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Oligomerization and tyrosine
nitration enhance the allergenic
potential of the birch and grass
pollen allergens Bet v 1 and Phl p 5
Janine Fröhlich-Nowoisky1*, Nadine Bothen1, Anna T. Backes1,
Michael G. Weller2 and Ulrich Pöschl1

1Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany, 2Division 1.5 -
Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany

Protein modifications such as oligomerization and tyrosine nitration alter the
immune response to allergens and may contribute to the increasing prevalence of
allergic diseases. In this mini-review, we summarize and discuss relevant findings
for the major birch and grass pollen allergens Bet v 1 and Phl p 5 modified
with tetranitromethane (laboratory studies), peroxynitrite (physiological
processes), and ozone and nitrogen dioxide (environmental conditions). We focus
on tyrosine nitration and the formation of protein dimers and higher oligomers via
dityrosine cross-linking and the immunological effects studied.
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1. Introduction

Tyrosine nitration and dityrosine cross-linking are post-translational protein

modifications that occur under oxidative conditions. Tyrosine nitration involves the

replacement of a hydrogen atom on the aromatic ring of the amino acid with a nitro

group, while dityrosine cross-linking refers to the formation of covalent bonds between

two tyrosine residues resulting in protein dimers and oligomers. These modifications

affect protein structure and function and are associated with various diseases (1–3). They

serve as biomarkers of oxidative damage in proteins, providing insight into the role of

oxidative stress in disease development and progression (4–6). These tyrosine

modifications also play a crucial role in altering the immune responses to allergens and

may contribute to the increasing prevalence of allergic diseases and their association with

traffic-related air pollution (7–12).

There are a variety of airborne allergen sources including plant pollen, fungal spores, and

other biological aerosol particles. The allergenic proteins are released into the atmosphere

when these particles rupture in response to humidity, exposure to anthropogenic air

pollutants such as ozone (O3) and nitrogen dioxide (NO2), or mechanical influences

(13–20). In the atmosphere, the proteins can react with reactive oxygen and nitrogen

species (ROS/RNS), peroxyacetyl nitrate, or undergo photo-oxidation by UV radiation

(10, 21–27). These reactions promote chemical protein modifications such as tyrosine

nitration and dityrosine cross-linking via the formation of radical intermediates. In

particular, summer smog conditions with high O3 and NO2 concentrations have been

shown to efficiently nitrate and cross-link proteins within hours to days (21, 28–30). Air

pollutants such as O3 and NO2, and particulate matter can also induce or enhance

oxidative stress and inflammatory processes leading to the formation of endogenous
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/falgy.2023.1303943&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/falgy.2023.1303943
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/falgy.2023.1303943/full
https://www.frontiersin.org/articles/10.3389/falgy.2023.1303943/full
https://www.frontiersin.org/articles/10.3389/falgy.2023.1303943/full
https://www.frontiersin.org/articles/10.3389/falgy.2023.1303943/full
https://www.frontiersin.org/journals/allergy
https://doi.org/10.3389/falgy.2023.1303943
https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org/


Fröhlich-Nowoisky et al. 10.3389/falgy.2023.1303943
ROS/RNS such as peroxynitrite (ONOO�), which is the main

mediator of physiological tyrosine nitration and oligomerization

(10, 31–34). In addition to the naturally occurring tyrosine

nitration and cross-linking reactions, artificial protein nitration

and dityrosine formation can be achieved by reaction with

tetranitromethane (TNM), a standard laboratory reagent.

While the TNM nitration lacks biological relevance, its usage

in laboratory studies provides valuable insights into the

consequences of tyrosine nitration and cross-linking in a protein

molecule (8, 9, 28, 29, 35, 36). In addition to tyrosine nitration

and dityrosine cross-linking, the reaction of proteins with

oxidants can also result in other tyrosine modifications such as

tyrosine nitrosylation, in the modification of other amino acids,

and in protein degradation (29, 37–40).

