively analyze their hydrogen economies

following the structural TIS life-cycle framework [30], we

deploy a qualitative, explorative research design. To this end,

we conducted semi-structured expert interviews with rele-

vant stakeholders to gain insights into the structural TIS di-

mensions. Semi-structured interviews bear the advantage of

not adhering to a rigid, predefined interview structure but

allow the interviewer to react to the interviewees' responses
with follow-up questions and to delve more deeply into spe-

cific topics [53].

Fig. 2 illustrates the research procedure in detail: First, we

identified adequate stakeholders based on their influence in

the hydrogen sector and relevance to our research objective

following Bryson's [54] power-interest grid. The stakeholders

included experts on the domestic hydrogen economies,

research and technology development, policies and regula-

tions, safety aspects, and the social perception and accep-

tance of hydrogen technologies. We selected interviewees

from three categories: 1.) private companies in the hydrogen

sector, 2.) experts on the political and regulatory framework,

and 3.) experts on social perception and acceptance. Subse-

quently, we contacted these stakeholders via email or phone.
Please cite this article as: Asna Ashari P et al., Pathways to the hydro
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This resulted in 11 interviews with German and 13 interviews

with South Korean stakeholders, which we conducted be-

tween June and August 2022 (Table 1).3

We designed one interview guide for each stakeholder

category with different thematic focuses relevant to our

research objectives. The setting was face-to-face and online

interviews conducted in German, Korean, or English, which

typically lasted between 40 and 60 min. Following the initial

transcription of the interviews using the transcription func-

tion of Microsoft Teams [55], we corrected erroneous transcript

sections and coded the transcripts using the qualitative data

analysis software MAXQDA [56]. As a coding technique, we

applied open coding following Strauss and Corbin [57], defined

as “the analytic process throughwhich concepts are identified

and their properties and dimensions are discovered in data”

[57].

In contrast to structured coding with predefined code cat-

egories, opencoding increasesflexibility and reduces bias from

a loss of information resulting from relevant transcript sec-

tions not fitting the predefined codes [57,58]. Facilitated by the

design of interview guides and the selection of interviewees,

we connected the codes identified from open coding with the

TIS dimensions and QI instead of pre-structuring codes ac-

cording to our framework.

The open-coding approach involved the following steps4:

First, we created a preliminary set of codes from the interview

transcripts, which we merged or deleted in the second step to

compress the codes. Third, we organized each code into

thematically ordered code categories for a more sophisticated

classification. Fourth, we verified that each code was assigned

to the appropriate transcript segments of the interviews. Upon

revising the code assignments, we merged or deleted the code

categories accordingly. Then, we reviewed all transcripts for

final verification of correct code assignments. This procedure

resulted in one final coding scheme for each stakeholder

category and country, i.e., a total of six coding schemes. Finally,

we assigned each code to an appropriate TIS dimension for an

empirical operationalization of the TIS framework. The results

section presents the analysis for each TIS dimension, including

the QI and social perspective as sub-dimensions based on this

operationalization (Table 2). Our qualitative research design

allows for an in-depth TIS analysis of the hydrogen economy
gen economy: A multidimensional analysis of the technological
ional Journal of Hydrogen Energy, https://doi.org/10.1016/
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Table 1 e Sample description.

Country Stakeholder category Type of actor Value chain (where applicable)

Germany Industry Two conglomerate companies Production, storage, transport, application

Electrolyzer company Production

Vehicle manufacturer Application

Policy Two government agencies

Consultancy

Society Three research institutes

Conformity assessment body

South Korea Industry Two conglomerate companies Production, application

Electrolyzer company Production

Tube vessel manufacturer Storage, transport

Vehicle manufacturer Application

Policy Two government agencies

Research institute

Society Three research institutes/Universities

Conformity assessment body

Government agency

Table 2 e Empirical operationalization of the TIS framework (based on Markard et al. [40]).

TIS dimension Indicator Operationalization

Actor base and TIS size Entries/exits

Business Development

Market development

Actor involvement

Strategic role for hydrogen-relevant companies

Investment costs and hydrogen price

Subsidies and R&D funding

Current market size and sectors

Institutional structure and

networks

Political and regulatory framework

Value chains and networks

Safety and quality infrastructure

Expectations, social perceptions

and acceptance

Motives for hydrogen promotion

Hydrogen roadmaps and other political drivers Regulatory measures

Integration in global value chains

Hydrogen infrastructure

Collaborations and networks

Hydrogen safety

Hydrogen readiness of QI

Social perception and awareness

Perception of hydrogen safety

Social acceptance, acceptance measures

Technology performance

and variation

Performance and variation

Research & development

Technology leadership and readiness

Degree of variation

Publishing, patenting, and standardization activities

TIS-context relationships Technological context structures

Wider context

Relationship to other technologies by sectors

War in Ukraine, energy security

Impact on the hydrogen economy
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with previously unexplored insights. However, we are aware of

the limited representativeness of the expert assessments due

to the small sample size of 24 (see Refs. [59,60]). Therefore, we

validated and extended, where appropriate, our results with

the findings from previous research.
4. Results and discussion

This section analyzes and discusses the hydrogen techno-

logical innovation systems (TIS) of Germany and South Korea.

The sub-chapters dedicated to each country follow the TIS

dimensions (Section 2.1), incorporating the quality infra-

structure (QI) into the TIS's institutional structure. We

assessed each TIS dimension from the perspectives of the

above-described industrial, political, and social stakeholder

categories, representing the TIS actor base. Additionally, we
Please cite this article as: Asna Ashari P et al., Pathways to the hydro
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consulted relevant previous research to validate and supple-

ment our analysis.

4.1. Hydrogen TIS in Germany

Germany has a long history of hydrogen use in industry and

the energy sector and has recently attached great importance

to this versatile energy carrier for the energy transition and

improving energy security. This momentum is reflected in the

aim of Germany's hydrogen economy of decarbonizing hard-

to-abate sectors while ensuring economic viability through a

global leadership position in hydrogen technology

development.
4.1.1. Actor base and TIS size
Guided by the potential of a hydrogen economy for economic

growth and the energy transition, numerous private-sector
gen economy: A multidimensional analysis of the technological
ional Journal of Hydrogen Energy, https://doi.org/10.1016/
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companies along the hydrogen value chain, federalministries,

and research institutes have expanded their scope of activities

and commitment to hydrogen technologies as existing or new

TIS actors in recent years [6,19,43,61,62]. Hydrogen stake-

holder platforms such as the Research Network Hydrogen [63]

are being established, and the hydrogen discourse is

expanding in Germany [64].

