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A B S T R A C T

Directional grain growth is a common phenomenon in the synthetic and natural evolution of various
polycrystals. It occurs in the presence of an external driving force, such as a temperature gradient, along
which grains show a preferred, yet competitive, growth. Novel additive manufacturing processes, with intense,
localized energy deposition, are prominent examples of when directional grain growth can occur, beneath
the melting pool. In this work, we derive a phenomenological mean-field model and perform 3D phase-field
simulations to investigate the directional grain growth and its underlying physical mechanisms. The effect
of the intensity of driving force is simulated and systematically analyzed at the evolving growth front as
well as various cross-sections perpendicular to the direction of the driving force. We found that although the
directional growth significantly deviates from normal grain growth, it is still governed by a power law relation
⟨𝑅⟩ ∝ 𝑡𝑛, with an exponent 𝑛 ∼ 0.6–0.7. The exponent 𝑛 exhibits a nontrivial dependence on the magnitude
of the directional driving force, such that the lowest growth exponent is observed for intermediate driving
forces. We elaborate that this can originate from the fact that the forces at grain boundary junctions evolve
out of balance under the influence of the directional driving force. With increasing the driving forces, the
growth exponent asymptotically approaches a value of 𝑛 ≈ 0.63, imposed by the largest possible grain aspect
ratio for given grain boundary energies. The current combined mean-field and phase-field framework pave
the way for future exploration in broader contexts such as the evolution of complex additively manufactured
microstructures.
1. Introduction

Grain growth has a significant impact on the thermal stability and
safety of processing and performance in polycrystalline materials. This
is a pervasive phenomenon happening in almost all kinds of artificially
synthesized and naturally occurring polycrystalline including metallic
materials [1,2], ceramics [3,4], polymers [5], and composites [6] as
well as biominerals such as bivalve shells [7] and hydroxyapatite
bones [8]. Extensive studies conducted on normal grain growth mainly
assume isotropic conditions of grain growth/shrinkage with no external
effects. However, most real-world polycrystalline materials evolve un-
der complex manufacturing processes or natural conditions that impose
certain driving forces, e.g., temperature gradients, leading to direc-
tional grain growth (DGG). In certain occasions, it is actually desired to
achieve a DGG, such as in the fabrication of some functional materials
under an external field [9], producing columnar-grained structures in
thin films [10] or via directional annealing [11]. DGG is also commonly
observed and studied in naturally occurring polycrystals such as the
mollusc bivalve shell Pinna nobilis [12].
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With the emergence of novel additive manufacturing (AM) tech-
niques, the significance of the DGG phenomenon needs to be revisited.
In fact, the unavoidable application of directional heat during the non-
equilibrium AM processes is found to greatly influence the evolution of
microstructure beneath the melting pool [14–16]. Fig. 1 demonstrates
the massive change in the grain size along the building direction in
an AMed AlScZr alloy, due to the intrinsic directional heating [13].
To control the directionally evolving microstructures, it is critical to
learn about the kinetics of DGG. Yet, despite its significance and broad
appearance in various applications, our current understanding of DGG
remains elusive so far. It is indeed unclear, how the corresponding grain
size and shape distributions may depend on the additional (directional)
driving forces? And whether the principles of self-similar grain growth
can hold for DGG? As the experimental measurement of directionally
evolved polycrystals is quite challenging, modeling and simulation
can greatly assist. To answer the above questions is a two-fold task,
first to develop a theoretical framework incorporating such directional
vailable online 20 December 2023
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Fig. 1. Grains evolution upon intrinsic heating during the AM of an AlScZr alloy. The material is exposed to intense directional temperature gradients along the building direction.
The AMed specimen is shown in a cross-section view (a), with SEM micrographs showing the grain size differences in three layers (b), (c) and (d) along the building direction.
Reconstructed with permission from [13].
𝜌

driving forces and, second, to establish a computational framework for
examining the parameters of DGG, systematically.

Laid on robust physical principles and a measurable set of variables,
mean-field modeling has proven to be a powerful tool for understanding
microstructure evolution. The mean-field theory of grain growth has
been the subject of early works by Hillert [17], Brown [18], Coughlan
and Fortes [19] and Rios [20] as well as many recent works [21–25].
In these models, grain growth is described in terms of the average
curvature of each grain, governing its temporal evolution while main-
taining the conservation and continuity in the system. The average
curvature concept has this drawback that neglects grains’ geometrical
aspects and the interconnectivity of grain boundaries throughout the
system. The multi-phase-field (MPF) simulation has emerged as a pow-
erful tool capable of capturing the grains’ geometrical aspects and the
grain boundaries’ network, in a thermodynamically consistent manner.
MPF has been successfully applied for studying precipitation [26–30],
recrystallization [31], effect of micro-elasticity [32] as well as surface
and junction diffusion phenomena [33]. Quantitative application of
MPF modeling to grain size distribution [34], microstructure evolution
in additively manufactured Inconel 718 [35] and directional eutectic
melting [36] are also demonstrated.

