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Kurzfassung
Die laserbasierte aktive thermografische Prüfung als berührungslose Methode der zerstörungs-
freien Werkstoffprüfung (NDT) basiert auf der aktiven Erwärmung des Testobjekts (OuT) und
Messung des resultierenden Temperaturanstiegs mit einer Infrarotkamera. Dadurch bedingt
können systematische Abweichungen vom vorhergesagten Erwärmungsverhalten Aufschluss über
dessen innere Struktur geben. Jedoch ist das Auflösungsvermögen für innenliegende Defekte
durch die diffusive Natur der Wärmeleitung in Festkörpern begrenzt. Thermografische Super-
Resolution (SR)-Methoden zielen darauf ab, diese Limitation durch die Kombination mehrerer
Messungen mit jeweils unterschiedlicher strukturierter Erwärmung und mathematischer
Optimierungsmethoden zu überwinden.

Zur Rekonstruktion innerer Defekte mithilfe thermografischer SR-Rekonstruktionsmethodik
wird für die Gesamtheit mehrerer Messungen ein schlecht gestelltes und stark regularisiertes
inverses mathematisches Problem gelöst, was in einer dünnbesetzten Karte der internen
Defektstruktur des OuTs resultiert. Die Inversion mittels iterativer numerischer Minimie-
rungsverfahren profitiert dabei von einzelnen Annahmen wie der vergleichsweisen Seltenheit
von Materialdefekten. Nachdem die Methode bisher experimentell fast ausschließlich auf
eindimensionale Messbereiche (ROIs) beschränkt war, zielt diese Arbeit auf eine Erweiterung
zur Prüfung zweidimensionaler ROIs mit arbiträren Defektverteilungen bei erträglicher
experimenteller Komplexität ab. Ziel ist es, durch die Weiterentwicklung des Technologie-
Reifegrades (TRL) den Technologietransfer zur industriellen Anwendung zu ermöglichen.

Hierzu werden erst die numerische Erweiterung der SR-Rekonstruktionsmethodik für zweidi-
mensionale ROIs erörtert und zwei neue Algorithmen zur Invertierung des zugrunde liegenden
inversen Problems vorgestellt, sowie eine Vorwärtslösung des inversen Problems entwickelt. In
Verbindung mit einem neuartigen Algorithmus zur automatisierten Bestimmung der (optimalen)
Regularisierungsparameter wird erstmals die Möglichkeit geschaffen, analytische Simulationen
zum Einfluss einzelner Parameter auf die erreichbare Rekonstruktionsqualität durchzuführen.
Weiterhin wird der experimentelle Ansatz zur Prüfung zweidimensionaler ROIs erweitert.
Mehrere Messkampagnen validieren die eingeführten Inversionsalgorithmen, die Vorwärtslösung
und zwei exemplarische analytische Studien. Für die experimentelle Umsetzung wird erstmals
die Verwendung lasergekoppelter DLP-Technologie für die makroskopische thermografische
Prüfung nutzbar gemacht, welche die Projektion großflächiger binärer Pixelmuster ermöglicht.
Dadurch kann die Anzahl der erforderlichen Messungen pro ROI ohne Qualitätseinbußen
erheblich reduziert werden (bis zu 20ˆ).

Abschließend werden die erzielten Rekonstruktionsergebnisse der internen Defektstruktur
eines speziell angefertigten OuTs qualitativ und quantitativ mit auf homogener Erwärmung
basierenden etablierten Methoden der thermografischen Prüfung verglichen. Hier zeigt sich,
dass die weitgehend rauschfreien SR-Rekonstruktionsergebnisse alle Defektrekonstruktionen
der betrachteten Referenzmethoden deutlich übertreffen.
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Abstract
Laser-based active thermography is a contactless non-destructive testing method to detect
material defects by heating the object and measuring its temperature increase with an infrared
camera. Systematic deviations from predicted behavior provide insight into the inner structure of
the object. However, its resolution in resolving internal structures is limited due to the diffusive
nature of heat diffusion. Thermographic super resolution (SR) methods aim to overcome this
limitation by combining multiple thermographic measurements and mathematical optimization
algorithms to improve the defect reconstruction.

Thermographic SR reconstruction methods involve measuring the temperature change in an
object under test (OuT) heated with multiple different spatially structured illuminations.
Subsequently, these measurements are inputted into a severely ill-posed and heavily regularized
inverse problem, producing a sparse map of the OuT’s internal defect structure. Solving
this inverse problem relies on limited priors, such as defect-sparsity, and iterative numerical
minimization techniques. Previously mostly experimentally limited to one-dimensional regions
of interest (ROIs), this thesis aims to extend the method to the reconstruction of two-
dimensional ROIs with arbitrary defect distributions while maintaining reasonable experimental
complexity. Ultimately, the goal of this thesis is to make the method suitable for a technology
transfer to industrial applications by advancing its technology readiness level (TRL).

In order to achieve the aforementioned goal, this thesis discusses the numerical expansion of a
thermographic SR reconstruction method and introduces two novel algorithms to invert the
underlying inverse problem. Furthermore, a forward solution to the inverse problem in terms
of the applied SR reconstruction model is set up. In conjunction with an additionally proposed
algorithm for the automated determination of a set of (optimal) regularization parameters,
both create the possibility to conduct analytical simulations to characterize the influence of
the experimental parameters on the achievable reconstruction quality. On the experimental
side, the method is upgraded to deal with two-dimensional ROIs, and multiple measurement
campaigns are performed to validate the proposed inversion algorithms, forward solution
and two exemplary analytical studies. For the experimental implementation of the method,
the use of a laser-coupled DLP-projector is introduced, which allows projecting binary pixel
patterns that cover the whole ROI, reducing the number of necessary measurements per ROI
significantly (up to 20ˆ).

Finally, the achieved reconstruction of the internal defect structure of a purpose-made OuT is
qualitatively and qualitatively benchmarked against well-established thermographic testing
methods based on homogeneous illumination of the ROI. Here, the background-noise-free two-
dimensional photothermal SR reconstruction results show to outclass all defect reconstructions
by the considered reference methods.
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1. Introduction

Nondestructive testing (NDT) comprises a wide field of analytical methods that are used to
evaluate the properties of a material, component or system without causing damage to the object
under test or alter its properties. Furthermore, NDT methods are used to detect, characterize
and localize defects or irregularities in the material or component and are used to ensure the
quality of a product, to determine its fitness for use or to monitor its condition during operation.
NDT methods are used in a wide range of industries, such as the automotive, aerospace, energy,
construction, electronics, medical, and manufacturing industries. The economic importance of
NDT is reflected by the fact that the global NDT market is estimated to be sized at multiple
billion US-dollars [1, 2].
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Figure 1.1: Selection of different NDT methods according to DIN EN ISO 9712:2022-09
(Tab. 1) [3]. Commonly, the methods are further differentiated on whether they are
sensitive to detecting defects in the bulk (blue background) or to detecting surface
defects (red background).

NDT methods can be categorized according to the physical principle they are based on.
The most common NDT methods are based on the fundamental physical principles of
electromagnetism (eddy current testing, magnetic testing), acoustics (ultrasonic testing,
acoustic emission testing) and thermodynamics (thermographic testing) as displayed in
Figure 1.1. Each of the presented methods, commonly abbreviated by a two-letter acronym
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1. Introduction

(e.g., thermographic testing: TT), features its own set of individual advantages governing its
use in industry. As NDT methods are paramount for product or even public safety, national
regulatory bodies are responsible for the certification of NDT methods and the qualification of
NDT personnel (cf. the 31 current members of the European Federation for NDT [4]).