While the interviewed companies (industry perspective)

acknowledged the strategic importance of hydrogen technol-

ogies to future business viability, the interviews revealed

several barriers to adopting hydrogen technologies on a

commercial scale. These include financial ones, particularly

high investment and unit manufacturing costs but also de-

mand shortages, lack of available infrastructure, and favor-

able policy mixes. These findings are consistent with previous

studies [65,66] analyzing the barriers for German hydrogen-

relevant companies to upscale production or adopt hydrogen

technologies.

Therefore, the hydrogen market in Germany does not yet

sustain itself. Instead, most hydrogen-related R&D activities

are driven by government funding, e.g., through the National

Innovation Program Hydrogen and Fuel Cell Technology with

approved funding of V1.7 billion in 2017e2022 [67,68], or EU

funding under the EU's Important Projects of Common European

Interest with V10.6 billion in public funding approved in 2022

[69]. To support further commercialization, previous studies

recommend R&D subsidies towards technology optimization

and purchase subsidies [17,65]. To this end, the German gov-

ernment already subsidizes up to 80% of expenditures for the

construction of HRSs using exclusively ‘green’ hydrogen and

45% for the construction of electrolyzers supplying HRSs using

‘green’ hydrogen [70]. As a result, one interviewed company

has meanwhile announced to enter mass production of its

electrolyzers.

Nowadays, the German hydrogen market is concentrated

on processes in the chemical industry and refineries, relying

primarily on grey hydrogen [19,61]. However, hydrogen energy

and technologies are not yet adopted as widely as targeted.

Therefore, German hydrogen policies aim to increase the

availability and reduce the price of hydrogen by upscaling

electrolyzer capacity [71] to attract demand towards market

formation [72]. At the same time, market growth requires

further incentives at the institutional level.

4.1.2. Institutional structure
4.1.2.1. Political and regulatory factors. Germany's original

national hydrogen strategy (2020)5 and its updated version

(2023) specify the political objectives and target sectors of the

German hydrogen economy: 1.) The clean-energy transition

based on ‘green’ hydrogen,6 especially in hard-to-abate in-

dustries and refineries, mobility applications with limited

electrification potential, e.g., heavy-duty transport, shipping,

aviation, and renewable energy storage for electricity
5 Note: Also, the EU adopted a hydrogen strategy in 2020 with
similar target sectors but slightly different goals [5,73].

6 Note: The updated hydrogen strategy additionally considers
hydrogen colors other than green hydrogen for the duration of
the transition period, including grey, blue, and turquoise
hydrogen.
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generation; 2.) Economic viability through a globally leading

position in hydrogen technology development while meeting

sustainability goals; 3.) An emphasis on hydrogen for energy

security and reduced dependencies [5,7,8,52].

The interviewees assessed the original hydrogen strategy,

including its 38 measures, as guidance on the development of

the German hydrogen economy. It signalized the importance

of hydrogen energy and facilitated investment decisions. For

the industry, "[…] the hydrogen strategy implies that there will be

rules to bring market players onto the hydrogen path” (Interviewee

industry perspective). However, various interviewees consid-

ered the hydrogen strategy as too vague to advance the

hydrogen transition, as it did not specify the implementation

ofmeasures and the role of social acceptance. This alignswith

the findings of Lux et al. [74], who propose an energy supply

model that concretizes the hydrogen strategy.

To address these shortcomings, the government published

the revised hydrogen strategy in 2023, which formulatesmore

specific targets, sectoral applications, and measures,

including the Hydrogen Acceleration Act. Additional legislation

promoting the German hydrogen economy has been imple-

mented, including the Climate Change Act [75], enshrining

greenhouse gas neutrality by 2045, and the 2022 revision of the

Energy Economy Act [76], facilitating hydrogen-infrastructure

development. The 2021 Coalition Agreement [77] of the gov-

erning parties commits to increasing the domestic electro-

lyzer capacity to 10 GW by 2030. Furthermore, the German

government established the Hydrogen Council in 2020 as an

independent advisory board to support the implementation of

the hydrogen strategy.

Yet, the regulatory framework at the EU and national

levels is not designed for the widespread use of hydrogen

because it "[…] has so far not considered hydrogen as an energy

carrier. It only appeared as an additive in natural gas” (Inter-

viewee policy perspective). This regulatory gap poses a bar-

rier to market formation. Previous research [78,79] has shown

that missing or hindering regulations hamper the diffusion of

hydrogen technologies, e.g., in green hydrogen production

and supply.

Nonetheless, the regulatory framework at the EU level is

taking more shape [79]. The green hydrogen taxonomy pub-

lished in the Renewable Energy Directive (RED) II Delegated Acts

under the RED (EU) 2018/2001 [80] is expected to boost

hydrogen production and market demand. Furthermore, the

EU's provisional agreement on the third amendment to the

RED stipulates that the industry must raise the total share of

hydrogen used to 42% of ‘green’ hydrogen by 2030 and 60% by

2035 [81]. The interviews revealed that a regulatory framework

is vital to give guidance on the direction of technology devel-

opment and facilitate investment decisions. Therefore, the

Reallabore der Energiewende demonstration projects at the na-

tional level [82], among others, identify new regulatory re-

quirements based on R&D. Moreover, the updated hydrogen

strategy enshrines expedited planning and approval proced-

ures as a target of regulatory adjustments.

The guiding character of hydrogen regulation has also been

highlighted in studies for other geographical contexts: Chan-

tre et al. [20] emphasize the importance of regulation to reduce

uncertainty for market players in the Brazilian hydrogen

economy and promote market growth. Likewise, Ikonniva
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et al. [83] show that regulations can stimulate the growth of

the international hydrogen market.