The birch pollen allergen Bet v 1 and grass pollen allergen Phl

p 5 are major airborne allergens in Central Europe (41–45). Both

allergens serve as important diagnostic markers for genuine birch

or grass pollen sensitization (44–47). In recent years, several

studies have investigated the reactions of nitrating agents with

the two allergens. Here, we summarize relevant findings on the

chemical modification of these allergens by TNM, peroxynitrite,

polluted air, O3/NO2 gas mixtures, and their effects on innate

and adaptive immune responses and discuss future research

perspectives.
2. Tyrosine nitration

The proportion of nitrated tyrosine residues in a protein can be

represented by the tyrosine nitration degree (ND) and provides

information about the extent of nitrosative and oxidative damage

in a protein. It is defined as the ratio of nitrated tyrosine residues

to the total number of tyrosine residues of a protein molecule.

The ND of a protein can be determined by a variety of

chromatographic, immunochemical, and mass spectrometry-

based methods (28, 48–53).

For Bet v 1, the reaction with TNM yielded nitration degrees

of up to 70% compared to peroxynitrite with up to 50% and to

O3/NO2 achieving up to 22% nitration (29). The reaction of Bet

v 1 with polluted air resulted in lower nitration degrees of �10%

but shows that the allergen can be nitrated under environmental

conditions (21). In contrast to Bet v 1, the grass pollen allergen

Phl p 5 has received less attention with respect to tyrosine

nitration. Only recently, Backes et al. (30) reported Phl p 5

nitration degrees of up to 40 % for the reaction with ONOO�

and up to 10% for O3/NO2 exposure.

The determination of the total nitration degree is particularly

useful for kinetic investigations of tyrosine nitration, but not all

tyrosine residues of a protein are nitrated with the same

efficiency (52). Factors that determine the selectivity of tyrosine

for the nitration reaction are the protein structure and the

position of the tyrosine residues, the nitrating agent and the

reaction conditions (10, 52, 54). Exposure of the aromatic ring to

the surface of the protein, the location of the tyrosine within a

loop structure, and its proximity to an adjacent negative charge

favor nitration (55).
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Determining the preferred nitration sites is particularly

important for understanding the impact of nitration on protein

functionality and interactions with the immune system. The total

ND can be misleading when specific, biologically relevant

tyrosine residues are highly nitrated while others remain

unmodified as a single highly nitrated tyrosine, even in the

background of relatively low total ND, can have a significant

impact on protein structure and function.

Figure 1 shows the positions and the relative solvent

accessibility (RSA) of the tyrosine residues for both allergens

based on protein databank entries PDB 4A88 (Bet v 1) and PDB

2M64 (Phl p 5) (56, 57). Bet v 1 consists of 159 amino acids and

contains seven tyrosine residues (Y5, Y66, Y81, Y83, Y120, Y150,

Y158) as potential nitration sites. Based on the RSA values, all

tyrosine residues from Bet v 1 are well accessible for modification,

with the exception of Y120. This is in agreement with Karle

et al. (9), who predicted for another databank entry of Bet v 1

(PDB 1BV1) and based on accessibility and electrostatics that Y5,

Y81, Y83, Y150, and Y158 are preferentially nitrated, while the

positively charged environment of Y66 disfavors nitration, and

Y120 is inaccessible due to its shielded position. Gusenkov et al.

(59) characterized ONOO�-modified Bet v 1 (at ONOO� to

tyrosine molar ratios of 1:1 and 5:1) and could distinguish up to

12 variants with one to sixfold nitration. The three- to sixfold

nitrated variants were detected only in samples modified with

higher amounts of ONOO� (molar ratio 5:1). Their results

indicate the occurrence of Bet v 1 variants with identical nitration

degrees but site-specific nitration.

