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Abstract 

 

The applications of composite overwrapped pressure vessels (COPVs) in extreme 

conditions, such as storing hydrogen gases at very high pressure, impose new 

requirements related to the system's integrity and safety. The development of a structural 

health monitoring (SHM) system that allows for continuous monitoring of the COPVs 

provides rich information about the structural integrity of the component. Furthermore, 

the collected data can be used for different purposes such as increasing the periodic 

inspection intervals, providing a remaining lifetime prognosis, and also ensuring optimal 

operating conditions. Ultimately this information can be complementary to the 

development of the envisioned digital twin of the monitored COPVs. Guided waves 

(GWs) are preferred to be used in continuous SHM given their ability to travel in complex 

structures for long distances. However, obtained GW signals are complex and require 

advanced processing techniques. Machine learning (ML) is increasingly utilized as the 

main part of the processing pipeline to automatically detect anomalies in the system's 

integrity. Hence, in this study, we are scrutinizing the potential of using ML to provide 

continuous monitoring of COPVs based on ultrasonic GW data. Data is collected from a 

network of sensors consisting of fifteen Piezoelectric (PZT) wafers that were surface 

mounted on the COPV. Two ML algorithms are used in the automated evaluation 

procedure (i) a long short-term memory (LSTM) autoencoder for anomaly detection 

(defects/impact), and (ii) a convolutional neural network (CNN) model for feature 

extraction and classification of the artificial damage sizes and locations. Additional data 

augmentation steps are introduced such as modification and addition of random noise to 

original signals to enhance the model's robustness to uncertainties. Overall, it was shown 

that the ML algorithms used were able to detect and classify the simulated damage with 

high accuracy. 
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1.  Introduction 
 
Structural health monitoring (SHM) offers a new paradigm for dealing with challenges 

imposed by safety requirements for critical infrastructures and the ever-increasing 

demand for using light-weight structures in extreme conditions, such as using composite 
overwrapped pressure vessels (COPVs) for storing hydrogen gases at very high pressures. 

SHM enables the continuous monitoring of COPVs by gathering data from a sensor 
network installed on the surface of the structure. Such data can be used for detecting 

structural changes and damages early on and preventing potential catastrophic failures. 

Ultrasonic-guided waves are well suited for application in an SHM system given their 
ability to travel in complex structures over long distances and their sensitivity to different 

kinds of damage. However, the challenging task remains in analyzing the gathered data 
and extracting relevant features for the automatic assessment of the structure's 

integrity. [1, 2] 

 
Machine learning (ML) has proven itself a very powerful tool to be used as the main part 

of data analysis and decision-making [2], enabled by the advances made in recent years 
through new model architectures [3] and hardware capabilities. The successful 

application of ML for the task of time-series classification [3] and more specifically, 

damage detection and localization has been shown for different types of specimens and 
structures [4, 5]. This study focuses on the application of several model architectures for 

detecting multiple damages on a Type IV COPV combined with additional data 
augmentation steps. Thus, a long short-term memory (LSTM) autoencoder and a 

convolutional neural network (CNN) model are utilized for the tasks of anomaly detection 

and damage localization. Different damage scenarios are simulated by gluing single or 
multiple varying weights on different parts of the COPV. A sensor network comprised of 

fifteen piezoelectric wafers (PZTs) is used to generate and record the guided wave signals. 
Further, data augmentation steps are introduced to increase the number of samples in the 

training dataset and to increase the robustness of the model against uncertainties.  

 

2. Methodology  
 

2.1 Experimental Setup 

 
For monitoring and assessing the condition of the Type IV COPV, a sensor network of 

PZTs was applied on the cylindrical surface of the pressure vessel. The design of the 
sensor network consists of three rings with five PZTs each. The spacing between the PZTs 

around the circumference is about 144 mm and 610 mm is kept between the single rings 

for covering the total length of the COPV. DuraAct patch transducers (P-876K025) with 
a 10 mm circular ceramic embedded in a ductile polymer from PI Ceramics (Lederhose, 

Germany) were the PZTs used in the setup. A total of fifteen PZTs were bonded to the 
COPV’s surface with a thin layer of two-component epoxy adhesive and then wired to a 

VantageTM 64 LF system from Verasonics (Kirkland, USA). The data acquisition process 

acts in a way that one single PZT worked as an actuator while the rest worked as sensors 
and the role alternated until all the PZTs served as actuators. This results in an entire 

dataset of 105 different actuator-sensor combinations also referred to as channels. Based 
on previous experiments, the excitation frequency (f = 220 kHz) seemed to be the most 

promising. Several types of variations were considered during the data acquisition 
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processes, which are shown in Figure 1. Before considering different damage scenarios, 
baseline measurements of the intact structure were recorded.  