In a series of previous studies, we have shown that mean-field mod-
eling and phase-field simulations can be efficiently coupled for studying
grain growth in polycrystalline materials [37–39]. The directionality
of the external driving force shifts the balance between grains in a
complex manner, strongly coupled to the arrangement of grains and
grain boundaries’ network. In fact, previous research shows that the
application of classical mean-field models cannot resolve the essence
of a DGG [12]. In this work, we revisit the mean-field theory of normal
grain growth and propose a modified model for studying DGG. We then
perform systematic MPF simulations to capture the underlying physics.
The results of MPF simulations are then analyzed in the context of
the extended mean-field model. We discuss the mechanisms of DGG
in light of modeling and simulation results and with a geometrical
consideration of evolving grains.

In the following, we first present a phenomenological modification
of the mean-field model for DGG. The MPF model and related sim-
ulation procedures are given in Section 3. In Section 4, we present
the results of our MPF simulations and compare the effect of the
external driving force (its magnitude) on the kinetics of DGG and the
morphology of the grains. A detailed discussion of our results and the
implications of our findings are presented in Section 5.

2. Modified mean-field model for directional grain growth

To address DGG, we expand our previous derivations and analysis
of normal grain growth [39] by considering a generalized equation of
growth:

𝑑𝑅 = 𝛼𝑀𝜎
(

1 − 1
)

⋅
1 (1)
2

𝑑𝑡 𝑅𝑐𝑟 𝑅 𝑅𝛽
with 𝑅 the radius of a given grain, 𝑀 the GB mobility, 𝜎 the GB
energy, 𝑅𝑐𝑟 the critical radius (of the grains’ population in the given
polycrystalline body) and 𝛼 being a geometrical coefficient. Here, the
multiplicative term 1

𝑅𝛽 , with the additional model parameter 𝛽, ac-
counts for any external driving forces that can interfere with the normal
curvature-driven evolution, leading to DGG. A different empirical ex-
tension of the mean-field model was recently used by [40], considering
the pinning effect of the precipitated particles on the growing grains.

For an external driving force applied as a field, a negative 𝛽 value is
expected, indicating that the driving force is received by each existing
grain proportional to its size. This formulation implies a reasonable
generality, such that, an external driving force can modify the curvature
effect as well as the scaling of the growth rate. Note that here 𝛼 is a di-
mensionless coefficient only when 𝛽 = 0, for which we recover Hillert’s
rate equation [17] and thus the results in our previous study [39].
With 𝛽 = 1, Eq. (1) becomes the Lifshitz–Slyozov rate equation for
precipitates’ ripening [41].

Introducing the relative grain size 𝜌 = 𝑅
𝑅𝑐𝑟

and a new timescale
𝜏 = ln𝑅(2+𝛽)

𝑐𝑟 we obtain

𝑑𝜌2+𝛽

𝑑𝜏
= 𝛾 (𝜌 − 1) − 𝜌2+𝛽 , (2)

𝛾 = (2 + 𝛽)𝛼𝑀𝜎 𝑑𝑡
𝑑𝑅2+𝛽

𝑐𝑟

⋅ (3)

Eq. (2) can be rewritten as

𝑑𝜌
𝑑𝜏

= �̇� =
𝛾 (𝜌 − 1) − 𝜌2+𝛽

(2 + 𝛽)𝜌1+𝛽
⋅ (4)

In what follows, the dot derivative denotes the derivative with respect
to 𝜏. Eqs. (2)–(4) assume that 𝑅𝑐𝑟 grows monotonically with time as

𝑅2+𝛽
𝑐𝑟 (𝑡) − 𝑅2+𝛽

𝑐𝑟 (𝑡0) = 𝐾𝑡 (5)

with the growth coefficient 𝐾 = (2 + 𝛽)𝛾−1𝛼𝑀𝜎, and 𝑡0 = 0 being the
initial time.

Similar to the normal grain growth [39], the physical solutions
for the DGG shall be obtained when the rate �̇� remains negative.
Considering this and a special case that �̇� has a single root (𝜌0), with
̇ = 0 and 𝑑�̇�

𝑑𝜌 = 0, gives the system of equations

𝛾 − (2 + 𝛽)𝜌1+𝛽 = 0, (6)

𝛾(𝜌 − 1) − 𝜌2+𝛽 ≤ 0 ⋅ (7)

Eqs. (6) and (7) are valid for 𝛽 > −2. Solving these equations results in
inequalities

𝜌 ≤ 𝜌0 =
2 + 𝛽
1 + 𝛽

, (8)

𝛾 ≤ 𝛾0 =
(2 + 𝛽)2+𝛽

(1 + 𝛽)1+𝛽
. (9)

Here 𝜌0 is the maximum achievable grain size corresponding to the
mean-field coefficient 𝛾 , obtained when the growth rate is assumed
0
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𝜌

Fig. 2. (a) Growth rate Eq. (4) plotted for 𝛾 = 3.2 = 0.8𝛾0, which corresponds to the reference solution from [39]. For 𝛽 = −0.287 the first single root is found. (b) Relative grain
size distribution, Eq. (17), computed for the various values of the exponent 𝛽 for 𝛾 = 3.2. (c) Average grain size ⟨𝜌⟩ is shown as a function of 𝛽. The distributions for higher values
of 𝛾 are provided in Fig. S1 in the Supplementary Material (SM).
to have a single root. In the vicinity of 𝛾0 =
(2+𝛽)2+𝛽

(1+𝛽)1+𝛽 , the kinetic Eq. (5)

is given by 𝐾 = 𝐾0 =
(

1+𝛽
2+𝛽

)1+𝛽
𝛼𝑀𝜎.