Reinmuth-Selzle et al. (29) found that the preferred reaction sites

of Bet v 1 vary depending on the nitrating agent. Residues Y81 and

Y83 were the preferred nitration sites for TNM, Y83 and Y158 for

O3/NO2, and Y150 for ONOO�. These tyrosine residues have high
solvent accessibility and are located in hydrophobic protein

environments. Residues Y150 and Y158 are located in the C-

terminal helix and Y81 and Y83 in the hydrophobic cavity, both

key positions for the binding of specific IgE as well as ligands such

as fatty acids, cytokines, and flavonoids (29). Low levels of

nitration were achieved for Y81 (O3/NO2), Y150 (TNM, O3/NO2),

and Y158 (ONOO�). Y5 and Y120 nitration could not be detected

and Y66 nitration was only found for ONOO�-modified Bet v 1,

but could not be quantified. Gusenkov and Stutz (60) later found

that the reaction with ONOO� leads to nitration of six tyrosine

residues (Y5, Y66, Y81, Y83, Y150, Y158) with preferential

nitration of the two surface-exposed tyrosine residues Y5 and Y66.

Site-specific nitration and different variants can also be expected

for Phl p 5, but so far, to our knowledge, the preferred nitration sites

have not been determined for the grass pollen allergen. After

cleavage of the 25 amino acid signal peptide, the mature Phl p 5

consists of 287 amino acids including 12 tyrosine residues: Y30,

Y42, Y90, Y133, Y137, Y149, Y152, Y232, Y235, Y249, Y261, and

Y310. The 3-D ribbon structure of Phl p 5 is shown in Figure 1.

Because the available structure covers only the amino acid residues

55 to 285 only nine tyrosine residues (Y90-Y261) are included.

The protein consists of two domains that are flexibly connected by

a central linker region. Each domain is formed by a 4-helix bundle

stabilized by a hydrophobic core (57).
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FIGURE 1

Position and relative solvent accessibility (RSA) of the tyrosine residues in the 3D-structure (ribbon view) of Bet v 1.0101 (PDB accession code: 4A88) (56)
and Phl p 5.0101 (PDB accession code: 2M64, assembly 1) (57) created with the PyMOL Molecular Graphics System, Version 2.5.2 Schrödinger, LLC (58).
Tyrosine residues are displayed as molecular surface and numbered according to the amino acid sequence of full-length Bet v 1 and Phl p 5. Coloring of
the tyrosine residues is according to their RSA from blue (0%, buried) to green (50%, exposed).
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Applying the commonly used RSA threshold of 20% to define

buried and exposed residues, two out of the nine tyrosine residues

(Y133, Y152) can be classified as buried, while the other seven

residues (Y90, Y137, Y149, Y232, Y235, Y249, Y261) are surface

exposed and can be expected to be more susceptible to nitration

(55, 61, 62). Further studies are needed to determine the

preferred nitration sites in the grass pollen allergen.
3. Dityrosine cross-linking

Dityrosine cross-linking can lead to protein oligomerization and

the formation of insoluble protein. In contrast to tyrosine nitration,

less is known about the oligomerization via dityrosine cross-linking

for the two allergens as the initial studies focused on tyrosine

nitration. However, dimer and trimer formation was observed but

not quantified for the reaction of Bet v 1 with TNM (9, 35). The

reaction of Bet v 1 with ONOO� yielded up to 42% protein dimers

and higher oligomers (63). For Bet v 1, the tyrosine residues, Y5,

Y66 and Y150 were suggested to be involved in the dityrosine cross-

linking due to their solvent-exposed position (35, 64).

For Phl p 5, exposure to O3/NO2 and ONOO� lead to the

formation of protein dimers and higher oligomers for up to 50% of

the protein mass (30, 63). For dimerization and further

oligomerization, the effect of steric hindrance, however, is likely

more important than for the nitration reaction (22). Thus, for Phl

p 5, the tyrosine residues Y90, Y232, Y235, Y249, and Y261 could
Frontiers in Allergy 03
potentially be involved in dityrosine formation due to their high

solvent exposure (Figure 1). For both allergens, further studies are

needed to determine the preferred reaction sites for dityrosine

cross-linking and to investigate the extent of cross-linking under

different reaction conditions. Since different structural dimers may

have different biological effects, a site-selective characterization is

also required for dityrosine cross-links, similar to the concept of

the tyrosine-specific degree of nitration.
4. Influence of the reaction conditions
on tyrosine nitration and dityrosine
formation

Several studies have investigated the influence of experimental

conditions on the extent of tyrosine nitration and dityrosine cross-

linking. For example, for the reaction with TNM, the ND of Bet v 1

strongly depends on the molar ratio of TNM to tyrosine residues

(29), whereas the reaction time seems to be less important (51).