The selection of which NDT method should be used for an inspection task is commonly based
on the type of defect to be detected, the material to be inspected, the size of the region of
interest (ROI) and the required spatial resolution [5]. The latter two are commonly in conflict
with each other, as the spatial resolution of NDT methods is commonly limited by the size of
the ROI. However, a common trend between methods striving towards higher spatial resolution
can be observed. While conventional radiographic testing (RT) methods are more and more
supplanted by computed tomography (CT) and in ultrasonic testing (UT) the use of sensor
arrays for improving its spatial resolution is on the rise, the field of thermographic testing (TT)
experiences a similar trend. Even though TT is still mainly limited by the diffusive nature of
heat diffusion, which limits its achievable spatial resolution depending on the size and depth
of the defect to be detected, the use of high-resolution infrared cameras and the development
of novel data processing methods have led to a significant increase in spatial resolution in
recent years [6]. This is especially true for thermographic super resolution techniques, which
aim to overcome the inherent spatial resolution limit of TT due to the diffusivity of heat flow.
While they are still in their infancy, those methods have already shown potential to become a
powerful extension to the TT toolbox in the future. More so, exploiting the increase in available
computing power is one of the major driving forces in the development of TT methods apart
from the ever-increasing performance and significant price reduction of infrared cameras [7]
and high-performance heat sources (e.g., high-power, high-efficiency laser sources).

This thesis is contributing to the development of thermographic super resolution (SR) methods
by focusing on the expansion of the photothermal SR reconstruction method, which achieves
SR by combining multiple thermographic measurements with varying spatially structured
photothermal heating1. By introducing novel inversion algorithms to the underlying thermal
inverse problem and by extending its experimental implementation to the testing of ROIs
containing arbitrarily shaped defects utilizing a laser-coupled DLP-projector, the technology
readiness level (TRL) of the method is increased from TRL 3 to TRL 4-5. With the introduction
of a fully automated method for performing analytical studies on the achievable reconstruction
quality of photothermal SR reconstruction, this thesis enables further exploration of the
method for easy adaption to different use-cases. All findings are thoroughly validated on a
purpose-made object under test and the now improved reconstruction results are benchmarked
quantitatively and qualitatively against the results of conventional TT reference methods. Here
it is shown that the proposed method is capable of achieving a significant increase in spatial

1Photothermal heating is the act of heating an object by exposing it to electromagnetic radiation emitted
by a light source (laser, LED, halogen lamp, etc.). For opaque objects, the energy of the absorbed light is
subsequently converted to heat near the object’s surface, causing a heat flow within the object.

2



1. Introduction

resolution compared to conventional TT methods, while also yielding sparse defect maps as
a result which make them inherently easily machine-readable and benefit further automated
defect classification.

In the following chapters, first, a theoretical background on the physical principles of TT and
thermographic SR methods is given (cf. Chapter 2). Then, the research goals of this thesis are
discussed (cf. Chapter 3). After that, the performed numerical expansion of the photothermal
SR reconstruction method is presented, as well as the adapted experimental approach and the
developed automated method for performing analytical studies on the achievable reconstruction
quality (cf. Chapter 4). Then, the proposed extensions to the method and the results from
the analytical simulations are validated in laboratory experiments (cf. Chapter 5). Finally,
the achieved results are discussed and benchmarked against conventional TT reference
methods (cf. Chapter 6). The thesis is concluded by a summary of the achieved results
and an outlook on future research topics concerning the further progression of the method’s
TRL (cf. Chapter 7).

3





2. State of the Art

In the following chapter the current state of the art for thermographic detection of defects,
inhomogeneities and other irregularities is laid out. On top of giving an overview of the
theoretical background of heat diffusion and temperature measurements, a special emphasis
is placed on the detection of internal defects/inhomogeneities and the state of photothermal
super resolution techniques preceding this thesis work.

2.1 Principles and Implementations of Active Thermographic
Testing

Thermographic testing (TT) makes it possible to nondestructively get an insight into an object
by examining its interaction with heat. This interaction is inextricably influenced by the
object’s geometry, its thermal properties and the environmental conditions. Any deviations in
this interaction from prior expectation signals the presence of defects, inhomogeneities or other
irregularities (cf. Figure 2.1). Two TT applications are very common in this context, namely

thickness variation

cracksdelaminations & voids

inclusions & pores

Figure 2.1: Material defects, inhomogeneities and irregularities detectable by thermographic
testing.

inferring the object’s geometry when knowing about its thermal properties under known
environmental conditions (e.g., thickness determination) and determining the object’s thermal
properties when its geometry and the environmental conditions are well-known. Primarily, the

5



2.1 Principles and Implementations of Active Thermographic Testing

thermal quantities of interest are the object’s thermal diffusivity α and its thermal effusivity e.
The thermal diffusivity α – a measure of the object’s heat conduction rate – is defined as:

α “ k

cp ¨ ρ . (2.1)

It can be solely described by the object’s thermal material properties, namely by the ratio of
its thermal conductivity k rW{pm Kqs and its volumetric heat capacity cp ¨ ρ rJ{pm3 Kqs given
by the product of its mass density ρ rkg{m3s and its specific heat capacity cp rJ{pkg Kqs. The
thermal effusivity e – a measure of the object’s ability to exchange thermal energy – on the
other hand can be calculated from the thermal material properties as follows:

e “a
k ¨ ρ ¨ cp . (2.2)

Similar to the index of refraction governing the propagation of electromagnetic radiation, the
thermal effusivity acts as the index value for the propagation of heat. As with electromagnetic
radiation, the propagation of heat in a solid body also experiences refraction at an interface
where the effusivity of on side of the interface (e1) mismatches the other (e2). The fraction of
reflected heat is characterized by the thermal reflection coefficient R which can be obtained
as:

R “ e1 ´ e2
e1 ` e2

. (2.3)

In Table 2.1 the thermal diffusivity and effusivity are shown for a selected set of common
materials. From these values it can be observed that while air has a fairly high thermal
diffusivity, its thermal effusivity is several orders of magnitude lower than that of most relevant
solid materials. As a result, on every interface between most solid bodies and air, the thermal
reflection coefficient is very close to R « 1. This gives TT a high sensitivity for detecting
sample boundaries, delaminations, inclusions or air-filled cracks.

Table 2.1: Thermal properties of a selected set of materials at 20 ˝C sorted by effusivity.

Category Material diffusivity effusivity

Name Remark α
“
mm2{s‰ e

”
W
?

s{pm2Kq
ı

Metals

Copper pure 112.72 37.02 [8]
Aluminium 3.3206 86.61 22.56 [9]
Steel 1.0038 14.92 13.98 [10]
Stainless steel 1.4301 3.80 7.70 [11]

Plastics POM 0.15 0.80 [12]
PEEK 0.18 0.59 [13]

Gases Air p “ 1013.25 hPa 20.57 5.60 ¨ 10´3 [14]
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2. State of the Art

Making use of an instationary heat flow in the first place, measuring the impeded heat flow
from changes in thermal effusivity, or analogously the reflected thermal wavefront, is one of
the main operating principles of active TT, since thermographically detectable defects mostly
manifest themselves as areas with a differing thermal effusivity. Furthermore, by evaluating
the timing of the reflected signal, it is possible to determine the depth from which it originated
from (cf. Equation (2.13): diffusion length). Figure 2.2 shows the interaction of common defects
with a transient heat flow.

external heat flow
thermal wave

reflected thermal wave
transmitted thermal wave

reflection

reflection

asymmetric
(lateral)
heat flow

reflection &
attenuation

Figure 2.2: Internal defects, inhomogeneities and irregularities impeding heat flow. At every
interface of changing thermal effusivity, the incoming thermal wavefront is (partly)
reflected. The same object under test as in Figure 2.1 is shown.