In the case of normal grain growth (𝛽 = 0), Eqs. (8) and (9) give
limiting regime of 𝛾0 = 4 with 𝜌0 = 2. However, we have previously
shown that valid solutions for normal grain growth (𝛽 = 0) are obtained
for 𝛾 ≈ 3.2 [39], different from this limiting regime.

For normal grain growth with 𝛾 ≈ 3.2, which is our reference
verified case, the growth rate �̇� was shown to be always negative with
no root. But in the presence of an external driving force, with 𝛽 ≠ 0,
much more complex situations can emerge: Fig. 2a shows �̇� for 𝛾 = 3.2
and various 𝛽 values. The plot shows that the value of 𝛽, representing
the intensity of the external driving force, can have a significant impact
on the growth rate, which increases and eventually gets positive values
when 𝛽 ≤ −0.287. This means that the external driving force tends to
narrow the range of relative grain size. Interestingly, we find that by
varying the 𝛽 values, the growth rate in a certain range of grain size
increases while it decreases in the rest (Fig. 2a).

For arbitrary 𝛽 and 𝛾 values, the analytical solutions for the roots of
̇ are impractical to write down. Nevertheless, one can show that there
can be up to two roots, as demonstrated in Fig. 2a. We note that the
variation in the range of grain size and corresponding 𝛽 and 𝛾 does not
disturb the power-law dependency of 𝑅𝑐𝑟 ∼ 𝑡1∕(2+𝛽) in Eq. (5) that holds
through the whole range of inequality (9).

2.1. Grain size distribution

Considering the number of grains in the interval between 𝜌 and
𝜌 + 𝑑𝜌 as 𝛷(𝜌, 𝜏)𝑑𝜌, from the continuity in the grain-size space we can
write
𝜕𝛷
𝜕𝜏

+ 𝜕
𝜕𝜌

(�̇�𝛷) = 0 ⋅ (10)

Assuming a multiplicative decomposition, 𝛷(𝜌, 𝜏) = 𝑁(𝜏)𝑃 (𝜌), with
𝑁 the number of grains and 𝑃 the probability function (size distribu-
tion), leads to the system of equations
1
𝑁

𝜕𝑁
𝜕𝜏

= −𝐶, (11)

1
𝑃

𝜕
𝜕𝜌

(𝑃 �̇�) = 𝐶, (12)

where 𝐶 is a positive constant. Eq. (11) implies an exponential decay
𝑁(𝜏) = 𝑁0 exp (−𝐶𝜏). Considering the conservation of the total area
(volume) of the grains in 2D (3D), the term 𝑅𝑑𝑁(𝜏) = 𝜌𝑑𝑅𝑑

𝑐𝑟𝑁(𝜏) must
be independent on time 𝜏. Here 𝑑 = 2 and 𝑑 = 3 for 2D and 3D
situations, respectively.

For studying DGG, grains’ evolution in a 2D cross-section/surface,
perpendicular to the direction of the driving force, is of interest. Using
3

𝑅𝑐𝑟 = exp ( 𝜏
2+𝛽 ), we find that 𝑁(𝜏) exp

(

2𝜏
2+𝛽

)

= 𝑐𝑜𝑛𝑠𝑡 must hold for the
2D case, which gives

𝑁(𝜏) = 𝑁0 exp
(

−2𝜏
2 + 𝛽

)

, (13)

and thus 𝐶 = 2
2+𝛽 .

In order to obtain the grain size distribution, we follow our previous
considerations [39], choosing ℎ(𝑊 (𝜌)) = 𝑃 (𝜌)�̇�, Eq. (12) converts to
( 1
ℎ

𝑑 ℎ
𝑑 𝑊

)

(

�̇� 𝑑 𝑊
𝑑 𝜌

)

= 2
2 + 𝛽

. (14)

The first product term is a function of 𝑊 and the second one only
depends on 𝜌. Because of this multiplicative decomposition of variables,
the equation can be fulfilled only if each product term is a constant.
That ultimately gives

𝑊 (𝜌) = ∫

𝜌

0

1
�̇�
𝑑𝜌 , (15)

whereas ℎ(𝑊 ) = ℎ0 exp
(

2𝑊
2+𝛽

)

, and, the size distribution function is

directly related by definition to ℎ(𝑊 (𝜌)), that is 𝑃 (𝜌) = ℎ0
�̇� exp

(

2𝑊 (𝜌)
2+𝛽

)

,
which must satisfy

∫

𝜌𝑚𝑎𝑥

0
𝑃 (𝜌) 𝑑𝜌 =

ℎ0(2 + 𝛽)
2 ∫

−∞

0

1
�̇�

𝑑 𝜌
𝑑 𝑊

𝑑 exp
(

2𝑊
2 + 𝛽

)

= 1. (16)

Using this condition and Eq. (15), we get for ℎ0 = − 2
2+𝛽 , and the size

distribution function as

𝑃 (𝜌) = −
2𝜌1+𝛽

𝛾 (𝜌 − 1) − 𝜌2+𝛽
exp

(

2𝑊 (𝜌)
2 + 𝛽

)

. (17)

The valid solutions for the size distribution are obtained when 𝑊 (𝜌)
gives a negative value, which is shown to be possible up to the first root
of �̇� [39].

