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1 Introduction 

Closed material cycles and unmixed material fractions are 

required to achieve high recovery and recycling rates in 
the building industry. In construction and demolition waste 
(CDW) recycling, the preference to date has been to apply 
simple but proven techniques to process large quantities 
of construction rubble in a short time. This contrasts with 
the increasingly complex composite materials and struc-
tures in the mineral building materials industry. Manual 
sorting involves many risks and dangers for the executing 
staff and is merely based on obvious, visually detectable 
differences for separation. An automated, sensor-based 
sorting of these building materials could complement or 

replace this practice to improve processing speed, recy-
cling rates, sorting quality, and prevailing health condi-
tions.  

Current investigations on sensor-based sorting technolo-
gies for CDW are based on the analysis of the visual (VIS) 
and/or the near-infrared (NIR) spectrum [1-5]. For exam-
ple, bricks can be well identified with a VIS camera. Fea-
tures in the NIR range allow separation of gypsum-con-
taining components and organic materials from 
construction site waste. With both methods, however, the 
detection of composite building materials is often difficult 
because adhering impurities cannot be reliably detected. 

The basic objective must therefore be to separate contam-
inants (especially building materials containing SO3 like 

gypsum) from the material mixture as early as possible to 
prevent further spreading. In view of the increasing heter-
ogeneity of construction and demolition waste, this could 
only be achieved by automated pre-sorting within a sim-
plified processing regime. Therefore, in addition to the 
above methods, laser-induced breakdown spectroscopy 
(LIBS) will be used to identify construction materials based 
on chemical information, and its suitability will be investi-
gated as part of the project LIBS-ConSort. 

In a LIBS-System (see Figure 1) pulsed laser is focused on 
the sample surface, some material is ablated, and an ion-
ized expanding plasma is formed. The radiation emitted by 
the plasma is directed to a spectrograph, where the inten-
sity is recorded as a function of wavelength. Specific line 
intensities provide information about the presence of 
chemical elements. For the quantification of the contents, 
system calibrations are carried out with reference stand-
ards. 

The use of LIBS as a suitable basis for sorting has already 

been demonstrated in various application areas and mate-

rials, e.g., polymers [6], aluminum alloys [7] and other 

metals [8]. The advantages of LIBS for industrial applica-

tion are: (i) little sample preparation required, (ii) all 

chemical elements measurable, (iii) short measurement 

times, (iv) real-time evaluation and process control, (v) 

non-contact measurements possible at a distance of sev-

eral centimeters to meters from the sample. This makes 
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LIBS ideal for in-line process control. Compared to color-

based optical methods, LIBS has the advantage that the 

chemical "fingerprint" of the material is used for classifica-

tion and not only the color information of surface-near re-

gions. An EU project [9] has already demonstrated the use 

of LIBS for sorting construction waste. 

 
Figure 1 Exemplary schematic design of a LIBS system 

 
2 Materials and methods 

2.1 Laboratory prototype 

The methodological concept to enable automated, sensor-

based sorting of CDW is shown in Figure 2. Different build-

ing material fractions with a grain size of 20 mm to 

100 mm are transported individually on a conveyor belt, 

where they are detected one after the other by the various 

sensors. By means of the fast camera systems (NIR and 

visual), an initial classification is performed, which should 

also detect composites and possibly define different mate-

rial areas. Existing uncertainties are then reduced by lo-

cally targeted LIBS measurements in order to make the 

most robust estimation possible about the underlying ma-

terial group(s). For data fusion, methods of multivariate 

data analysis and machine learning are used to achieve 

high recognition rates.    

 

Figure 2 Methodological Concept of combining LIBS with NIR- and VIS 

cameras to sort various building materials in CDW. 

Figure 3 shows the current progress and the associated 

components of the laboratory prototype. The conveyor belt 

is simulated with the aid of a rotating circular ring. For this 

purpose, a suitable drive (consisting of a stepper motor, 

motor driver and micro controller) was developed, which 

allows the desired conveyor belt speed to be set. Two hy-

perspectral cameras are positioned directly above the cir-

cular ring. The two models KUSTA1.7 and KUSTA2.2 from 

LLA instruments GmbH cover the NIR range 

(900 nm – 1700 nm) and the short-wave infrared (SWIR) 

range (1600 nm – 2200 nm), respectively. To complete 

the prototype, a laser distance sensor and VIS camera will 

be placed between the hyperspectral cameras. In addition, 

a three-axis galvanometer scanner is used for the LIBS 

system to follow and online calculated measurement path. 

After all sensors are installed, a control and evaluation unit 

are implemented to provide automated real-time classifi-

cation of various CDW materials. 

2.2 Classification 

To investigate the potential of a sensor combination of the 

NIR and SWIR camera with LIBS to discriminate different 

building materials, several samples were collected, which 

are listed in Table 1. The material groups, totalling 91 sam-

ples, are also exemplary shown in Figure 2, whereby plas-

ters are now divided into gypsum-based plasters and other 

plasters (lime or lime-cement based). 