2.1.1 Heat Transfer in Solids

In order to understand advantages and limitations of TT it is vital to understand the physics
of heat conduction. Every body that is not in internal thermal equilibrium or in thermal
equilibrium with its surroundings is subject to an exchange of thermal energy. This energy
imbalance is counteracted by a resulting heat flow Q9 rWs and can be facilitated by several
mechanisms, mainly via conduction, convection and by a transfer via radiated energy. However,
for solid convex bodies and small temperature gradients at adiabatic boundary conditions,
thermal conduction is by far the main contributor to the exchange of thermal energy. In
1822, Joseph Fourier laid the foundation to the modern understanding of heat transfer via
conduction in his book “Théorie analytique de la chaleur ” by realizing when examining one
dimensional heat flow that the heat flux density q “ Q9{A rW{m2s in a solid body is directly
proportional to the negative gradient of its temperature field T in space [15]:

q9´ BTBr . (2.4)

The proportionality constant between the heat flux density and the negative temperature
gradient has been observed to be the thermal conductivity k rW{pm Kqs, which is a fundamental
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2.1.1 Heat Transfer in Solids

material property. The observation that the heat flow in a solid is directly proportional to the
spatial derivative of the temperature field directly indicates that the conduction of heat follows
the physics of a general diffusion process, which is governed by Fick’s first law. This law, stated
by Adolf Fick in 1855, initially describing the diffusion process for a chemical concentration
differential ϕ, is given in modern form as follows [16, p. 66]:

J “ ´D ¨ BϕBx , (2.5)

where D rm2{ss is the general diffusion coefficient, ϕ rmol{m3s a concentration field and
J rmol{pm2 sqs the concentration flux. Assuming there is no mass flow in and out of the system
and no mass is created within, we can formulate the following equation, which encodes the
conservation of mass in the diffusion process (thermal analog: conservation of energy):

Bϕ
Bt `

BJ
Br “ 0 . (2.6)

If Equation (2.5) is inputted into Equation (2.6), we obtain:

Bϕ
Bt ´D ¨

B2ϕ

Br2 “ 0 , (2.7)

assuming the coefficient D is not changing in space, i.e., BD{Br “ 0. Equation (2.7) is called
Fick’s second law. In the context of heat conduction, a completely analogous argument can be
made to obtain the following homogeneous partial differential equation (PDE) fundamental to
all heat conduction processes:

1
α
¨ BTBt ´

B2T

Br2 “ 0 , (2.8)

where α is the thermal diffusivity as defined in Equation (2.1).

The diffusive nature of the heat conduction process stands in stark contrast to the propagation
behavior of non-diffusive transport processes governed by the general wave equation, as stated
in Equation (2.9):

1
c2 ¨

B2u

Bt2 ´
B2u

Br2 “ 0 , (2.9)

where u is the wave amplitude/displacement and c is the propagation speed (phase velocity)
of the wave. Here, when compared with Equation (2.8), the major difference lies in the second
derivative with respect to time of the underlying field, which gives rise to the propagating
behavior.

If there are active heat sources in forms of an additional internal or external heat flux density
qsource rW{m3s present, Equation (2.8) can be extended by an additional term. This leads to

8



2. State of the Art

the inhomogeneous representation of the differential equation of heat conduction:

1
α
¨ BTBt ´

B2T

Br2 “
cp ¨ ρ
α

¨ qsource . (2.10)

An important tool to characterize heat flow phenomena is the Fourier number. It is defined
as a dimensionless number and resembles the ratio between the diffusive transport rate and
the rate of the energy storage in the body. The Fourier number can be calculated for a given
thermal diffusivity α and a characteristic length L as follows:

Foptq “ α ¨ t
L2 . (2.11)

Inputting the Fourier number into Equation (2.8) leads to a dimensionless formulation of the
heat PDE. Furthermore, a Fourier number of Fo “ 1 indicates that the penetration depth of
the thermal wavefront is equal to the characteristic length L. Thus, this fact allows defining
the thermal diffusion time tdiff (the time it takes the thermal wavefront to arrive at a distance
L) and the thermal diffusion length Ldiff (the distance at which the thermal wavefront arrives
at after a time t) as:

tdiffpLq “ L2

α
(2.12)

Ldiffptq “
?
α ¨ t . (2.13)

For practical applications, Equation (2.8) needs to be solved constrained to an initial condition
(IC) and proper boundary conditions (BCs). This leads to the following formulation for numer-
ically describing any heat flow problem arising within the domain r “ tpx, y, zq |x, y, z P Du:

$
’’’&
’’’%

B2T

Br2 “
1
α
¨ BTBt px, y, zq P D, t ą 0

T pr, t “ 0q “ T0prq (IC)

T pr, tq satisfies BCs for all boundaries B P D (BCs)

. (2.14)

Commonly used BC are listed in Table 2.2. Especially noteworthy in this context is the special
Neumann BC BT pB,tq{BB “ 0, which defines an adiabatic boundary, as it requires the first
derivative in space of the temperature field T to be zero (c.f. Equation (2.4)).

Furthermore, an instationary Neumann BC also allows the introduction of an external heat flow
acting on the body as it is a common process in active TT (c.f. Figure 2.3). Special Neumann
BCs can also be applied for modelling convective (q 9 T ´ T8) and radiative (q 9 T 4 ´ T 4

amb)
energy exchange between an object under test (OuT) and its surroundings.

9



2.1.1 Heat Transfer in Solids

Table 2.2: Common boundary conditions for PDEs for a spatial boundary B P D P R3.

Name Boundary condition
Dirichlet T pB, tq “ fpB, tq

Neumann

$
’’’’’’’&
’’’’’’’%

BT pB, tq
BB “ qpB, tq

BT pB, tq
BB “ h ¨ pT pB, tq ´ T8q

BT pB, tq
BB “ ε ¨ σ ¨ `T 4pB, tq ´ T 4

amb
˘

(general form)

(convective transfer)

(radiative transfer)

Periodic
T pB1, tq “ T pB2, tq
BT pB1, tq
BB1

“ BT pB2, tq
BB2

,
/.
/-

for B1 opposing B2

q “ 0 q “ 0

q “ 0

q “ fpx, tq

defect

Object under Test

external excitation
adiabatic boundary

Figure 2.3: OuT with simplified BCs typical for TT. For a small increase in temperature and
a large OuT the BCs can be mostly viewed as adiabatic: BT pB,tq{BB “ 0.
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2. State of the Art

For finding solutions for the homogeneous heat PDE for instationary Neumann BCs, a Green’s
function representation of Equation (2.8) can be utilized:

T pr, tq “
ĳ

D, tą0

Gps, τq ¨ fpr ´ s, t´ τq dsdτ “ Gpr, tq ˚r,t fpr, tq , (2.15)

where Gpr, tq is the Green’s function of Equation (2.8), fpr, tq is the boundary condition and
˚r,t is the convolution operator in space and time. The Green’s function essentially is the
impulse response of the body to a Dirac-pulse like heat flow in space and time. This means
that Gpr, tq has to be formulated such that it not only has to be a solution to Equation (2.8)
but to the inhomogeneous heat PDE for a localized heating pulse:

1
α
¨ BGpr ´ s, t´ τqBt ´ B

2Gpr ´ s, t´ τq
Br2 “ δpx´ sq ¨ δpt´ τq ,

with ´8 ă s ă 8, 0 ď t, τ .
(2.16)

For the heat PDE, the following (unique) solution for Gpr, tq exists [17]:

Gheatpr, tq “ 1
p4π ¨ α ¨ tqndim{2 exp

ˆ
´ ∥r∥2

2
4 ¨ α ¨ t

̇
, (2.17)

where ndim “p dimensionality of the heat flow (ndim “ 1 for homogeneous heating over the
region of interest (ROI), ndim “ 2 for line-shaped heating, ndim “ 3 for point-like heating).
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Foptq [-]
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0.50
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1.00

G
pr

“á 0,
tq

[a
.u

.]