The distribution function, Eq. (17), is plotted in Fig. 2b. The results
show that the grain size distribution is sensitive to the exponent 𝛽,
i.e., the driving force. Note that the distribution function bounds the
possible grain sizes in accordance with Eq. (8), that is, in the asymptotic
limit, when 𝛾 approaches 𝛾0 in Eq. (9). The most interesting solutions,
however, occur when 𝛾 < 𝛾0: In this case, even though we see that the
probability function almost vanishes for 𝜌 > 𝜌0, it is still defined on the
whole interval [0,+∞), as 𝑊 (𝜌) is negative and integrable.

For 2D case, the critical grain size and the average relative grain
size can be respectively obtained as

𝑅𝑐𝑟 =
⟨𝑅1−𝛽

⟩

, (18)

⟨𝑅−𝛽

⟩
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and

⟨𝜌⟩ =
⟨𝑅⟩
𝑅𝑐𝑟

= ∫

𝜌𝑚𝑎𝑥

0
𝜌 𝑃 (𝜌) 𝑑𝜌. (19)

ere ⟨𝑥⟩ = 1
𝑁(𝜏)

∑𝑁(𝜏)
𝑖 𝑥𝑖 and the integral is given over the entire valid

ange of 𝜌. The average relative grain size ⟨𝜌⟩ is very practical for the
purpose of investigating the growth phenomenon. Following the grain
size distributions in Fig. 2b, we find that the average relative grain size
increases for 𝛾 < 𝛾0, shown in Fig. 2c. We find that for 𝛽 < 0, the
verage relative grain size decreases with decreasing the 𝛾 value.

The central focus of our study will be concerning the growth expo-
ent 𝑛 in ⟨𝑅⟩ ∝ 𝑡𝑛 and its dependence on the driving forces in the DGG
rocess. Considering Eqs. (5) and (19) we obtain the average grain size
s

𝑅⟩ ∝
[

2 + 𝛽
𝛾

]𝑛
⟨𝜌⟩ (𝛼𝑀𝜎𝑡)𝑛 ⋅ (20)

with 𝑛 = 1
2+𝛽 , giving the temporal evolution of average grain size in

he presence of an external driving force. Again, assuming that ⟨𝜌⟩ → 1
and 𝛽 → 0, Eq. (20) simplifies to normal grain growth kinetics [39].

3. MPF simulations

In a polycrystalline body, the interfacial energy density in the MPF
ramework reads [42]:

𝑖𝑛𝑡𝑓 =
∑

𝑖,𝑗,𝑖≠𝑗

4𝜎𝑖𝑗
𝜂

(

𝜙𝑖𝜙𝑗 −
𝜂2

𝜋2
∇𝜙𝑗 ⋅ ∇𝜙𝑗

)

(21)

+ 8
𝜋

∑

𝑖,𝑗,𝑖≠𝑗
ℎ0

(

𝜙𝑖, 𝜙𝑗
)

𝛥𝑔𝑖𝑗 ,

in which the sums run over all possible (dissimilar) pairs of 𝑁 present
grains. The phase-field variable 𝜙𝑖(�⃗�, 𝑡) ∈ [0, 1] defines the presence of
he grain 𝑖 with the constraint ∑𝑁

𝑖 𝜙𝑖 = 1 in every point of space and
ime. 𝜂 is the width and 𝜎𝑖𝑗 is the energy of the grain boundary between
rains 𝑖 and 𝑗. The energy term 𝛥𝑔𝑖𝑗 accounts for any additional driving
orce applied on the grain boundary. For our DGG simulations, 𝛥𝑔𝑖𝑗 =
𝑔 is taken to be a spatially uniform, linear energy field favoring grains
o grow along the 𝑧-axis. More precisely, 𝛥𝑔 = 𝛿𝑔 (𝑧∕𝓁)𝒆𝑧 is considered,

as a vector field, with 𝒆𝑧 the unity vector along the 𝑧-axis and 𝓁 the
grid spacing. Similar (directional) evolution of grains in thin films were
simulated by other methods but without interaction with an external
field [10]. For convenience, the direction of the energy field is denoted
on the respective figures. Here ℎ0 is a pairwise function to distribute
the driving force over each grain boundary. The intensity of 𝛿𝑔 is later
discussed as a simulation parameter.

With 𝐹 = ∫ 𝑓 𝑖𝑛𝑡𝑓 𝑑𝑉 and considering isotropic grain boundary
energy (𝜎𝑖𝑗 = 𝜎) and mobility (𝑀𝑖𝑗 = 𝑀), the temporal evolution of
the phase-fields follow

�̇�𝑖 = −𝜋2𝑀
8𝜂𝑁

𝑁
∑

𝑗=1

(

𝛿𝐹
𝛿𝜙𝑖

− 𝛿𝐹
𝛿𝜙𝑗

)

= 𝑀𝜎
𝑁
∑

𝑗=1

(

∇2𝜙𝑖 − ∇2𝜙𝑗 +
𝜋2

2𝜂2
(𝜙𝑖 − 𝜙𝑗 )

)

+ 𝑀 𝜋
𝜂

𝑁
∑

𝑗=1
ℎ
(

𝜙𝑖, 𝜙𝑗
)

𝛥𝑔,

(22)

where we use ℎ = 𝜕ℎ0
𝜕𝜙𝑗

=
√

𝜙𝑖𝜙𝑗 as the distribution function, the
ntegral of which, over a flat grain boundary, is equal to 1. Using
his function allows for obtaining a uniform driving force within the
rain boundary region [37]. The simulations were performed using
penPhase software package [30,37,43]. For an efficient calculation,
e have implemented a dynamic memory allocation procedure, in
hich we only trace and store the phase-fields with values between
and 1. This procedure is constructed using the list function in C++
hich allows the addition and removal of members. The phase-fields
4

Table 1
Material parameters and input values for the numerical studies.