 

 
Figure 3 Under construction: laboratory prototype simulating a  

conveyor belt for CDW under various sensors. 

Table 1 Variety and number of building materials examined with LIBS, 

NIR and SWIR spectroscopy. 

Material group Number of specimens 

Aerated concrete 6 

Asphalt 2 

Brick 42 

Concrete/Mortar 14 

Light concrete 5 

Granit 2 

Plaster 3 

Plaster (gypsum) 4 

(Lime) Sandstone 13 

TOTAL 91 

All samples were measured with the camera systems 

shown in Figure 3. Since the LIBS system is currently still 

under construction, an at-line LIBS system (concrete-LIBS, 

Secopta analytics) was used instead. Data acquisition for 

LIBS data including processing steps and feature extrac-

tion have already been presented in [10]. 
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For hyperspectral data the spectra were first smoothed 

(Savitzky-Golay filter) and baseline corrected (convex 

hull). Subsequently, the following features of the dominant 

absorption band are extracted: FWHM, depth, center 

wavelength, and continuum slope, using the PySptools li-

brary [11]. In addition, the mean reflectance was calcu-

lated over the whole unprocessed spectrum and used as a 

feature.  

Random forest classifiers included in the scikit-learn library 

[12] are used to predict the material groups listed in Table 

1. To avoid the overfitting scenario and simulate a realistic 

classification problem with unknown samples, a leave-one-

out cross validation is performed: According to the total 

number of samples, 91 different training datasets are de-

fined, each of which excludes a single sample, which in 

turn serves as test data. This is to test the ability of a 

trained classifier to recognize an unknown sample. There-

fore, 91 models are trained and applied to their respective 

unknown test sample to predict the material group. This 

procedure is performed for each sensor (NIR, SWIR, and 

LIBS). The final decision of assigning a corresponding class 

is then based on a voting among all models, taking into 

account the prediction probability of each model.  

3 Results and discussion 

Table 2 shows the achieved accuracies depending on the 

sensors used. NIR and LIBS already achieve high accura-

cies when used alone, and correctly detect 93.4 % of sam-

ples. The differences lay in the material group-specific per-

formance, with NIR performing more accurately with 

aerated concrete, granite, and plaster (lime and lime-ce-

ment), while LIBS was better at detecting concrete. SWIR 

showed 86.8 % accuracy, resulting from slightly poorer 

performance in the aerated concrete, asphalt, and light-

weight concrete groups. In the case of plaster (lime and 

lime-cement), however, SWIR detected one more sample 

than LIBS and NIR with a high degree of certainty, which 

is why the combination of all three sensors leads to the 

best results.   

Table 2 Achieved classification accuracy by each sensor and sensor 

combination. 

Sensors Accuracy in % 

NIR 93,4 

SWIR 86,8 

LIBS 93,4 

NIR + SWIR + LIBS 95,6 

 

For a more detailed consideration, Figure 4 shows the con-

fusion matrix for the combination of NIR, SWIR and LIBS. 

In the total evaluation, 95.6% of the samples were cor-

rectly identified. It is relevant to emphasize that the 100 % 

accuracy in the identification plasters containing gypsum is 

particularly relevant, whose removal from the material 

stream is of great importance. Due to the high lime con-

tent, there are still uncertainties with aerated concrete and 

the corresponding lime/lime-cement plasters, which are 

partly classified as (lime)-sandstone. Light concrete also 

shows a slightly lower detection accuracy due to its very 

heterogeneous structure.  

 
Figure 4 Confusion matrix of the performed cross validation with a 

random forest classifier, showing the achieved accuracies by combining 

NIR, SWIR and LIBS. Rows contain the true classes (black) and columns 

the predicted classes (blue). 

4 Summary and conclusion 

In this work, we presented the concept and current pro-

gress of a laboratory prototype for sensor-based sorting of 

construction and demolition waste by combining NIR and 

SWIR with LIBS. To investigate the potential and possible 

information gain by data fusion, the currently available 

systems NIR, SWIR and LIBS were used to detect different 

material groups using random forest classifiers. NIR and 

LIBS both achieved a high detection rate of 93.5 %, 

whereas 86.9 % of samples were correctly detected by us-

ing SWIR data. These results were improved by the com-

bination of all systems with an accuracy of 95.6 %. It was 

demonstrated that merging the individual classification re-

sults based on the underlying prediction probability of the 

individual measurement systems is beneficial. In this way, 

the advantages of the individual systems could be com-

bined. 

In the context of the preliminary investigation, these re-

sults are considered promising for the laboratory prototype 

yet to be completed. Here, the additional information pro-

vided by the VIS camera may allow a further improvement 

of the detection rates. After completion of the prototype, 

an extended data set of test specimens and the influence 

of contamination and moisture on the detection accuracy 

will be investigated. Composite materials will also be con-

sidered separately to develop a concept for reliable identi-

fication. Finally, a real-time application will demonstrate 

the potential of the methodology for industrial use.  
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