0 1 2
Foptq [-]

0

2
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6

T
pr

“á 0,
tq

[K
]

Gheatpr, tq Itptq T pr, tq˚t “

cooling phaseheating phase

Figure 2.4: Principle of adding instationary BCs via a convolution with the Green’s function of
the heat PDE: in this example, the thermal response T pr, tq at r “á0 of a thermally
thick body to an external intermittent heat flow with shape Itptq is evaluated.

With the help of Equation (2.15), it is now possible to express the temperature evolution for
any semi-infinite body as the convolution of the Green’s function from Equation (2.17) with
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2.1.2 Heat Sources

the temporal structure Itptq and the spatial structure Irprq of the external heating:

T pr, tq “ Gheatpr, tq ˚t Itptq ˚r Irprq , (2.18)

as is illustrated in Figure 2.4.

In a similar way, a Green’s function representation can also be found for the wave
equation as shown in Equation (2.9). Here, the corresponding Green’s function is defined as
follows [18, Eq. 3.5.11]:

Gwavepr, tq “ c ¨ δ p∥r∥2 ´ c ¨ tq
4π ¨ ∥r∥2

. (2.19)

2.1.2 Heat Sources

Due to the fact that the basic function principle of TT relies on measuring the response
of an OuT to a heat flow, causing/creating a heat flow (i.e., a temperature gradient) is an
essential part of any active TT process. Depending on whether the object is deliberately
exposed to an external heat flow, because of excess internal heat or whether a thermodynamic
imbalance to the environment is exploited, TT can be categorized into active and passive
variants [19]. Exemplary testing scenarios are shown in Figure 2.5. While passive TT proves

ph
ot
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he

rm
al

hot air

electromagnetic

(a) Heat sources in active thermographic
testing

m
ec

ha
ni

ca
ll

oa
di

ng

internal heat

environmental loading

F

F

(b) Heat sources in passive thermographic
testing

Figure 2.5: Active and passive thermographic testing scenarios: while passive TT exploits
excess internal heat or thermodynamic imbalance with the environment, active TT
is characterized by deliberately inducing an instationary heat flow into the OuT.
The red arrows indicate internal heat flow.

useful whenever a heat flow is either induced by a change in environmental conditions, in
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the presence of excess internal heat from a previous processing step or chemical process
and when actively heating is impractical because of the OuT’s size, active TT methods are
much more common for component testing due to the higher degrees of freedom the user
has to design the testing procedure. Furthermore, active TT allows for a more controlled
heating regarding its area of effect and its temporal structure. The relevant standard DIN EN
17119:2018-10 (Tab. A.1) lists a wide variety of suitable heat sources, comprising hot air, eddy
current and photothermal excitation methods using polychromatic and monochromatic light
sources among others [20]. Polychromatic photothermal heat sources such as flash lamps and
halogen lamps have seen heavy use in the past because they are rather inexpensive and easily
available. Flash lamps also feature relatively high achievable optical irradiance values of up to
Æ 100 W{cm2 at sufficiently small object distances at pulse durations of tpulse ! 5 ms [21, 22].
This combination of high irradiance at low pulse duration allows for a Dirac-pulse like heating,
which is also beneficial for subsequent mathematical analysis due to the structure of the heat
PDE (cf. Equation (2.16)). Their main disadvantage is that they themselves act as black body
radiators at a high temperature and therefore also emit radiation in the same spectrum as the
heated OuT. This is especially problematic directly after their activation due to those sources
cooling back down to ambient temperature (afterglow effect). This radiation tends to further
unwantedly photothermally heat up the OuT. Furthermore, it can also reflect off the OuT and
thus, directly affects any radiometric temperature measurement [23]. In practice, the infrared
part of the emitted spectrum needs to be filtered out using additional filters in front of the
flash lamps. Additionally, due to them emitting polychromatically into a large angular space,
focusing and other beamforming becomes a very complex task and is therefore impractical
for most applications. This makes flash lamps mostly unsuitable for any testing methods that
require spatially structured illumination.

Photothermal excitation using monochromatic laser or narrowband light emitting diode
light sources on the other hand does not significantly affect any radiometric temperature
measurement as long as the center wavelength is chosen sufficiently far away from the spectral
band of the temperature measurement. Furthermore, with the advent of modern high-power
laser systems, there is (almost) no limit to the achievable irradiance even at longer pulse
durations [24]. The monochromatic and coherent nature of laser radiation allows for application
of a wide variety of optical elements for beamforming and focusing. However, this comes at
the cost of much higher efforts to be made for assuring operator safety when working with
possibly dangerous radiation [25].
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2.1.3 Measuring Temperature

IR-camera

OuT

flash lamps P

λ

(a) Polychromatic photothermal excitation

IR-camera

OuT

laser

dichroic mirror

optics
P

λ

(b) Monochromatic photothermal excitation

Figure 2.6: Schematic of a thermographic measurement setup using different types of
photothermal excitation. While the use of polychromatic light sources (left; flash
lamps, halogen lamps) is the more common and more traditional excitation method,
the use of monochromatic laser light sources (right) enjoys increasing popularity
due to a reduction in cost and technological advantages.

2.1.3 Measuring Temperature

Measuring temperature is foundational to any TT method. Depending on the requirements, this
is either done point-wise or spatially resolved over a larger area. Temperature measurements
can be further divided into contacting and contactless methods which are explored in more
detail in the following subsections.

2.1.3.1 Contact Measurement

Temperature measurement with contacting sensors are widely used in temperature monitoring
applications and offer high-precision measurements at comparably low-cost but are for the most
part limited to measuring temperature at a single location. Modern contact thermometers are
mostly restricted to exploit either the thermoelectric effect (thermocouple) or the temperature
dependency of the electrical resistance of certain materials (resistance thermometer).

Thermocouple

The operating principle of the thermocouple is based on the Seebeck effect. This effect accounts
for the fact that along a temperature gradient in a material also a gradient in its internal
electrical field is induced, resulting in a measurable voltage across this gradient. This voltage
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2. State of the Art

is proportional to the material’s Seebeck coefficient S rµV{Ks. Since this voltage is very hard
to measure alone, in practical applications the relative Seebeck effect over a material junction
AÑ B with Seebeck coefficients SA and SB is determined instead:

Uthermo “
ż T2

T1

pSBpT q ´ SApT qq dT

« kA�B ¨ pT2 ´ T1q for small T2 ´ T1 (2.20)

with thermoelectric coefficient kA�B “ SBpT1q ´ SApT1q. Typical material combinations
used for thermocouples like NiCr Ñ Ni (type K) feature a thermoelectric coefficient
kNiCr�Ni “ 39 µV{K [26].

T1 “ TrefT2

Material A

Material B

Material R

V
UthermokA�B

kA�R

kR�B

Figure 2.7: Scheme of a temperature measurement using a thermocouple: while T2 is to be
determined, the temperature T1 at the junction to the voltage measurement has to
be precisely known.

When measuring the voltage across the thermocouple, another material transition between
the thermocouple constituent materials and the voltage measurement device is inevitably
introduced, causing an additional thermoelectric gradient which influences the measurement.
In order to compensate for this influence of the additionally introduced material R, the voltage
measurement junctions have to be kept at the same temperature T1:

Uthermo “ kA�B ¨ T2 ´ kA�R ¨ T1 ´ kR�B ¨ T1 “ kA�B ¨ pT2 ´ T1q , (2.21)

where the contribution of the material junctions AÑ R and RÑ B introduced by the voltage
measurement cancels out as follows:

´kA�R ´ kR�B “ ´SRpT1q ` SApT1q ´ SBpT1q ` SRpT1q
“ ´ rSB pT1q ´ SA pT1qs “ ´kA�B .