Similarly, also for the reaction with ONOO�, the ND depends

on the molar ratio of ONOO� to tyrosine residues (29, 30, 63).

In contrast to the reaction with TNM, the ND for the reaction of

Bet v 1 with ONOO� depends on the reaction time. Shorter

reaction times (15 min vs. 100 min) lead to higher NDs and, in

addition, low temperatures (4�C vs. RT) and the addition of a

chelator diethylenetriamine pentaacetic acid (DTPA), which

prevents the reaction of ONOO� with metal ions, such as iron
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or copper, favor nitration (29). Reaction time and temperature

affect the generally rapid degradation of ONOO� and the degree

of protein degradation, which increases with increasing reaction

time and temperature.

The reaction with O3/NO2 is strongly influenced by changes in

the O3 concentration and rather insensitive to changes in the NO2

concentration (30, 65). For the grass pollen allergen Phl p 5, higher

nitration and oligomerization was observed at higher gas

concentrations and longer reaction times, but the highest

oligomerization was achieved for the reaction with O3 alone (30).

This can be explained by a competitive reaction of the tyrosyl

radical formed in a first reaction step with O3, which either

reacts with an NO2 molecule, leading to the formation of 3-

nitrotyrosine, or with another tyrosyl radical, forming a

dityrosine cross-link (22, 66). Without the addition of NO2, there

is no competitive reaction resulting in higher oligomerization of

the protein. Higher temperatures can increase the rate of tyrosyl

radical formation by ozonolysis, contributing to the formation of

nitrated and cross-linked protein species, especially under

tropical and summer smog conditions (21, 65, 67). In this

context, also the lifetime of an allergen in the air becomes

important as a longer atmospheric residence time increases the

chances for chemical modification by O3 and NO2.

Under atmospheric conditions, the reaction rates also depend

on the phase state of the proteins which, in turn, depends on

temperature and relative humidity. At high temperature and high
FIGURE 2

Mast cell degranulation by native and modified Bet v 1. IgE cross-linking on effe
can lead to an increase or decrease of accessible epitopes on an allerg
conformational changes, and protein degradation. Arrows indicate a relative
Modification of epitope sites and shielding of epitopes by aggregation reduce
IgE cross-linking if specific antibodies are bound to the mast cell. Created wi
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humidity, the phase state of atmospheric particles is liquid,

changing to viscous, semi-solid, or even glassy at low

temperature and low humidity (66, 68, 69). In the liquid state,

O3 and NO2 diffuse faster into proteins and can therefore react

faster than with solid or semi-solid proteins (70). For reactions

of Bet v 1 with atmospherically relevant concentrations of

O3/NO2 in the aqueous phase, the nitration rate was one order

of magnitude higher (ND � 20% per day) than for solid and

semi-solid proteins on filter samples (ND � 2% per day),

indicating an increased relevance of these processes under humid

summer smog conditions (29). For solid or semi-solid proteins,

such as protein films on the surface of aerosol particles at low

relative humidity, the tyrosine residues near the surface are

expected to be nitrated more efficiently since the nitration of

tyrosine residues in the bulk of the protein film is kinetically

limited by the diffusivity of O3 and NO2 (22, 71).
5. Nitration and dityrosine cross-
linking increase allergenicity of Bet v 1
and Phl p 5