Parameter Values Dimension

𝑀 , grain boundary mobility 3 × 10−9 m4 J−1 s−1

𝜎, grain boundary energy 0.17 J m−2

𝜂, grain boundary width 5𝓁 m
𝓁, grid spacing 1 × 10−6 m
𝛥𝑡, time increment 5 × 10−5 s
𝛿𝑔, intensity of external energy field 1 to 10 MJ m−3

are stored in a paired structure including the grain index and its
phase-field value. These are then pushed back or removed to/from
the C++ list, based on their creation/vanish in every given point of
space and time step. This approach significantly reduces computational
costs by reducing the computational domain to the grain boundary
region. Further details on the OpenPhase implementations can be found
in [37].

3.1. Simulation setup

Series of MPF simulations were performed in which small seeded
grains grow, directionally, under the uniaxial driving force 𝛥𝑔 of vari-
ous intensities. The 𝛥𝑔 is applied along the 𝑧-axis, thus dictating the
DGG in this direction. The simulation domain is discretized using a
regular grid spacing 𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 = 𝓁 = 1 μm and a constant time
step 𝛥𝑡 = 5 ⋅ 10−5 s. We study a simulation box of size 450𝓁 × 450𝓁 ×
05𝓁, Fig. 3a. We note that these dimensions give us a fairly large
omain compared to the previous studies [37] yet somewhat limited
or studying DGG, as we discuss in the following. Each phase-field
epresents an individual grain, with grain boundaries shown as gray
urves in the figure. Periodic boundary conditions were applied along
he 𝑥- and 𝑦-axis and a zero gradient boundary condition 𝛁𝜙𝑖 = 𝟎 along
axis.

The initial grain configuration plays a crucial role in DGG. This
s due to the non-equilibrium nature of the process, during which a
andom initialization could achieve a steady state only after an ex-
ended period. In terms of simulation, this then requires a significantly
arge representative volume beyond available computational capacities.
ence, a more controlled initialization is considered here, mimicking

he later stage of the DGG process. Initial grains were seeded on a
heckered pattern of 45 by 45 (2025 grains in total), each with finite
andom variations in its size (𝑅0 = 5𝓁 ± 20%) and position (±0.1𝑅0

applied for both 𝑥 and 𝑦 coordinates), respectively. Figure S2 (left)
in the SM demonstrates the initial configuration. This initialization is
further referred to as Initial Grain Distribution IGD1. Additionally, we
considered an almost ideal initial grain distribution (IGD2) with the
initial size varying as 𝑅0 = 5𝓁 ± 5% and the uncertainty in position is
bounded by ±0.05𝑅0. The IGD2 pattern is less disturbed and more stable
in the context of grains’ competitions throughout MPF simulations, here
studied for the sake of comparison with the IGD1. Related simulation
parameters are listed in Table 1.

3.2. Concept of moving box

Detailed investigation of DGG requires large-scale simulation do-
mains, especially with extended dimensions along the direction of the
driving force, which is necessary to establish a steady DGG evolution. In
order to achieve this, we performed additional MPF simulations using
a moving frame, such that the much smaller, and therefore compu-
tationally cheaper, simulation domain shifts and follows the vicinity
of the evolving front during the DGG. The idea behind the concept
of the moving box resembles the Scheil box used for the simulation
of the solidification problems [44], — that is moving through the
microstructure as the solidification occurs and the temperature drops.

Due to the gradient energy contributions, Eq. (22), and the non-

local effects arising from the connected grain boundaries’ network, the
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Fig. 3. (a) Full-domain simulation (on the left) with grains growing parallel to the external force, that is along the 𝑧-axis. The grain boundaries are shown in gray and the
junctions are in orange. The empty volume of the box is occupied by the parent phase. Following the concept of the moving box, the full-domain simulation can be replaced by
a simulation within the red box. The respective simulation box is depicted on the right. Here the boundary conditions on the bottom boundary are updated at each succeeding
time increment. (b) Evolution of the mean variable ⟨𝑅⟩ evaluated on the evolving front. Both, the full-domain simulations and the reduced simulations due to the moving-box
concept, produce almost identical results. The applied intensity of the energy field was 2.4 MJ m−3. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. 4. Selected grains (a) are depicted together with the cross-sections of the simulation domain at 𝑧 = 𝑧1 (b) and 𝑧 = 𝑧2 > 𝑧1 (c). The black arrow shows the growth direction,
which coincides with the direction of the 𝑧-axis. The mean radius of the grains was computed in the cross-sections. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
moving box along the direction of the driving force might affect the
outcome of simulations. To avoid such errors, we performed several
benchmark simulations and found that considering a moving box of
35𝓁 (transparent red domain in Fig. 3a) is enough to avoid the effect
of non-localities on the front’s evolution in our current setup. A direct
comparison presented in Fig. 3b shows that the integration of the gov-
erning equations within the moving box precisely reproduces the results
of the full-domain simulations while reducing the memory consumption
and run-time by a factor of three. Obviously, the computational gain
achieved by using the moving box increasingly grows with the size of
the simulation box and the period of simulations. The scaling behavior
of the DGG simulations with regard to the initial number of grains is
elaborated in the SM Fig. S3.