(2.22)
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For absolute temperature measurements, the reference temperature T1 must be known in
order to determine the temperature T2. This could be done by either exposing the material
junction to the voltage measurement to a well-know stable temperature (“ice bath” method)
or measure T1 continuously as well and correct for it. Even though this approach adds another
temperature measurement to the method, this measurement can be carried out far away from
the actual measurement position in a more protected environment using other temperature
sensing methods like a semi-conductor based sensor or a resistance thermometer.

Resistance thermometer

Resistance thermometers or resistance temperature detectors (RTDs) measure temperature
by determining the absolute value of a resistance with a known temperature dependence.
Depending on whether the resistance increases or decreases with increasing temperature, RTDs
are differentiated between RTDs with positive temperature coefficient (PTC) and negative
temperature coefficient. A typical temperature measurement scheme using a RTD is shown
in Figure 2.8. Here, the absolute value of the RTD’s resistance is measured applying a small

Tmeas

RRTD
V

UmeasImeas

Figure 2.8: Resistance thermometer measurement scheme: the absolute value of a resistor with
known temperature dependence is measured by exposing it to a small electrical
current while simultaneously measuring the voltage drop over the resistance. Using
Ohm’s law and the known temperature dependence relationship, the temperature
Tmeas can be determined.

current Imeas and simultaneously measuring the voltage drop Umeas over the RTD. Any current
flowing through the RTD will cause self-heating, which will negatively affect the temperature
measurement. Thus, Imeas has to be kept small and ideally only intermittently applied during
the acquisition of a single temperature measurement. The resistance value can be determined
using Ohm’s law:

RRTD “ Umeas
Imeas

. (2.23)
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Finally, if the current RTD’s resistance has been determined, the temperature of the RTD can
be calculated using its known temperature dependence:

RRTDpT q “ RpTrefq ¨
”
1`A ¨ pT ´ Trefq `B ¨ pT ´ Trefq2

ı
, (2.24)

with A rK´1s and B rK´2s resembling the known temperature characteristics values for
the resistor material (second-order approximation) and RpTrefq a known resistance value at
T “ Tref. A representative example of a RTD-material with PTC characteristics would be
platinum, which is very widely applied due to its high linearity and robustness. In the range
of 0 ˝C to 100 ˝C, platinum features a linear temperature coefficient of A “ 3.9083 ¨ 10´3 K´1

with commonly available values for RpTref “ 0 ˝Cq P t100 Ω, 500 Ω, 1000 Ωu [27].

2.1.3.2 Radiometric Measurement

In addition to the widely used contact measurement of an object’s temperature, there is
a whole family of non-contact measurement methods based on radiometric principles. The
following section introduces the radiometric measurement principle, describes different types
of detectors and finally relates it to the measurement of an object’s true temperature.

According to the Stefan-Boltzmann law, every body that possesses a temperature above T ą 0 K
emits electromagnetic radiation. The total spectral integrated radiated power P pT q rWs is
then proportional to the temperature of the body to the fourth power:

P pT q “ ε ¨ σ ¨A ¨ T 4 , (2.25)

where ε is the emissivity of the body, A its surface area and σ “ 5.670 374 419 ¨ 10´8 W{pm2 K4q
is the Stefan-Boltzmann constant. The emissivity ε P s0, 1s is a measure of the body’s
resemblance of an ideal black body radiator. An ideal black body (ε “ 1) is a physical object
that absorbs all incoming radiation independent of the incidence angle (Ñ absorptivity α “ 1)
and emits the maximum amount of thermal radiative energy possible for its temperature T .
Since the emission of thermal energy for opaque materials is mediated by the object’s surface,
the effective emissivity is also dependent on the surface’s overall condition (roughness, flatness,
cleanliness). While the emissivity is in general also dependent on the temperature T , the
angle to the surface normal at which it is observed and the specific wavelength of the emitted
radiation λ, this effect will be left out of consideration within the scope of this work due to
the small changes in temperature necessary for thermographic testing.

The spectrum of the emitted radiation has been first famously described by Max Planck in
the year 1900 when he found the following expression for the contribution of each wavelength
range dλ to the spectral radiance Lλpλ, T q

“
W{psr m2 µmq‰ of a surface element dA of a body
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at temperature T into the space spanned by the solid angle element dΩ [28]:

Lλpλ, T q dAdλdΩ “ 2hc2

λ5
1

ehc{λkbT ´1
dAdλdΩ , (2.26)

where h “ 6.626 070 15 ¨ 10´34 J{Hz is the Planck constant, c “ 2.997 924 58 ¨ 108 m{s is the
speed of light in vacuum and kb “ 1.380 649 ¨ 10´23 J{K is the Boltzmann constant. The
spectrum of a black body radiator as defined by Equation (2.26) is shown in Figure 2.9. Here,
it can be clearly seen that the maximum of the spectral radiance is shifted towards smaller
wavelengths and also the total integrated power drastically increases for higher temperature
as already predicted by Equation (2.25). The location λpeak of the maximum of the spectral
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Figure 2.9: Spectral radiance Lλpλ, T q of a black body radiator for temperatures close to room
temperature. The maximum of the spectral radiance curve for each temperature T
can be determined using Wien’s displacement law (cf. Equation (2.27)).

radiance can be deduced using Wien’s displacement law, which states that the product of
temperature and the wavelength multiplies to a constant value for black body radiators [29].
For the λpeakpT q this evaluates to:

λpeakpT q “ bpeak
T

, with (2.27)

bpeak “ hc

r5`W0 p´5 e´5qs ¨ kb
« 2897.8 µm K ,

where W0 is the Lambert W function [30]. With the use of Equation (2.26) the radiated spectral
power per solid angle of a surface element dA of a black body radiator can be determined.

Since a black body by definition is a perfectly diffusely reflecting and absorbing surface, its
radiative behavior obeys Lambert’s emission law, which states that the irradiated power has to
decrease with the cosine of the viewing angle against the normal of a surface in order to achieve
constant luminance over all viewing angles [31, p. 117]. The spectral intensity Iθ rW{psr nmqs
of a black body at a viewing angle θ against the surface normal can thus be calculated as
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follows:
Iθpλ, T q “

ż

A

Lλpλ, T q cos θ dA . (2.28)

The spectral flux Φλ rW{nms emitted by the surface A into the angular space S can then be
determined by integration: Spectral flux :

ΦλpT q “
ĳ

S

Iθpλ, T q dΩ “
ĳ

S

ż

A

Lλpλ, T q cos θ dΩdA . (2.29)

If S uniformly covers the whole half space, then the Stefan-Boltzmann law (cf. Equation (2.25))
for determining the total radiated power P pT q of the surface A can be acquired by further
integrating over all wavelengths λ

ˇ̌
ˇ
8
0

. Since all bodies are constantly exchanging thermal energy
with their surroundings via radiative transfer, the individual spectral flux Φλ of a singular
body is less of interest than the transferred radiated heat flow Q9 1�2 rWs between surfaces A1

and A2 with corresponding emissivities and temperatures ε1, T1 and ε2, T2:

Q9 1�2pT1, T2q “
λmaxż

λmin

ε1 ¨ F1�2 ¨ Φλ,A1pT1q ´ ε2 ¨ F2�1 ¨ Φλ,A2pT2q dλ , (2.30)

where F1�2 is the view factor between surfaces A1 and A2. A schematic representation of two
surfaces in thermal radiative contact for the special case of a warm surface to be measured by a
detector is shown in Figure 2.10. The view factor F1�2 between surfaces A1 and A2 incorporates

dA1

n1

emitter

dA2

detector

n2

δ2r
δ1

dA

θ Iθ “ I0 ¨ cospθq

Figure 2.10: Lambertian surface dA1 emitting thermal radiation onto a detector dA2 positioned
at a distance r. The radiated spectral intensity of the emitter can be described by
the Lambert cosine law, as stated in Equation (2.28). The transferred radiated
energy can be calculated according to Equation (2.30).

the relative sizes, distance and orientation of the surfaces between another, as this is relevant
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due to the viewing angle dependency of thermal radiation. It can be calculated as follows:

F1�2 “ 1
A1

ż

A1

ż

A2

cospδ1q cospδ2q
πr2 dA2 dA1 . (2.31)

While view factors are strictly directional, the following equality holds true:

A1 ¨ F1�2 “ A2 ¨ F2�1 , (2.32)

which leads to the inverse view factor F2�1 by rearranging as follows:

F2�1 “ A1
A2
¨ F1�2 . (2.33)

If now the temperature of one surface (i.e., A2) is known as well as the orientation and surface
properties of both surfaces, then the temperature of surface A1 can be inferred by measuring
the radiative heat flow between both surfaces.
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Figure 2.11: Influence of the spectral sensitivity band of a radiometric detector. Common
radiometric detectors only cover certain frequency bands. Common bands comprise
the SWIR (0.9´ 1.7 µm), MWIR (3´ 5 µm) and the LWIR (8´ 14 µm) regions
(left). Depending on the apparent temperature to be measured, the resulting
measurement sensitivity and SNR is highly dependent on the spectral band
covered by the measurement (right).

Inverting the relationship Q9 9 şλmax
λmin

ΦλpT q for the temperature T lays the foundation to the
radiometric measurement of temperature. Special attention must be paid to the spectral
response of the detector in use, since the sensitivity and possible measurement ranges of the
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method are greatly influenced by the specific spectral band rλmin, λmaxs the detector is sensitive
in, as is shown in Figure 2.11.

Evaluating the radiated heat flow from an OuT is the main working principle for all pyrometers
(non-contact thermometers measuring radiant heat flow). One common manifestation of a
pyrometer is the bolometer. A single bolometer cell consists of a weakly thermally coupled well-
known thermal mass, which is exposed to the radiant heat flow, as described in Equation (2.30).
The resulting change in temperature of the thermal mass ∆TBolo during the exposure time tint

can now be measured by an RTD or thermocouple and can subsequently be used to quantify
the incoming heat flow Q9 pTbolo, Tmeasq and therefore the temperature Tmeas of the OuT via
the following relation:

∆TBolo “
tintż

0

Q9 pTBolo, Tmeas, tq
cp ¨ ρ ¨ Vbolo

dt , (2.34)

where cp ¨ ρ is the specific thermal mass of the bolometer material, Vbolo its volume and
∆TBolo “ TBolo ´ T0, with T0 being the starting temperature before the measurement. After
each measurement, the thermal mass has to be allowed to relax back to T0 via the weak
thermal connection to the bolometer body (heat sink), which significantly limits the achievable
acquisition frequency. A schematic view of a bolometer cell is shown in Figure 2.12.

absorber
thermal mass

thermal link

heat sink

Q9

cp ¨ ρ
Tbolo

T0

Figure 2.12: Schematic structure of a bolometer: incoming radiative flux is absorbed by a
decoupled known thermal mass. With the increase of Tbolo of the thermal mass
during a fixed integration time tint the incoming radiated heat flow Q9 can be
determined using Equation (2.34). After each integration time the thermal mass
relaxes its temperature back to T0 via the thermal link to the heat sink. This
substantially limits the achievable acquisition rate.

Another widely used technique to contactlessly measuring temperature is to directly measure
the emitted thermal radiation photons using modern charge-coupled device (CCD) or
complementary metal-oxide-semiconductor (CMOS)-based detectors. Here, incoming photons
charge up the individual pixels over a predefined exposure time, generating a small
voltage/current that can be subsequently read out to determine the overall amount of photons
that hit the individual pixel. Since the photon flux is proportional to the spectral radiance
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2.1.3 Measuring Temperature

Lqpλ, T q “ Lλpλ,T q¨λ
h¨c , it is also a direct measure of the temperature of any (gray) body. Because

those detectors generally feature a rather low pixel size and high acquisition rates, they are
commonly used in present day infrared cameras. CCD and CMOS-based detectors inherently

nrows

ncols

charge well

conversion
electronics

Figure 2.13: Schematic of a CMOS-based detector: each pixel consists of a photoactive
semiconductor material converting incoming photons into a small charge. The
charge is accumulated for the integration period and subsequently read out via
dedicated electronics situated next to each pixel and cleared afterwards. Compared
to CCD-detectors, the integrated electronics per pixel allow reading out the pixel
values in arbitrary order.

suffer from dark currents even if no signal is present, which offsets the current measurements.
Even though the influence of the mean dark current per pixel can be measured and corrected
(dark frame correction), its stochastic behavior leads to significant measurement errors when
measuring small temperatures (absolute error) or small temperature differentials (relative
error). Since the dark current is itself temperature dependent, high-precision infrared cameras
feature a cooled detector element, which is cooled down by a cryogenic cooler to temperatures
as low as 75 K to 80 K. While this leads to achievable noise equivalent temperature difference
(NETD) values of ď 50 mK, the addition of a cooling element also severely impacts cost and
longevity of the camera system, as the cryogenic coolers only feature an operative lifetime of
about « 10 000 h.

To convert the digital values of a CCD or CMOS based detector measuring the thermal
radiated power into true temperature values, several factors need to be taken into account,
including the detector’s quantum efficiency, its temperature and the temperatures of any object
in the path of the measurement. All those parameters are inputted into a mathematical model
of the detector’s response and the detector is calibrated against radiative references of known
emissivity for different temperature. With this calibration process a chart similar to the one
presented in Figure 2.11 (b) can be obtained, which, when inverted, directly describes the
relationship between measured digital values and the OuT’s temperature.
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2.1.4 Processing of Active Thermographic Data

While thermographic measurement data can already be interpreted as-is, a sequence of
thermographic images in an active TT scenario most often contains a lot more information
about the internals of the OuT than is directly accessible in the raw temperature data. As the
widespread use of thermographic measurements still mostly relies on the evaluation of a human
trained expert and due to the ease of use of applying a homogeneous pulsed illumination
to the OuT, conventional post-processing focuses on further increasing the defect contrasts
in thermographic images for such homogeneous illumination conditions. Foundational to all
hereinafter presented methods is the simplified solution for the one-dimensional heat PDE for
a Dirac-like heat pulse acting uniformly over the full front surface (z “ 0) with area A of a
semi-infinite body, which is given as follows [32, p. 53]:

T pz, tq “ Q9{A
2ρcp

?
απt

exp
ˆ
´ z2

4αt

̇
` T0 , (2.35)

where Q9 is the absorbed heat flow and T0 is the initial temperature of the body at t “ 0 s.
Since it is not viable to radiatively measure temperatures inside the body for opaque materials,
mostly only the front surface (z “ 0) is accessible for measurement. Therefore, Equation (2.36)
can be reduced as follows:

T pz “ 0, tq “ T ptq “ Q9{A
2ρcp

?
απt

` T0 . (2.36)

Difference Thermography (DT)

One of the easiest ways to increase the defect contrasts is to subtract the mean signal of a
known sound sub-area of the ROI or from a golden reference part as follows:

TDT px, y, tq “ T px, y, tq ´
nx,soundÿ

i“1

ny,soundÿ

j“1

T pi ¨∆x` xsound, j ¨∆y ` ysound, tq
nx ¨ ny

, (2.37)

where ∆x,∆y is the spatial sampling rate of the measurement, while a sound sub-area within
the ROI anchored at pxsound, ysoundq spanning nx,sound pixel in the x-direction and ny,sound

pixel in the y-direction is known. Subtracting a known sound area results in a dataset where all
sound areas can be identified by a simple thresholding operation. All areas can be considered
sound for which |TDT px, y, tq| ă |Nnoise|, where Nnoise is the remaining measurement noise.
Therefore, this step eliminates all background signals and leaves the operator evaluating the
results with a clear indication of defective regions. However, for the method to work, it is
necessary to have a known sound region or sound reference part available, both of which must
be representative in material and geometry of the ROI/OuT and most likely require another
nondestructive testing (NDT)-method to characterize and validate before being used as a
reference.
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2.1.4 Processing of Active Thermographic Data

Thermal Signal Reconstruction Method

The thermal signal reconstruction (TSR) method is based on fitting the acquired temperature
data to a polynomial of degree ndegree in log-log space [33]:

logpTdiffq “
ndegreeÿ

n“0
an ¨ logptqn , with (2.38)

Tdiffpx, y, tq “ T px, y, tq ´ T0px, yq . (2.39)

If the one-dimensional solution to the heat PDE for a Dirac-like heating (cf. Equation (2.36))
is fitted in double logarithmic scale with a polynomial as defined in Equation (2.38), the
following exact solution is obtained:

logpTdiff,pristineq “ log
ˆ

Q9{A
2ρcp

?
απ

̇
´ 1

2 log ptq “ log pconst.q ´ 1
2 log ptq (2.40)

ñ a “ tlog pconst.q , ´1{2, 0, . . . , 0u , (2.41)

which resembles a straight line with slope a1 “ ´1{2 when plotted on a log-log scale. This
behavior can be directly observed in Figure 2.14 where the temperature evolution according
to Equation (2.36) is shown on a log-log scale. Any deviation from this straight line behavior
clearly indicates that additional effusivity contrasts (i.e., defects) are present. As effusivity
boundaries show up as knee points in the log-log plot, the depth of the boundary can be
determined via its corresponding diffusion length (cf. Equation (2.13)).
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Figure 2.14: Temperature evolution after a Dirac-like heating with one-dimensional heat flow.
When plotted on a double logarithmic scale (log-log), the temperature of a sound
area follows a straight line with slope d logpTdiffq

d logptq “ ´1{2. Defective areas can be
clearly distinguished by deviating from this behavior. Effusivity contrasts show
up as knees whose positions indicate their depth.
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For testing larger ROIs, the temperature evolution Tdiffpx, y, tq of every pixel pi ¨∆x, j ¨∆yq
for i P t1, . . . , nxu , j P t1, . . . , nyu can be fitted with a polynomial in log-log space and the
coefficients anpx, yq can be plotted as an image. With this imaging approach it is also possible
to map out different defect structures [34].

Pulsed Phase Thermography

The pulsed phase thermography (PPT) evaluation method for thermal data makes use of
the frequency content of the data [35]. The nth contained frequency Tn

fft in the temperature
data T px, y, tq is obtained after applying a discrete Fourier transform (DFT). This can be
computationally efficiently implemented using the fast Fourier transform (FFT) to calculate
the DFT defined as follows:

Tn
fftpx, yq “ ∆t

nt´1ÿ

l“0
T px, y, l ¨∆tq exp p´2iπnl{ntq “ Ren

fft`i ¨ Imn
fft , (2.42)

where i “ ?´1 is the imaginary unit, nt is the number of samples in time and ∆t the sampling
interval. Tn

fftpx, yq P C is a complex number whose real part is Ren
fftpx, yq P R and its imaginary

part is Imn
fftpx, yq P R. With the thermal data now transformed into frequency space, amplitude

An
fftpx, yq and phase ϕn

fftpx, yq images can be generated as follows:

An
fftpx, yq “

a
Ren

fftpx, yq2 ` Imn
fftpx, yq2 (2.43)

ϕn
fftpx, yq “ arg pTn

fftpx, yqq . (2.44)

The resulting amplitude and phase images can now be examined for irregularities hinting
towards the presence of a defect. While phase images generally show a deeper probing
capability than amplitude data, they are also much more prone to noise. In order to further
improve the defect contrast, there is also the possibility to combine this method with difference
thermography by directly looking at amplitude and phase contrasts with respect to a known
sound subarea [36]:

∆An
fftpx, yq “ An

fftpx, yq ´
nx,soundÿ

i“1

ny,soundÿ

j“1
An

fftpi ¨∆x` xsound, j ¨∆y ` ysoundq (2.45)

∆ϕn
fftpx, yq “ ϕn

fftpx, yq ´
nx,soundÿ

i“1

ny,soundÿ

j“1
ϕn

fftpi ¨∆x` xsound, j ¨∆y ` ysoundq (2.46)

Additionally, a depth-estimate Ln
fft of the observed defects can be generated by looking at the

frequency component n at which they have been observed [37, 38]:

Ln
fft “

c
2 ¨ α

2π ¨ n ¨∆f , (2.47)

where the frequency resolution of the measurement is defined as ∆f “ 1
nt¨∆t .
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2.2 Defect Resolution in Thermographic Testing

In the field of NDT, the first major step is to detect if there are any defects present. Depending
on the method used, this will not necessarily directly yield also sufficient information about
the size and shape of the defect, which is necessary to assess its impact with regard to the
specifications the OuT has to meet. When an imaging method (as common in TT) is used,
the resolution of the defect is bound by the point spread function (PSF) of the measurement
setup. The PSF is a concept borrowed from the field of optics and describes the response
of the measurement setup to a point-like object (point source). As it is a measure of the
system’s transmission characteristics, it affects any original undisturbed defect signal Ioriginal

as follows:
Itransmittedprq “ Ioriginalprq ˚r ΦPSFprq . (2.48)

Here, the transmitted signal Itransmitted is essentially a spatial frequency filtered version
of Ioriginal due to the convolution operation involved. This can be clearly seen when
transforming Equation (2.48) into spatial frequency domain using the Fourier transform:

F rItransmitteds pζrq “ F rIoriginals pζrq ¨ F rΦPSFs pζrq , (2.49)

where F : R Ñ C denotes the Fourier transform that transforms the spatial coordinate r

into a spatial frequency ζr. The behavior of the filter is completely determined by the spatial
frequency content of the PSF, which is multiplied by the frequency content of the original
signal. The amplitude spectrum of the frequency content of the PSF is therefore of particular
interest. In optics, the Fourier transform of the PSF is called the optical transfer function.
Its constituent parts are called the modulation transfer function (MTF) for the amplitude
spectrum and phase transfer function for the phase spectrum:

F rΦPSFs pζrq “ OTFpζrq “ MTFpζrq ¨ exp piPhTFpζrqq (2.50)

ñ MTFpζrq “ |F rΦPSFs pζrq| . (2.51)

By convention, the MTF is always shown normalized such that MTFpζr “ 0q “ 1.

If the PSF of the measurement setup is known, then also a statement can be made about the
total resolution capabilities of the system. As an active TT measurement setup consists of
multiple elements that influence the achievable resolution, every element has to be addressed
independently. An overview of the elements influencing the achievable resolution of an active
TT measurement is shown in Figure 2.15.
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Figure 2.15: Impact factors on the resolution of internal defects using active thermographic
testing. The achievable resolution of an active TT measurement is bound by
the combined spatial resolution of its individual parts. These can be grouped
into the effects of the illumination (cf. Section 2.2.3), the effects of the thermal
diffusion (cf. Section 2.2.2) and the effects of the temperature measurement
(cf. Section 2.2.1).