4.1.2.2. Value chains and networks. The updated hydrogen

strategy projects the demand for hydrogen in Germany to

reach 95 to 130 TWh by 2030, with 50e70% estimated to be

imported [52], resulting in a strong dependence on global

value chains [61,84]. The federal government has signed

various bilateral agreements on the import of ‘green’

hydrogen with other countries [85,86] and established the

H2Global Foundation to foster global partnerships towards an

international hydrogen value chain [87]. While global value

chains enable the exploitation of comparative advantages in

green hydrogen production, Van De Graaf et al. [13] and Eicke

and De Blasio [84] emphasize the associated geopolitical de-

pendencies that may arise. The authors argue that despite the

technical possibility of producing hydrogen in many parts of

the world, the comparative advantage in ‘green’ hydrogen

production is distributed unequally [13]. Therefore, hydrogen

imports from non-EU countries could bear risks of new de-

pendencies and vulnerability for Germany [19]. To this end,

the updated hydrogen strategy enshrines reduced de-

pendencies on a future hydrogen supply chain as one of the

objectives [52].

However, European and national-level unbundling regu-

lations still create barriers to expanding the hydrogen infra-

structure [79,88]. Various endeavors at the national and

European levels aim to remove these barriers. The updated

hydrogen strategy specifies facilitated planning and approval

procedures for accelerated infrastructure expansion,

including expanding the German hydrogen pipeline network

to 1800 km and the European network to 4500 km [52]. At the

EU level, the Alternative Fuel Infrastructure Regulation aims to

support the EU-wide expansion of HRS infrastructure [89].

Following previous studies [20,83] and our results, favorable

regulatory developments are pivotal to fostering the expan-

sion of markets and accordant value chains.

At the level of actor collaborations, various networks have

been formed in recent years in the German hydrogen TIS,

including the Research Network Hydrogen [63], the HYPOS

Network [90], and the government-funded joint venture

H2Mobility for the expansion of HRS infrastructure [91]. These

networks strengthen stakeholder dialogue and cooperation

while intensifying knowledge and technology transfer [6]. As

Lopolito et al. [16] show, network creation is particularly

important in sustainability transition processes for acceler-

ated niche evolution. The interview findings confirm the

pivotal role of hydrogen-relevant networks in bringing

together relevant stakeholders with the common goal of

advancing the German hydrogen economy.

4.1.2.3. Safety and quality infrastructure. In Germany,

hydrogen energy has been safely used for decades in the in-

dustry and as a component of the town gas mix in the power

sector until 1996 [92e94]. Accordingly, standards, regulations,

and directives have been in place to ensure safety. For

instance, the EU's Pressure Equipment Directive [95] and ATEX

Directive [96], among others, formulate the essential safety and

health requirements applicable to storage containers in HRSs.

Standards referenced in theOfficial Journal of the European Union
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give substance and indicate compliance with these essential

requirements, e.g., EN 1127-2:2014 in the case of ATEX [97].

Notified bodies, i.e., designated conformity assessment

bodies, verify with their services compliance of the products

with the essential requirements of ATEX. Finally, market

surveillance authorities have the right to sanction or even ban

unsafe products from the market [50,96,98]. While QI has

already been vital in ensuring hydrogen safety, the German

and European QI systems are not explicitly designed for the

widespread use of hydrogen [61,79].

Instead, most regulations and directives address gases in

general or hydrogen as an additive. However, quality assur-

ance and safe hydrogen use in the future hydrogen economy

will require a fit-for-purpose QI. In line with previous

research, which has outlined the vital role of QI for sustain-

able development, e.g., by incentivizing sustainable produc-

tion and consumption or by creating trust in novel, cleaner

technologies [45,99,100], QI will be a vital pillar of the

hydrogen transition. The German hydrogen strategies have

identified QI and its elements as essential for the safe pro-

duction, storage, transport, and use of hydrogen. The

government-funded Standardization Roadmap Hydrogen Tech-

nologies project, led by the German Institute for Standardiza-

tion (DIN), aims to implement a sophisticated QI fit for the

hydrogen economy, with an emphasis on standards at the

heart of QI [101]. Furthermore, the roadmap aims to align with

standardization at the European and international levels to

enable integration into a global hydrogen economy. At the

European level, the CertifHy initiative is developing a hydrogen

certification scheme, which tracks the origin and sustain-

ability of hydrogen, and lays the groundwork for conformity

assessment services [4,102]. Similar to previous studies, which

have identified standards and certification schemes as sup-

porting the hydrogen transition [2,6,103], the interviewees

emphasized the importance of a hydrogen QI. Among others,

QI facilitates social acceptance based on safety, trust, and

sustainability [6,58,104,105].

4.1.2.4. Expectations, social perceptions and acceptance. While

the industrial and political interview perspectives assess the

economic and ecological potential of hydrogen technologies

as promising (see Sections 4.1.1 and 4.1.2), we add the social

perspective for a more sophisticated assessment of the

hydrogen TIS. This allows us to explore whether the targeted

diffusion of hydrogen technologies, which can increase public

exposure, e.g., to HRSs, already finds general acceptance in

society.

In line with previous research [43,106], the interviewees

representing the social perspective assess the social perception

of hydrogen technologies in Germany as largely positive,

given the potential for energy transition and energy security.7

However, this results from the public's knowledge being

limited and dominated by the perceived benefits and limited

exposure and experience. Therefore, the positive perception is

abstract based on the low salience of hydrogen technologies,

which Emodi et al. [105] have also found in the review of social
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acceptance across various countries. Simultaneously, safety

concerns reflected in the ‘not-in-my-backyard’ (NIMBY) issue

remain a barrier to social acceptance in Germany, as also

addressed in previous research [43,106,107]. However, safety

concerns are rather based on negative associations than per-

sonal experience. Therefore, the interviewees emphasized

that social acceptance is highly dynamic and that safety-

related events can substantially deteriorate acceptance,

depending on their magnitude and impact on society. To

create more sustained social acceptance, the interviewees

recommend increasing the public's knowledge base through

comprehensible and transparent communication about the

safety and benefits of hydrogen. This result is consistent with

the findings of Gordon et al. [106], Huijts et al. [108], and

Schmidt and Donsbach [23], showing that information provi-

sion is associated with a more positive public perception of

hydrogen. However, according to the interviewees, awareness

raising is currently concentrated on demonstration projects

open to interested individuals without sufficiently targeting

the general public.