For the computation of the average grain size on any plane (bottom
boundary of the moving box or in a cross-section) we evaluate the
area of each phase-field 𝐴𝑖 and define the respective radius as

√

𝐴𝑖∕𝜋.
The grain size on the evolving front is computed in a similar manner
but over the curved surface of the evolving front. For this purpose,
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we evaluate the volume of the diffuse interface on the evolving front,
then scale by the interface width 𝜂 to obtain the equivalent area of the
existing phase-fields.

4. Results

4.1. Full-domain simulations

The full-domain simulation refers to our simulations in 450𝓁 × 450𝓁
× 205𝓁 domains. These were performed for a range of intensities 𝛿𝑔
between 1 and 10 MJ m−3, with IGD1 and IGD2 initializations. The
growth kinetics are studied in the cross-section perpendicular to the
𝑧-axis, i.e., by studying the size of grains in each cross-section and
their difference along the 𝑧-axis. Since DGG occurs along this axis,
the length of grown grains in this direction can be used to redefine
the time. Here the simplest assumption can be, to consider a unique
relation between time and the evolved microstructure in that direction:
This has been the assumption in the experimental evaluation of DGG in
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Fig. 5. Evolution of average grain size for the simulation with the energy intensity of 2.4 MJ m−3. (a) Increase of ⟨𝑅⟩ across the growth direction. The mean values are computed
at the last time increment in the cross-sections 𝑧 = 𝑐𝑜𝑛𝑠𝑡. The grain growth exponents are 0.23 and 0.29 for IGD1 and IGD2 initializations, respectively. The orange lines show
the linear fit performed to gain the power law exponent ⟨𝑅⟩ ∼ 𝑡𝑛. (b) Evolution of ⟨𝑅⟩ in the bottom cross-section (boundary), the exponents are 0.36 and 0.42. (c) Finally, the
evolution of ⟨𝑅⟩ on the evolving front, the exponents are 0.46 and 0.59 respectively. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
calcitic prisms [12], where, the growth of calcitic prisms was studied
by considering the average size of grains in the cross-sections extracted
from microtomography measurements. In such an experimental setup,
since temporal information on the microstructure evolution is not
available, the length of evolved grains is assumed to be linear in time.
During the DGG, however, the grains not only grow along the axis
of the driving force but also in any other spatial direction, driven by
the local curvature of the grain boundaries, which influences the grain
size as well. In simulations, one has the advantage of verifying and
analyzing the temporal evolution both along the 𝑧-axis as well as within
each given cross-section. Fig. 4a depicts selected grains evolved through
a simulation, after 7450 time steps. We analyze grain size along the
driving force (𝑧-axis) allowing us to investigate the DGG in a quasi-2D
setup, in which, the variation in grain size along the 𝑧-axis is assumed to
represent the temporal evolution of grains. Thus, we obtain the average
grain size ⟨𝑅⟩ in each cross-section and along the 𝑧-axis. Figs. 4b and
4c exemplify two cross-section views at 𝑧2 > 𝑧1, demonstrating grain
growth in the cross-sections.

Fig. 5a presents the average grain size as a function of height
(along 𝑧-axis, see Fig. 4), for IGD1 and IGD2 grain initializations. The
results show that after a certain initial transient stage, the grain growth
accelerates and approaches a steady-state regime. A growth exponent of
about 0.29 is obtained over this regime, which is significantly smaller
than the normal grain growth’s value of 0.5 [38,39]. The results show
that the increased randomness of initial grains (IGD1 initialization)
only slightly decreases the exponent. The influence of the magnitude
of the driving force on the growth exponent is given in the SM, Fig. S4.
The size of the simulation domain is however not enough to make a
fair comparison. This issue is resolved when using the moving box for
our simulations, as discussed in the next section.

Further, we analyzed the growth kinetics (i) on the bottom of the
simulation domain (in the cross-section) as well as (ii) directly on the
evolving front of growth. These two cases represent the least and the
most affected areas by the directional driving force. The results are
shown in Figs. 5b and 5c, respectively. Power-law growth with expo-
nents 0.42 and 0.59, for the bottom and front cases, respectively. These
values are larger than the exponent corresponding to the analysis along
𝑧-axis (0.29) and closer to the normal grain growth exponent. These
indicate that although the in-plane evolution is anywhere affected by
the directional driving force, evaluation of the grains along 𝑧-axis,
as discussed above and in [12], might not be fully representative of
the DGG and the cross-section analysis along the 𝑧-axis and the in-
plane growth kinetics must be understood and analyzed as well. In
the following, we focus on studying the evolving front which is of the
highest practical interest.
6

4.2. Effect of directional driving force

The dual effects of the directional driving force and curvature-
driven grain boundary motion are extremely convoluted. This requires
a systematic simulation investigation to reveal the effect of the driving
force on the growth kinetics. First, in the proposed modification of
mean-field modeling, although Eq. (20) does not explicitly depend on
the directional driving force, its effect is captured by modifying the
curvature effect through parameter 𝛽, see Eq. (1). This modification of
the curvature-driven motion manifests through the out-of-plane forces,
which then result in a different growth scaling behavior than the
normal grain growth, as demonstrated and discussed in the previous
section. Using the growth exponent 𝑛 = 1

2+𝛽 , we are able to explore the
relationship between the growth kinetics and the applied directional
driving force. For this purpose, we systematically studied a series of
ten simulations with 𝛿𝑔 ranging between 1 and 10 MJ m−3, see Fig. 7.
Again, both initialization strategies were considered. The moving box
method was applied here for computational efficiency and obtaining
prolonged simulations.