 
2.2  Data augmentation  

 

Two different methods are utilized for anomaly detection and damage localization to 
identify damaged areas as shown in Figure 1. Anomaly detection is achieved by 

employing an LSTM autoencoder. For the damage localization, a CNN model is chosen. 
The experimental dataset consists of one undamaged case and nine different simulated 

damage scenarios conducted for two boundary conditions resulting in a total of twenty 

unique datasets for one frequency. The available experimental dataset isn’t enough for 
model training and validation. Thus, further data augmentation steps are introduced to 

enhance the training procedure. First, half of the experimental datasets are chosen, 
including the undamaged case and cases 2, 4, 6, and 9 as shown in Figure 1. The 

remaining experimental datasets are excluded from the data augmentation and training 

steps. They are only used for testing purposes in the final stage. The damage cases 2, 4, 
6, and 9 are all conducted with the 330 g weight placed on different locations. The 

difference between damage cases 2 and 6 is that for damage case 2, the areas A1 and A5 
are active as opposed to area A1 for damage case 6, see Figure 1.  

 

Second, synthetic datasets are generated by systematically changing the arrangement of 
the 105 channels, whereby each channel corresponds to a single actuator-sensor 

combination. For example, the signal recorded from the actuator-sensor combination S1 
and S6 with the simulated damage in area A1 will become the recorded signal from the 

actuator-sensor combination S2 and S7 when the damage is located in area A2. In this 

way, it is possible to generate damage cases for all different areas. More specifically, this 
procedure is repeated for the experimental damage cases 2, 4, 6, and 9 so that all damage 

areas are included in the final training dataset. In total, the training dataset contains 42 
different cases (21 for each boundary condition).  

 
Figure 1: Simulated damage cases are shown along with the corresponding active areas for the unwrapped 

middle section of the COPV with the sensor network of 15 PZTs forming three rings. Each experiment was 

conducted for two different boundary conditions (supported on four points and supported on the nozzles).  

Third, the previously created datasets are augmented to increase the number of training 
samples. This step is necessary since even with the rearrangement of the channels and 

synthetically generating damage cases there aren’t enough samples for splitting them into 
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training and validation datasets. Hence, more dataset samples are required, which are 
created by adding randomly generated noise to each of the 105 channels of the 42 samples 

from the previous step. The signal augmentation is conducted as follows. In the first step, 
the frequency response of each signal is determined. In the second step, specific parts of 

the frequency-amplitude curve are shifted to the left or right by a small value randomly 

chosen from a predefined range. After that, white noise is added to those parts of the 
frequency response. The signal is then converted back to the time domain. In the final 

step, white noise is added to the signal in the time domain. Figure 2 shows a typical 
original and augmented signal for one channel of a single dataset. This should help the 

reader to get a feeling for the impact of data augmentation on the experimental results. 

Each of the 42 samples of the synthetically generated dataset is augmented 10 times, 
which results in a total of 420 samples. These 420 samples are split into two 210 sample 

datasets used for model training and validation. 
 

In summary, a total of 20 experiments were conducted for different cases and two 

boundary conditions  (1 undamaged and 9 damaged cases for each boundary condition as 
shown in Figure 1). Each experimental dataset contains 105 different actuator-sensor 

readings referred to as channels. Afterward, a subset of experimental measurements was 
chosen (cases 2, 4, 6, and 9 together with the undamaged case) for the data augmentation 

and model training steps. In the data augmentation step, first, synthetic damage cases 

were generated by systematically changing the arrangement of the channels. And in the 
second step, new synthetic datasets were generated by augmenting the signals for all 

channels, see Figure 2. Thus, a total of 420 samples were available after the data 
augmentation step, which were split into two 210 sample datasets used for model training 

and validation. The remaining experimental datasets for cases 1, 3, 5, 7, and 8 were 

excluded from the data augmentation and model training steps and were only used for the 
final model testing.  