Besides, we identified further determinants of social

acceptance, including the costs, infrastructure availability,

sustainability, perceived usefulness, and alignment of

hydrogen technology adoption with personal and behavioral

traits. With that, our findings are consistent with previously

identified acceptance factors in other research contexts

[62,105,106,109e111].

Hence, increasing the attractiveness of hydrogen technol-

ogies along these acceptance factorswhile securing safety and

imparting relevant knowledge can be considered factors fa-

voring TIS development, especially for applications with so-

cial proximity.

4.1.3. Technology performance and variation
Due to knowledge and technology spillovers beyond

geographical boundaries, we acknowledge that the technology

performance and variation dimension cannot be entirely trun-

cated to the national level [32,112]. Thus, we assess this TIS

dimension based on the interviewees' assessment and the

findings from previous research specific to Germany.

As one of the leading countries in hydrogen production and

storage technologies, Germany is engaged in extensive R&D

activities [6,113,114], shows a high technology readiness level,

especially in industrial processes [113,115], and aims to

become a technology-leading country along the whole value

chain [52,79]. However, the interviewees revealed the poten-

tial for technology optimization toward reduced design vari-

ation. This finding corresponds to the worldwide trend

described in previous research, with high variation in

hydrogen production methods, feedstocks for production

[116,117], or hydrogen-storage options [118e120].

Within the scope of corporate R&D activities, patents,

standards, and to a lesser extent, publications represent both

inputs and outcomes [6,121e124]. In line with previous

research, we regard these knowledge and technology transfer

channels as TIS performance indicators and analyzed their

role in hydrogen-related R&D within the interviewed com-

panies [6,122]. All interviewees confirmed their participation

in hydrogen standardization, primarily to ensure safety but

also for economic reasons linked to upscaling production,
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market development, and to establish common ground for

stakeholder collaboration. Regarding patenting, the primary

motives are to protect intellectual property rights, economic

gain, and address safety matters. In contrast, publishing is

closely linked to collaborations with academia. Here, the ob-

jectives are optimized technology development based on sci-

entific results and more visibility in the scientific community.

However, for its limited marketability, publishing is not the

focus of corporate R&D. Herewith, our findings contradict the

results of Blind et al. [122], who analyzed the motives of en-

gineers in the German automotive sector to engage in pub-

lishing, patenting, and standardization activities. Our results

demonstrate that standardization at the corporate level,

rather than at the employee level analyzed by the authors, is

not mainly driven by intrinsic motivation. In contrast, our

publishing and patenting results largely alignwith theirs [122].

4.1.4. TIS-context relations
This section analyzes the TIS-context relations for each rele-

vant target sector of the German hydrogen economy following

the original and updated versions of the hydrogen strategy.

In the decarbonization of heavy industries, the limited po-

tential for electrification has brought hydrogen into focus to

significantly reduce emissions [5,64]. However, several in-

terviewees, in line with previous studies [125,126], call for

incurring the costs of fossil fuels through carbon pricing while

reducing the hydrogen price. Otherwise, the industry will have

little incentive to replace fossil-based industrial processeswith

hydrogen energy. Therefore, hydrogen use in the industry is

currently concentrated inniche applications anddominated by

the context structures [30,64].

In mobility, the German hydrogen strategies enshrine

heavy-duty vehicles, shipping, and aviation as main applica-

tions. While passenger vehicles are mentioned as further op-

tions, the new strategy prioritizes direct electrification, where

more appropriate and energy-efficient, and hydrogen solu-

tions in areaswith limited electrification potential [5,52]. Since

FCEVs currently represent a niche application in mobility

compared to internal combustion engine and increasingly to

battery-electric vehicles [65], one interviewee called for

technology-neutral policies that could favor hydrogen solu-

tions for specific mobility applications. Similarly, Yuan and

Cai [127] postulate that promoting low-emission vehicles,

including FCEVs, requires more technology-neutral ap-

proaches. This could shift the TIS-context relations in

mobility towards the adoption of hydrogen technologies.

In the electricity sector, according to the hydrogen strate-

gies, hydrogenwill be relevant as an energy storagemedium to

reduce seasonal fluctuations in renewable energy availability.

However, the updated hydrogen strategy attaches limited

importance to hydrogen use in heating, starting from 2030 in

pilot projects. Instead, policies appear to prioritize direct

electrification in this sector, e.g., via heat pumps [5,8,52].

Nonetheless, we cannot preclude thatwidespreadhydrogen

technology adoption in passenger vehicles and heating could

evolve as new development paths in the future [30,112], which

would create proximity to the public. Against this backdrop,

creating social acceptance becomes even more critical.

Regarding the geographical context structures, the

disruption in the natural gas supply following the war in
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Ukraine has boosted the German hydrogen economy. To

reduce the dependence on fossil fuel imports from Russia and

ensure a stable, sustainable energy supply, the REPowerEU Plan

(2022) prescribes the increase of domestic production of

‘green’ hydrogen to 10 million tons and the import of 10

million tons of hydrogen annually by 2030 [4,128]. The upda-

ted hydrogen strategy underscores Germany's ambition to

transition to a hydrogen economy to reduce dependencies

while advancing its economic and climate policy goals.

The TIS-context relations demonstrate that hydrogen

technologies are currently in the technological niche. How-

ever, they are gaining momentum in light of Germany's sus-

tainability and energy security targets. Thus, we expect the

hydrogen TIS to gain importance in relation to its context

structures in the future.

4.2. Hydrogen TIS in South Korea

South Korea's motive to build a hydrogen economy stems

from the country's ambition to establish itself as a technology-

leading country in the development of hydrogen technologies.

This ambition is reflected in the country's success in

commercializing fuel cells and FCEVs, with mobility and the

power sector historically representing important pillars of

South Korea's hydrogen economy.