Fig. 6 shows the results of DGG simulations. After an initial transient
stage, a power-law growth is established in all cases. We found that the
growth exponent shows a significant dependence on the magnitude of
the driving force. The growth kinetics also depend on the initialization
but it converges over the longer course of simulation. We, therefore,
further our analyses considering only the IGD2 initialization in the
following. To make a better comparison, the values of 𝛽 and 𝑛 are
extracted, based on Eq. (20), and plotted in Fig. 7. We found that the
value of 𝛽 varies between −0.6 and −0.3 with a complex dependence
on the driving force. The physical origins behind these behaviors in
DGG are discussed in the next section. We also note that the DGG
grain size distribution could not converge to a self-similar solution,
in contrast to our 3D MPF studies of normal grain growth [39]. This
is centrally due to the nature of DGG, in which, the presence of the
external driving forces influences the dynamics of the interfaces and
results in deviations from a natural curvature-driven motion. Hence, a
much larger simulation domain and therefore computational capacity
are required to reach a self-similar regime for DGG. Nevertheless, the
accumulated distribution of grains’ size shows a converging trend, see
Fig. S5 in the SM.

5. Discussion

Most microstructures evolve under complex natural or manufactur-
ing processes, needing sophisticated modeling to be investigated. This
is becoming increasingly significant due to the recent advances in AM
which are intrinsically non-equilibrium processes due to the presence
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Fig. 6. (a) Evolution of ⟨𝑅⟩ on the evolving front at various intensities of the energy field (a) 1.65 MJ m−3, (b) 3.75 MJ m−3 and (c) 10 MJ m−3. The orange lines show the linear
fit performed to gain the power law exponents. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. 𝛽 values and corresponding growth exponents 𝑛 in the coarsening law ⟨𝑅⟩ ∼ 𝑡𝑛 = 𝑡1∕(2+𝛽) are shown, determined from the MPF simulations for a range of external forces.
The side-view snapshots of the microstructure at the end of two simulations are shown on the right, corresponding to the minimum and maximum 𝛽 values (marked on the curve).
of dramatic temperature gradients [45,46]. Mesoscale phase-field mod-
eling can play an important role in understanding and determining
the processing-microstructure–property relationships in the AM. In this
direction, the kinetics of grain growth under a predefined temperature
field, i.e., beneath the moving melting pool is of great significance [14,
45,47]. In this work, we combine the strengths of the phase-field
simulations with a mean-field modeling to expand the fundamental
understanding of DGG under the effect of a directional driving force.

Despite its simple set-up, the current simulations have enabled a
systematic consideration of the DGG problem. Foremost, the current
results give clear evidence that (i) directional grain growth has a
different steady-state power-law kinetics than the normal grain growth,
(ii) the exponent in ⟨𝑅⟩ ∝ 𝑡𝑛 for directional driving force cn be obtained
from the simulations and (iii) the simulation results can be mapped to
the mean-field formulation presented in Section 2.

One essential challenge in studying DGG is the way one can mea-
sure the phenomenon. The analysis of the full-domain simulations
was performed in three different ways (places in the simulation box),
considering

• a fixed cross-section perpendicular to the growth direction, cho-
sen to be 𝑧 = 0 in Figs. 4 and 5b,
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• the cross-sections along the growth direction, i.e., 𝑧 ≠ 𝑐𝑜𝑛𝑠𝑡, in
Figs. 4 and 5a, and,

• the evolving front, shown in Figs. 3a and 5c.

Typical experimental investigations do not provide access to the evolv-
ing front during the DGG, but only the final grain structures, such as
in Fig. 4a, resulting from the process. As a result, the analys is of the
grains in cross-sections is useful. Along the DGG axis, the cross-sections
are thus interpreted as a series of snapshots throughout the DGG
process, e.g. considered by [12]. Our results demonstrate however that
the first technique significantly underestimates the growth exponents,
which means that the association of the 𝑧-axis (growth direction) with
the time scale is not plausible. The extraction of the growth kinetics
from a given microstructure using a mean-field approach is in general
incorrect.