For TNM-modified Bet v 1, several effects on the immune

response have been reported. These include increased

proliferation of Bet v 1-specific T cells, greater proteolytic

resistance, enhanced antigen presentation, altered cytokine
ctor cells requires binding to at least two epitopes. Chemical modification
en through nitration, intra- or intermolecular dityrosine cross-linking,
increase or decrease of IgE cross-linking by individual allergen variants.
s IgE cross-linking, while the formation of neoepitopes can increase the
th BioRender.com.
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profiles, increased IgE binding, and mediator release (8, 9, 35). Bet

v 1 is a small protein with several IgE binding sites clustered in a

small area (64, 72–75). Protein dimers and oligomers may play

an important role in the reported changes in allergenicity

because they display repetitive epitopes. Repetitive epitope

presentation is required for the cross-linking of B-cell receptors

and activation of B-cells and IgE production, and also facilitates

cross-linking of the effector cell-bound IgE, a key event in the

initiation of the allergic response (76–80). Aggregation and

adsorption to natural or anthropogenic particles can also lead to

the display of multiple epitopes (10). In addition to repetitive

epitope presentation, nitration and dityrosine cross-linking can

lead to epitope modification or shielding, or neoepitope

formation (8, 10, 78, 81, 82).

Figure 2 illustrates how the native (monomeric) and modified

Bet v 1 variants may increase or decrease cross-linking of mast cell-

bound IgE. Binding of monomeric Bet v 1 does not induce cross-

linking of IgE binding to the same epitope. Bet v 1 dimers

formed by chemical modification can provide two epitope sites

that facilitate IgE cross-linking. Binding of monomers may also

lead to mast cell degranulation at high allergen concentrations if

two monomers bind in close proximity to each other and

dimerize on the mast cell surface (76). Bet v 1 monomers could

also cross-link IgE if the mast cell carries IgEs, whose binding

sites on the monomer do not overlap. This would be more likely

if structural changes or nitration lead to the formation of

neoepitopes, such as haptenic nitroaromatic groups, which are

particularly small and highly immunogenic (83).

In sera of allergic patients, Gruijthuijsen et al. (8) found higher

levels of IgE specific for the TNM-modified Bet v 1 than for the

native Bet v 1. This suggests that some patients may have been

exposed and sensitized to different variants of Bet v 1, as their

sera contained IgE specific for the neoepitopes of Bet v 1.

Chemical modification of epitope sites can theoretically also lead

to reduced IgE cross-linking if the IgE are specific for the

unmodified epitope or if oligomerization leads to altered epitope

presentation or shielding by steric hindrance and/or altered

charge interactions (84, 85). For example, reduced basophil

activation and mediator release has been reported for trimeric

Bet v 1, which tends to form high molecular weight aggregates in

solution likely reducing the number of displayed epitopes (86).

Recognition of allergens by airway epithelial receptors such as

the Toll-like receptor 4 (TLR4) and other direct allergen-airway

epithelial interactions are the first events following allergen

inhalation. TLR4 activation has been found for the grass pollen

allergen Phl p 5 but not for the birch pollen allergen Bet v 1 (63).

TLR4 activation leads to the release of cytokines and other

danger signals that initiate the presentation of the allergen to

immune cells and the production of allergen-specific IgE, which

is crucial for the allergic response phase (63, 87–92).

Peroxynitrite modification enhanced TLR4 activation of Phl p 5

by factors of up to � 2.1 (63). This may promote sensitization to

the grass pollen allergen under conditions of oxidative stress

through positive feedback loops (31, 63, 93).
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6. Future research

Understanding how environmental risk factors such as air

pollution affect the allergenic potential of proteins, either directly

or indirectly via oxidative stress, is crucial for the protection of

public health (10, 69, 94). The existing literature shows that the

reaction of Bet v 1 and Phl p 5 with O3/NO2 or ONOO� can

result in various mixtures of nitrated and cross-linked variants

with altered allergenicity. Potential real-world exposure and

variations in the allergenic potential among the nitrated and

cross-linked variants remain unclear. Future studies should

investigate the extent of allergen modification, both within pollen

and as free allergens under environmental conditions. Because

allergen content and release from pollen vary, airborne allergens

and their variants should be monitored (95–98). In vitro and in

vivo studies are needed to assess the allergenic potential of the

individual variants and their mixtures in the development and

response phases of allergic diseases. In addition, research is needed

to investigate the importance of photo-oxidation and the reaction

of allergenic proteins with the air pollutant peroxyacetyl nitrate on

tyrosine nitration and dityrosine cross-linking (23, 24, 27).
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