4.2.1. Actor base and TIS size
Similar to Germany, the South Korean hydrogen TIS has

attracted a wide range of stakeholders, as reflected in the

composition of members of the government-led private

consultative body H2KOREA, which serves as an institutional

platform to advance the hydrogen economy [129]. According to

previous research, governmentpolicieshave incentivized actor

involvement in theSouthKoreanhydrogensector, e.g., through

funding for research and technology development under the

National R&D Program [130,131]. In contrast, the interviewees

indicated that their decision to enter the hydrogen industry

was primarily driven by economic motives. Nonetheless, they

acknowledged that government policies have provided eco-

nomic incentives to facilitate this decision. For instance, the

government grants a 50% purchase subsidy for FCEVs and a

minimum50%coverage of costs for constructing and operating

HRSs [7,12]. This policy promotion has helped South Korea

develop the largest FCEVmarketworldwide,witha global share

of approximately 40% of all FCEVs in stock [4]. South Korea's
Hyundai Nexo is the top-selling FCEV worldwide and the only

commercialized FCEV, along with Japan's Toyota Mirai and

Honda Clarity [119,132]. To promote further market growth, the

interviewed experts emphasized the need for increased

hydrogen availability to reduce its price and attract more de-

mand, especially through imports. This conclusion is further

supported by previous research in the South Korean context

[11,12].

To increase domestic hydrogen production and competi-

tiveness, the government additionally provides funding for

sustainable hydrogen production and use (see Section 4.2.2).

However, high investment costs hinder most hydrogen-

relevant companies from upscaling their production capac-

ities. In contrast, one interviewed company has already real-

ized profits due to high domestic demand as the primary
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supplier of storage containers for HRSs in South Korea, which

have received substantial government support. This finding is

consistent with previous research [125], confirming that sub-

sidies are an essential policy tool to initiate growth in the early

phases of the hydrogen economy by making the hydrogen

business profitable and attracting new TIS actors to enter.

4.2.2. Institutional structure
4.2.2.1. Political and regulatory factors. The Hydrogen Economy

Roadmap and National Roadmap of Hydrogen Technology Devel-

opment released in 2019, as well as the new hydrogen policies

announced by the Hydrogen Economy Commission in 2022,

define the objectives and target sectors of South Korea's
hydrogen economy: 1.) Economic growth driven by technology

leadership and national competitiveness motives, as well as

reduced greenhouse gas emissions to achieve carbon

neutrality by 2050; 2.) Energy security reflected in the open-

ness to relying on hydrogen produced from various feed-

stocks, including ‘green’ and ‘blue’ hydrogen produced from

natural gas with CCUS; 3.) A focus on the mobility and power

sectors. By 2040, the government targets a domestic stock of

2.9 million FCEVs alongside 3.3 million exported FCEVs, as

well as domestic use of 8 GW stationary fuel cell power for

central power generation (plus 7 GW for exports) and 2.1 GW

for decentralized power generation [5,7,12,133,134].

According to the interviewees, hydrogen policies have been

pivotal in signaling the importance ofhydrogen technologies to

the South Korean economy. As one interviewee (Industry

perspective) explained, “without the policy direction, we wouldn't
have been able to enter the hydrogen industry.” Besides the road-

map, the government has created the legal basis for a hydrogen

economy by adopting the Hydrogen Economy Promotion and

Hydrogen Safety Management Law (2020). This Law offers a sup-

portive scheme to expand the hydrogen economy and partic-

ularly addresses safety [135]. Furthermore, it creates the legal

basis for standards and certification schemes to promote the

diffusion of hydrogen technologies [136]. Amendments to the

Law include the Renewable Energy Certificates (REC) issued for

powergeneration fromfuel cells and theCleanHydrogenPortfolio

Standard (CHPS) certification scheme, which will be adopted by

2024 to subsidize the production and use of clean hydrogen

[4,136].

While regulatory measures can play a guiding role and

reduce uncertainty for stakeholders following the TIS frame-

work [30], interviewees from different perspectives indicated

that national regulation imposes too stringent safety re-

quirements, e.g., safety distances for HRSs or application-

specific certifications of storage containers. Therefore, both

policymakers and the industry have recognized the necessity

for balancing safety and technology development. Our find-

ings indicate that, besides the degree of structuration of the

hydrogen TIS, its suitability to the needs and requirements of

market participants also matters.

Accordingly, the government has established regulatory

sandboxes, which grant selected companies a two-year

exemption from regulations to identify new regulatory and

standard needs and potential deregulation based on R&D

[12,129]. With that, regulatory sandboxes contribute to opti-

mized hydrogen regulation based on experimentation [78].

Similarly, Beckstedde et al. [137] show that regulatory
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sandboxes play an increasing role in the European context and

help promote innovation andmarket integration in the energy

sector. Therefore, they represent a pivotal instrument in

advancing the hydrogen TIS's institutional structure across

countries.

4.2.2.2. Value chains and networks. Similar to Germany, the

South Korean economy depends on energy imports. Coupled

with uneconomic domestic renewable energy generation,

domestic hydrogen production at a competitive price is

limited [11,12]. Therefore, the government aims to meet 70%

of domestic hydrogen demand through domestic production

and substantial overseas imports by 2040 [5,9]. These targets

have been further nurtured by the new government policies of

the Hydrogen Economy Commission (2022), including the estab-

lishment of a global hydrogen value chain and the expansion

of HRS infrastructure, supported by the removal of business-

hampering regulations [134].

Moreover, South Korea has launched the Global Hydrogen

Industrial Association Alliance (GHIAA) with 17 member states

and the EU to foster international collaboration, including

hydrogen imports to South Korea [138]. In the future, South

Korea aims to deliver imported hydrogen via pipelines directly

from the points of import to downstream applications, e.g.,

HRSs, to facilitate hydrogen use [12]. In preparation for a so-

phisticated future value chain, South Korea is advancing the

feasibility of a globally integrated hydrogen economy in

designated pilot cities like Ulsan [129].

While dependence on hydrogen imports can bear geopo-

litical risks [13], South Korea considers hydrogen an energy

carrier that stabilizes and diversifies the energy supply,

thereby reducing dependencies [5,9]. South Korea embraces

the use of hydrogen from various feedstocks, which would

also enable domestic hydrogen production, e.g., from im-

ported natural gas or ammonia. Therefore, unlike previous

studies [13,84], hydrogen imports not only involve geopolitical

risks but may also reduce existing dependencies.