 
Figure 2: Comparison between the original and augmented signal for one channel of a dataset. 

2.3 Model training 
 

The machine learning model chosen for anomaly detection is an LSTM autoencoder 

based on [6], which is modified for the application with time series and is implemented 
in tsai [7] as Time Series Sequencer. The Time Series Sequencer is used in a binary 

classification setting, where the undamaged case has the target class 0 and all other 
damaged cases have the target class 1. InceptionTime [8], implemented in tsai [7], is 

chosen for the multi-label classification task of damage localization. It is worth noting 

that in this context, the damage is successfully localized if the corresponding area (in this 
case areas A1 to A10, see Figure 1), where the damage is located, is correctly predicted. 

The target classes are specified with an array containing one or more values. For the 
undamaged case, the array only contains the value zero. And for the damaged cases, the 
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array contains the number designated to the active area. For example, the target array for 
damage case 2 contains the values 1 and 5, and for damage case 4, the values 6 and 10. 
The data are standardized using the mean and standard deviation before the model 
training. The models are trained using ADAM optimizer and the 1cycle policy introduced 

in [9] using a maximum learning rate of 0.001.  
 

3.  Results  
 

The performance of the LSTM autoencoder is shown in Figure 3. The accuracy reaches 

100% after 100 epochs. After the training is completed, the experimental test dataset 
containing the damage cases 1, 3, 5, 7, and 8, is used to test the model's accuracy and 

robustness. The model correctly classified all damage cases with 100% accuracy. It is 
worth noting that these damage cases were not included in the training dataset, which 

shows that the model has learned the correct features and is suited for use in the setting 

of anomaly detection.  

 
Figure 3: Loss and accuracy of the Time Series Sequencer during the training. 

In Figure 4, the loss and accuracy history during the training are shown for the 

InceptionTime model, where it reaches 100% accuracy after about 150 epochs. Similar 

to the anomaly detection case, the model's accuracy and robustness are tested against the 
experimental dataset excluded during the training. The model was able to predict the 

correct labels for the damage cases 1, 3, 5, and 8, which shows that changing the weight 
or having multiple weights in one single area does not pose an issue for the model. 

However, the model was not able to predict all labels for damage case 7. Labels 6 and 7 

were correctly predicted, which belong to the 513 g weight placed between A6 and A10, 
see Figure 1. However, label 1 was missing, which shows that the model did not detect 

the 330 g weight located in area A1.  

 
Figure 4: Loss and accuracy of the InceptionTime model during the training. 

This could be explained by the fact that in the training dataset, the target classes had either 

0, 1, or 2 active labels. However, in damage case 7, the number of active labels is 3. 

Nonetheless, this example shows the limitation of the model and also the need for robust 
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training data, where all relevant damage scenarios are included. It is acknowledged that 
more experimental datasets are required to thoroughly analyze the performance of the 

models and check for issues such as overfitting and lack of generalization. 
 

4.  Conclusions  
 

In this study, it was shown that data augmentation can be utilized as a powerful tool for 
creating rich datasets needed for model training and validation. Furthermore, an LSTM 

autoencoder was used for the task of anomaly detection in a binary classification setting, 

where it performed with 100% accuracy in separating damaged and undamaged cases. 
Moreover, a CNN model was utilized for the task of multi-label classification to predict 

damage areas on the pressure vessel, where it reached 100% accuracy on the training and 
validation dataset. However, the model didn’t reach 100% accuracy on the excluded test 
data due to insufficient damage cases in the training dataset. In summary, while it was 

shown that Machine Learning is a promising tool for the tasks of anomaly detection and 
damage localization and that the models performed with high accuracy on the existing 

dataset, more experimental analysis is required to check for issues such as overfitting and 
to ensure that the models perform well in other scenarios and also in cases where real and 

not simulated damages are present.  
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