The values of 𝛽 and 𝑛 for the cross-section and the evolving front
are shown in Fig. 7 for comparison. For the smallest driving force, a
steady power-law could not be deduced from the cross-section analysis.
Nevertheless, we found that apart from the difference in the absolute
values, the trends in 𝛽 (𝑛) are similar to the evolving front, Fig. 7. The
systematic deviation is explained as follows.
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Fig. 8. Schematic sketches of the evolving front and a cross-section across two grains.
The force imbalance at the grain boundary junctions (in the direction of the driving
force) imposes competitive growth of the grains. Isotropic grain boundary energy is
applied, which means that the stable triple junction configuration (plotted in red) tends
to angle 𝛼 = 120◦. A similar force imbalance works on the cross-sections, wherever the
out-of-plane forces do not match. Note that the growth of grains, if considered in the
cross-sectional plane, ignores the curvature portion which is considered in the evolving
front. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

For the first two ways of measurements, the consideration of DGG
reduces to 2D (cross-sections), in which, the effect of the directional
driving force on the grain boundaries comes normal to the plane. In the
third case, tracing the grain growth on the evolving front, the curvature
contributions of grains are also considered. Note that the evolving front
is a quasi-2D surface, not a perfect 2D plane, partially curved due to the
force balance required at the grain boundary junctions. Fig. 8 schemat-
ically depicts the cross-section and evolving front with the force vectors
acting on the grain boundaries. As it is demonstrated, from the cross-
section case, we capture the effect of driving force as the imbalance
from the forces along the grain boundary junctions. Decomposing this
force in the plane, the in-plane components of interfacial tensions affect
the in-plane grain growth. For the evolving front, however, we see that
the effect of the driving force is in part directly incorporated into the
curved grain boundaries, Fig. 8. This indicates that the kinetics of the
grain growth on the evolving front is a more complete representative
in studying DGG and related parameter 𝛽.

The mean-field derivations reveal that the growth rate dramatically
changes with 𝛽 values, Fig. 2a. A lower 𝛽 value gives a broader, more
asymmetric grain size distribution, Fig. 2b. The simulation results show
that the 𝛽 values are negative (the growth exponents are larger than
0.5). We also found that 𝛽 asymptotically approaches a constant value
when increasing the intensity of the driving force, Fig. 7. On the other
end of the spectrum, the value of 𝛽 decreases with decreasing the
intensity of the driving forces, and if the driving force is too small,
the grains shrink under the dominant effect of their curvature. Most
interestingly, we found that for the intermediate values of the driving
forces, a maximum value of 𝛽 (slowest growth kinetics) is achieved.

For a (relatively) large driving force, we found that the driving
force tends to make the grain more parallel and thus slows the growth
kinetics on the evolving front, resulting in a larger 𝛽 value. In this case,
the newly created segments of the grain boundary tend to orient along
the direction of the driving force. In fact, if the driving force is very
large, the grains elongate and pack more parallel. This became evident
from the distribution of the aspect ratios of the grains, as shown in
8

Fig. 9. Cumulative distribution of grains’ aspect ratio for various intensities of the
driving force field (units MJ m−3). The arrow shows the trend as the driving force
increases, indicating the convergence in the distributions. The zoomed inset panel
shows the vicinity of small aspect ratios. The simulations were carried out using IGD2
initialization. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 9. We found that with increasing the intensity of the driving force,
the grains reach a limiting aspect ratio distribution that imposes the
constant value of 𝛽 (Fig. 7) for very large driving forces.

With decreasing the intensity of the driving force, the grain bound-
ary segments can grow while deviating from the driving force direction.
In this case, the curvature-driven grain boundary motion and the equi-
librium at the junctions can more effectively influence the evolution
of the grains, resulting in a faster growth kinetics (more negative 𝛽
value) on the evolving front. Grains’ morphology compared in the
two simulation side views (two different driving forces / 𝛽 values)
in Fig. 7 confirm these findings. Our results show that the coopera-
tion/competition between curvature-induced grain boundary/junction
dynamics and the directional driving force can lead to the nonlinear
DGG behavior, summarized in Fig. 7.

More complex setups are required to close the gap with real-world
scenarios. In particular, besides its intensity, the spatial geometry of
the driving force can be an influential factor in DGG. In fact, the
interference between the curvature-induced dynamics and the driving
force depends on the pattern of the external field. Another factor that
can come to play is the nucleation of new grains that can occur along
the DGG. These aspects are actually treatable on the basis of the present
mean-field and phase-field framework and are suggested for future
studies.

6. Conclusions

We investigated the kinetics and mechanisms of DGG using 3D
phase-field simulations discussed in the context of a phenomenological
extension of the mean-field model for grain growth. We found that
in a direction growth procedure, even under a uniform driving force,
the growth can be non-linear and thus the association of the time
scale with the growth axis can be misleading. An inverse modeling
can be suggested, with a model reproducing the temporal evolution of
individual grains, like the demonstrated phase-field simulations, which
must resemble the observed microstructural changes along the growth
axis.

Furthermore, the effects of the intensity of the external driving force
and various measurement setups to analyze DGG were systematically
studied. The results reveal that a steady-state power-law kinetics can
be established in the course of DGG, giving a growth exponent that is
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generally larger than 0.5 (normal grain growth). We discuss that the
interference between curvature-induced grain boundary dynamics and
directional driving force dictates the growth kinetics. The higher the
driving force, the higher the growth kinetics, when initially increasing
the driving force. Increasing the driving force above a certain threshold,
the grain boundary curvature and the force balance at the junctions set
the maximum achievable grains’ aspect ratio, thus limiting the growth
kinetics. The results show that the large-scale phase-field simulations
could be reproduced using smaller domains by implementing a moving
box setup in the simulations, significantly increasing the total period
of DGG which is necessary to reach a steady-state regime. The pro-
posed phenomenological mean-field model and phase-field simulation
framework provide a solid ground for investigating DGG in complex
processes during additive manufacturing.
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