In value chains for hydrogen technologies, the in-

terviewees stated that national safety standards pose a bar-

rier to importing non-compliant foreign technology

components. Against the backdrop of South Korea's objective

of becoming a hydrogen technology-leading country, the in-

terviewees indicated that harmonization with international

standards would facilitate integration into a global hydrogen

value chain. This finding is consistent with the results of

previous studies [49,139,140], showing the positive effect of

harmonized international standards and the negative effect

of purely national standards on international trade.

To advance the domestic hydrogen economy, various

networks have been created in recent years. One example is

H2KOREA, which fosters exchange and collaboration among

hydrogen stakeholders through its member network [129].

Additionally, the collaboration of companies within the

government-led consortium HyNet has enabled South Korea

to become one of the countries with the most HRSs world-

wide, with 167 units as of 2022 [4,12]. These networks

demonstrate an increasing structuration of the TIS and coor-

dination of TIS actors. Thus, we confirm the importance of

stakeholder networks in guiding sustainability transitions, as

demonstrated by Lopolito et al. [16].
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4.2.2.3. Safety and quality infrastructure. The explosion of a

hydrogen storage container in the city of Gangneung (2019)

marked a turning point in national hydrogen safety manage-

ment [141]. Following the accident, the 2020 Safety Law was

adopted to codify and enforce hydrogen safety, amended by

safety standards, certification schemes, and monitoring sys-

tems [135,136]. With the Law, South Korea laid the basis for

strengthening hydrogen QI, in which the Korea Gas Safety

Corporation (KGS) plays an essential role. As a government

authority for safety management, KGS develops safety regu-

lations and standards for hydrogen technologies in South

Korea, delivers conformity assessment services, including

testing, inspection, and certification, and acts as a market

surveillance authority [141]. Based on insights from various

interviews, KGS develops regulations and standards for HRSs,

issues permissions for their construction and operation,

monitors them through the KGS monitoring center and has

the authority to shut them down if potential hazards are

detected. While KGS is the main player in the national

hydrogen QI, other notified conformity assessment bodies or

the Korean Agency for Technology and Standards (KATS) must

also be mentioned as QI players. Thus, South Korea has

implemented vital QI elements designed for its hydrogen

economy targets. Towards their achievement, the Korean

hydrogen QI serves the purpose of ensuring safety through

high standards and promoting sustainability through the REC

and CHPS certification schemes. Particularly, since South

Korea's hydrogen economy relies on target sectors in prox-

imity to the public, the hydrogen QI aims to create social

acceptance and trust based on safety.

However, the regulatory revisions and the

experimentation-based identification of new regulatory re-

quirements (regulatory sandboxes) provide evidence that the

hydrogen QI is still under development. Therefore, drawing

from previous research on the role of QI for sustainable

development [45,99,100], a fit-for-purpose hydrogenQI will aid

South Korea in its transition to the hydrogen economy. This

link is also consistent with previous studies emphasizing the

significance of safety and acceptance, which QI enhances, in

fostering hydrogen market growth [2,58].

4.2.2.4. Expectations, social perceptions and acceptance. Sup-

ported by the political agenda, the interviewed industry ex-

perts emphasized the potential of hydrogen technology

adoption for long-term business viability. Besides the indus-

trial and political perspectives, the targeted penetration of

hydrogen technologies in the mobility and power sectors

creates proximity to society. Therefore, the social perception

and acceptance levels are critical for realizing the hydrogen

transition and, thus, facilitating TIS development.

The interviewed experts (social perspective) assessed the

hydrogen perception in South Korea as largely positive.8

Particularly, we identified future orientation and sustainabil-

ity awareness as drivers, which Scovell [111] also found previ-

ously.Acceptance is evenhigherwhen individuals can increase
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their utility byusinghydrogen technologies and aligning itwith

their personal and behavioral traits, needs, and values

[111,142,143]. Furthermore, knowledge, experience, perceived

costs, and risks drive acceptance [111,142,144]. Hence, the

findings from previous research validate our results.

The current state of the South Korean hydrogen economy

addresses some of these acceptance factors through its highly

developed hydrogen mobility sector, exposing the public to

hydrogen technologies. Moreover, government subsidies for

hydrogen applications tackle the cost dimension, making

them competitive with other technologies (Section 4.2.1).

However, several issues hinder social acceptance in South

Korea: The Gangneung accident, accompanied by untrans-

parent, negative media reports, has created an anxious

perception among parts of the public [145], reinforcing the

NIMBY issue, particularly for HRSs. In the words of one

interviewee, people "[…] are very opposed to installing them

[HRSs] near their area. About two years ago, or a year ago, about 70

to 80 percent of the sites that were planned […] were nullified due to

the constant opposition of the residents” (Interviewee industry

perspective). Based on a public survey in South Korea, Han

et al. [146] also found that 23% of respondentswere opposed to

the construction of HRSs near their residences. These findings

illustrate that public opposition to hydrogen technologies can

indeed hinder the hydrogen transition.

QI, which creates social acceptance and reduces public

reservations based on safety, is critical to the success of a

hydrogen economy, particularly when situated in proximity to

the public. Besides safety, the interviewees and previous

research [111,142,145] agree that increasing the public's
knowledge base through transparent communication can in-

crease acceptance. For instance, the South Korean govern-

ment relies on social media and community-briefing sessions

to raise awareness.

4.2.3. Technology performance and variation
South Korea is one of the technology-leading countries in

FCEV and stationary fuel cell innovation, as evidenced by

extensive patenting activities [6,119,132,147]. As an early

adopter, South Korea aims to establish a domestic leadmarket

for FCEVs and stationary fuel cells to gain a competitive

advantage in a future global hydrogen economy (see Refs.

[133,148,149]). Moreover, the new policy direction of the

Hydrogen Economy Commission postulates the promotion of

technology development along the whole value chain toward

a leadership position as a technology-exporting country [134].

Despite South Korea's technological advances, the in-

terviewees indicated the potential for further technology

optimization, e.g., in the area of on-board hydrogen storage

for FCEVs. Since South Korea has substantially shaped past

technological trends in FCEVs, previous research validates the

optimization potential, including more advanced storage op-

tions like higher-pressure gaseous or liquefied storage [119].

To maintain a globally leading position in the future, national

R&D budgets and the CHPS certification scheme, among

others, allocate funds to technology optimization (Section

4.2.1), which will likely result in reduced design variation

following the TIS framework [30].

As with the German TIS, we identified the motives and

barriers of the interviewed companies to publishing,
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patenting, and standardization [6,122]. All interviewed com-

panies stated their involvement in hydrogen standardization

at the national or international levels, primarily to address

safety with other stakeholders, to optimize technology

development, and to harmonize standards. For patenting, we

identified protecting intellectual property rights rather than

addressing safety as the primary motive. Publishing activities

result mainly from industry-academia collaborations, which

facilitate knowledge and technology transfer, and increase the

visibility of companies in the scientific community (see also

[6,122,150]). However, publishing is not the main objective of

R&D activities and is constrained by limited human resources.

These findings differ from those of Blind et al. [122], who

attribute participation in standardization to intrinsic motiva-

tion, while the interviews revealed technical and commercial

objectives as drivers. For patenting and publishing, the results

are largely consistent with Blind et al. [122].

4.2.4. TIS-context relations
This section analyzes the TIS-context relations from the per-

spectives of themobility and power sectors as target sectors of

the South Korean hydrogen economy. In mobility, the gov-

ernment promotes FCEVs and battery-electric vehicles to

transform this sector sustainably. Electric vehicles and the

construction of charging infrastructure are supported by sub-

sidies [151,152], while the government gradually reduces them

to foster sustained market growth. Simultaneously, the high

subsidies for FCEVsaim to expand the FCEVmarket and enable

the complementarity of both powertrain technologies in

mobility, thereby taking a more technology-neutral approach

following Yuan and Cai [127].

In the power and building sectors, fossil fuels and nuclear

energy dominate as context structures. In 2021, 85% of pri-

mary energy in South Korea was based on fossil fuels [153].

Therefore, the interviewees called for incurring the costs of

fossil fuels to advance the hydrogen transition. The CHPS,

designed to subsidize clean hydrogen production and use, is

expected to enhance the competitiveness of fuel cell power

generation and FCEVs with the incumbent fossil fuel-based

technology regime [147]. Further support is provided by the

target set by the Hydrogen Economy Commission to increase the

share of clean hydrogen in the energy mix to 7.1% by 2036

[134]. Following previous research [125,126], policy in-

struments such as the CHPS, which incentivize the transition

to cleaner energy, will be pivotal in the hydrogen transition.

In the geographical context structures, the global energy

crisis has exposed South Korea's dependence on energy im-

ports. Subsequently, according to various interviewees,

securing energy supply through hydrogen has gained even

more importance. However, the energy crisis adversely

affected the hydrogen economy in the short run. Due to the

global increase in natural gas prices, the ‘grey’ hydrogen costs

experienced a threefold increase in 2022 [4]. Since the

hydrogen economy nowadays relies primarily on ‘grey’

hydrogen, the interviewees revealed that the high costs

reduced hydrogen production and supply, e.g., at HRSs.

Following previous studies on the geopolitics of hydrogen

[13,84], this result provides evidence that diversifying the

feedstocks for hydrogen production, as considered by South

Korean hydrogen policies, can help reduce dependencies.
gen economy: A multidimensional analysis of the technological
ional Journal of Hydrogen Energy, https://doi.org/10.1016/
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While hydrogen technologies are still a niche technology,

South Korean policies have given various supportive signals to

promote the hydrogen economy. Therefore, we consider the

TIS-context relations as dynamic with a possible future shift

towards the focal hydrogen TIS.
5. Conclusion and implications

This study has explored the technological innovation systems

(TISs) of Germany and South Korea from the perspectives of

industry, politics, and society (RQ1). Both countries' hydrogen
innovation systems show common features but also differ-

ences across various TIS dimensions (Table 3): While the actor

base, which is more state-centered in South Korea, is

expanding in both countries, the hydrogen market is more

developed in South Korea, especially in mobility. The institu-

tional structure, including the regulatory framework and

quality infrastructure (QI), is taking increasing shape at the

German and European levels while already showing greater

maturity in South Korea. For social acceptance, we also iden-

tified amore sustained acceptance level in SouthKorea than in

Germany,where public awareness of hydrogen technologies is

limited overall. In technology performance, Germany and

South Korea hold globally-leading positions but in different

parts of the value chain. Technology variation in both coun-

tries is largely consistent with the worldwide trend, while the

TIS-context relations appear more favorable to the hydrogen

TIS in South Korea.

Assessing the life cycles of Germany's and South Korea's
TISs (RQ2) following Markard [30], the German hydrogen TIS

can be considered to be in the late formative phase based on

the TIS dynamics and the expected advances in the regulatory

framework, QI, andmarket size. In contrast, the South Korean
Table 3 e Comparison of hydrogen TISs.

TIS dimension Germany

Actor base and TIS

size

Increasing actor involvement, intermediate gov

role

R&D funding, demonstration projects, partly

reimbursement of ‘green’ HRS costs and electro

Market concentrated in industrial niches

Institutional

structure

National & EU Hydrogen Strategies

Regulatory framework under development

Domestic hydrogen production, but largely imp

Hydrogen QI under development

Positive social perception, limited awareness, N

Promotional activities (social acceptance) prima

demonstration projects

Technology

performance and

variation

Activities along the whole value chain

Patenting and standardization driven by safety

economic motives, publishing is secondary

TIS-context relations Dominance of context (fossil fuels)

Targeted promotion in the industry, energy sto

selected mobility applications (currently niche)

Energy crisis push, new ‘green’ hydrogen target
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hydrogen TIS appears more mature regarding the legal

framework, QI, market size, and social awareness, thus

exhibiting more growth phase properties.

This study contributes to previous research at multiple

levels: First, followingAndreasenandSovacool [34], comparing

the hydrogen economies of two countries based on the TIS

framework enables a more sophisticated assessment of the

status and drivers of the hydrogen economy. Especially by

deploying the TIS life-cycle approach [30], we add to the

toolbox of concepts to assess the maturity of a hydrogen

economy fromvarious perspectives. Unlikeprevioushydrogen

TIS research, which considers only the hydrogen TIS within

sectoral or application boundaries, such as for the steel [24,26]

or automotive industry [25,34], we assess the hydrogen TIS

morecomprehensivelybyanalyzinganddiscussing thedrivers

and barriers to Germany's and South Korea's pathways to the

hydrogen economy. Second, we added the social perspective

on hydrogen technology adoption, which was hardly consid-

ered in previous hydrogen TIS analyses. Although an

increasing body of research on the social acceptance of

hydrogen technologies has emerged in recent years

[43,44,111,146], previous studies do not analyze it in the

broader context of the hydrogen economy and hydrogen TIS.

This study synthesized the perspectives of key stake-

holders, including those from society, industry, and policy-

making. This multidimensional analysis of the hydrogen TISs

in Germany and South Korea provides meaningful policy im-

plications potentially transferable to other contexts (RQ3):

First, greening the financial system will be crucial to make

hydrogen technologies more competitive. As our analysis has

shown, the high costs of hydrogen technologies and their

limited competitiveness with the established fossil-based

technology regime represent major barriers to the hydrogen

economy. Following previous studies, policymakers should
South Korea

ernment

lyzers

Increasing actor involvement, strong government

influence

R&D funding, incentives for commercialization

(purchase subsidies), partly reimbursement of HRS costs

Largest FCEV market worldwide

orts

IMBY

rily in

Hydrogen Roadmaps & Hydrogen Law

Regulatory framework in place, revisions

Limited hydrogen production capacity, largely hydrogen

(feedstock) imports

Hydrogen QI largely in place, safety regime

Positive social perception, more sustained acceptance,

NIMBY

Government-driven promotional activities (social

acceptance)

and

Focus on downstream applications, recent extension to

the whole value chain

Patenting and standardization driven by safety and

economic motives, publishing is secondary

rage and

s

Dominance of context (fossil fuels, nuclear energy)

Targeted promotion of passenger vehicles and power

generation (currently niche)

Energy crisis push, short-term adverse effect on ‘grey’

hydrogen supply
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cut subsidies for fossil fuels and fossil-based technologies,

accompanied by a substantial increase in taxes on them and

allocation of increased tax revenue to green innovations and

the reduction of their costs, including hydrogen technologies

[125,154e156].

Second, following Cervantes et al. [155], changes in science,

technology, and industrial policies are necessary based on

coherent policy mixes, political commitment, financial in-

struments, and adaptation of the regulatory framework to the

targeted diffusion of hydrogen technologies. Given the

emerging nature of the hydrogen economies of Germany and

South Korea, our analysis demonstrated that regulatory

sandboxes can offer a suitable tool for identifying and

demonstrating the necessary regulatory requirements in both

the revision (South Korea) and the implementation of new

regulations (Germany).

Third, in line with previous QI-related studies [45,99,100], a

fit-for-purpose QI is essential to ensure safety and reliability,

thereby creating trust and social acceptance of hydrogen

technologies. This involves strategically driving the develop-

ment of a regulatory framework, standards, testing proced-

ures, and certification. Given the challenges of monitoring the

safety of hydrogen technologies at scale, the institutions,

tools, and processes of QI must be able to keep pace with the

requirements of modern hydrogen systems. Therefore, a

trustworthy QI relying on digital technologies enhances the

safety, transparency, reliability, and economic viability of

hydrogen systems, e.g., through real-time monitoring and

remote predictive maintenance [157]. Developing a digital QI,

including digitalmethods and tools such asmachine-readable

standards or digital certificates, requires appropriate govern-

ment coordination of central QI institutions. An accordant

initiative (‘QI-Digital’) has been implemented in Germany,

including joint projects with South Korea for HRSs [157].

Fourth, policymakers should promote public awareness

raising in the form of increased knowledge and experience

with hydrogen technologies [106,108,111]. In the case of po-

tential incidents or accidents, proactive awareness raising can

help mitigate adverse acceptance effects with potential re-

percussions for the whole hydrogen TIS.

Finally, fostering collaborations at the national and inter-

national levels and between informal and institutional actors

represents another relevant area for policymaking

[20,155,158]. Our analysis has shown that collaborations,

including consortia, industry-academia collaborations, or

aligning standards through international standardization, are

important for establishing a hydrogen value chain and infra-

structure, intensifying knowledge and technology transfer,

and facilitating the hydrogen transition. Policymakers can

foster these collaborations by providing common platforms

for stakeholder exchange, similar to the Research Network

Hydrogen in Germany or H2KOREA in South Korea.

This study is not without limitations. First, given the

qualitative research design of this study, the sample of in-

terviewees limits the representativeness and generalizability

of stakeholder perspectives. Second, open coding yields the

risk of subjectivity bias when assigning codes to the inter-

view transcripts and operationalizing them to the TIS di-

mensions. To minimize bias, the coding schemes were
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revised multiple times and reviewed independently by the

authors. Third, while this study provides multidimensional

TIS perspectives analyzing three major stakeholder cate-

gories, the analytical depth per category is limited. Finally,

this study represents only a snapshot of the hydrogen TISs in

Germany and South Korea. Given the current momentum of

the hydrogen economy, we expect further significant de-

velopments in the near future.

This study offers prospects for future research: At the

empirical level, the identified drivers and barriers can help

design structured questionnaires directed to a larger pool of

stakeholders and, thus, complement the limited sample size

in this study. This would enable quantitative measurements

of the progress of national hydrogen economies and accor-

dant country comparisons. Herewith, the sample size, signif-

icance, and generalizability of results could be enhanced.

Moreover, a survey-based research design would enable more

regular updates on the status of the hydrogen economy

around the world.

At the theoretical level, future hydrogen-related TIS

studies should incorporate, where appropriate, QI and social

acceptance more comprehensively. Since the future success

of the hydrogen economy will depend, among others, on how

well the promise for safety, trustworthiness, and sustain-

ability can be fulfilled, QI acts as an enabler of hydrogen TIS

development.
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