Combining multiple MTFs in order to get the transmission characteristics of the whole setup
MTFtotal is then achieved using the product of all constituent MTFs represented as MTFi:

MTFtotalpζrq “
ź

i

MTFipζrq . (2.52)

Due to the multiplicativity of the MTF, it can be observed that the resolution limit of any
system is mainly limited by its worst performing component.

2.2.1 Spatial Resolution of the Temperature Measurement

As within TT a spatially resolved temperature measurement is commonly achieved using an
infrared (IR)-camera, the spatial resolution capabilities of the temperature measurement is
governed by the MTF of this camera. Since an IR-camera resembles a typical optical imaging
system, its MTF is mainly composed of the performance of the detector used, and the objective
employed for imaging the OuT. For an ideal lens, the transmission limit of spatial frequencies
ζ0 is given by the Sparrow criterion as follows [39]:

ζ0 « 1
0.94λ ¨ f#

, (2.53)

27



2.2.1 Spatial Resolution of the Temperature Measurement

where the f-number f# is the quotient between the aperture diameter of the lens Doptics and
its focal length ffocal:

f# “ ffocal
Doptics

. (2.54)

As the f-number is (almost) always greater or equal to one, the maximal cut-off frequency
will be bound by approximately half of the wavelength λ used for imaging for all practical
circumstances.

The Sparrow criterion states that two structures can only be resolved as independent if they
are so far apart that their PSFs overlap only enough to leave an observable minimum between
them. This criterion is widely used to evaluate the performance of optical systems and is less
conservative than the well-known Rayleigh criterion:

ζ0,Rayleigh « 1
1.22λ ¨ f#

, (2.55)

which requires that the overlapping PSFs be no closer together than the distance to their first
zero. The transmission behavior for frequencies lower than ζ0 for an ideal lens is given by the
following equation [40, p. 121: Eq. 4.10-4.11]:

MTFpζrq “ 2
π
|pγ ´ cos pγq sin pγqq| , with (2.56)

γ “ cos´1
ˆ
ζr

ζ0

̇
, 0 ď ζr ď ζ0 .

As the cut-off frequency ζ0 is mainly dependent on the refractive power and diameter of the
lens as encoded in the f-number, the overall frequency transmission behavior of the lens is also
strongly affected by these factors, as can be seen in Figure 2.16. Even though smaller f-numbers
are desirable, those smaller f-number systems are also more prone to optical aberration and
distortion influencing the MTF negatively.

In addition to the optical imaging system, the MTF of the IR-camera MTFcamera is also limited
by the MTF of the detector in use MTFdetector:

MTFcamerapζrq “ MTFopticspζrq ¨MTFdetectorpζrq . (2.57)

This circumstance is caused by the fact that every pixel of the detector features only a limited
size and therefore also a limited capability of perceiving spatial frequency. As every pixel of the
detector can be imagined as a small aperture, the MTFdetector can be calculated as the Fourier
transform of its pixel’s aperture function (e.g., a 2D-rectangular function for rectangular
pixels) [41]. Since the MTF of apertures is also foundational to the MTF of the illumination,
a detailed examination is presented in Section 2.2.3.
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Figure 2.16: MTF of an ideal lens for different f-numbers: with increasing f-number (decreasing
refractive power and smaller aperture size) the transmission limit decreases
towards lower spatial frequencies lowering the total achievable spatial resolution.
All MTFs are calculated for a representative wavelength of λ “ 4 µm.

2.2.2 Spatial Resolution Limit of Thermal Diffusion

The thermal PSF can be derived from the Green’s function solution to the heat PDE for a
suitable set of BCs. For a semi-infinite plate and three-dimensional heat flow, the thermal PSF
can be calculated as follows:

ΦPSF,heatpr, tq “ Gheatpr, tq ˚r Irprq ˚t Itptq , (2.58)

where Gheatpr, tq is the Green’s function solution as obtained in Equation (2.17), Ir is the
spatial structure of the illumination and It its temporal structure. The MTF of the thermal
diffusion process can then be derived from the Fourier transform of the thermal PSF:

MTFheatpζr, tq “ |F rGheats pζr, tq| ¨ |F rIrs pζrq|
“ MTFdiffusionpζr, tq ¨MTFilluminationpζrq (2.59)

Evaluating MTFdiffusionpζr, tq at the time corresponding to the diffusion length of Ldiff (i.e., the
structure to be resolved is located at a distance of Ldiff to the surface of the OuT), leads to
the following equation:

F rGheatpr, L2
diff{αqs pζrq “ 1

2πLdiff
¨ exp

`´4π2L2
diffζ

2
r

˘
(2.60)

A detailed derivation of Equation (2.60) can be found in Appendix A1. Plotting
MTFdiffusionpr, L2

diff{αq (i.e., the thermal MTF for a point-like heating) for different depths
together with the MTFs for ideal lenses for reference as shown in Figure 2.16 results in the
plot shown in Figure 2.17.
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Figure 2.17: MTF of the thermal diffusion MTFdiffusion evaluated at different depths: the
spatial frequency transmission characteristic of thermal diffusion is shown for
depths of Ldiff “ t0.5, 1, 2umm. For further reference, the MTFs for an ideal
lens with different f-numbers are shown in addition. As can be clearly observed,
the spatial cut-off frequency is substantially lower for thermal processes than for
optical systems.

In Figure 2.17 it can be clearly observed that the spatial cut-off frequency is orders of
magnitude lower for the thermal MTF even for shallow depths than for optical imaging with
a lens. As further discussed in Section 3.1, this poses one of the substantial challenges of
classical TT methods. An important observation to make from Equation (2.60) is that the
MTF (and therefore the spatial resolution limit) is not dependent on any material parameters
and is only dependent on the depth Ldiff at which it is evaluated at. However, the material
dependence comes back into play when performing real world measurements as the diffusion
time corresponding to the depth L is influenced by the thermal diffusivity α of the OuT.

It has to be noted that all previously shown derivations for the transmission behavior of
the thermal diffusion are only valid for heat diffusion due to photothermal excitation using
illumination patterns which are not entirely uniform over the ROI, as the diffusion process
has to be sufficiently three-dimensional such that the solution to the heat PDE presented
in Equation (2.17) is applicable. While for solutions with lower dimensional heat flow a
similar argument can be made regarding its MTF, this thesis restricts itself to the three-
dimensional heat flow case because internal defects are mostly small and scarce and therefore
their thermographic signal is mostly three-dimensional, since they resemble quasi “point-like”
objects.
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2.2.3 Resolution Limits imposed by the Illumination

As well as the temperature measurement and the thermal diffusion, the shape of the illumination
Irprq is also influencing the spatial resolution of the thermographic measurement as it is
an integral part of the thermal PSF (cf. Equation (2.58)). The spatial structure of the
illumination acts like an aperture limiting the area of effect of the imposed heat flow on the
OuT. Therefore, its size and spatial structure strongly influences the spatial frequency content
of the thermographic measurement and the range of detectable spatial frequencies. Of all
the possible patterns, there are two which will be the focus of the following discussion, as
they are most commonly used within active TT, namely focused Gaussian beams and flat-top
profiles.

Focused Gaussian Beam

Gaussian beam profiles are typically observed with using a laser as the illumination source.
Focusing a laser with Gaussian beam profile onto a surface results in a circular illumination
spot, where dspot denotes its 1{e2 diameter. The resulting intensity profile, photothermally
heating the OuT, can then be described by:

Ir,Gaussianpr, z “ 0q “ I0 ¨ exp
˜
´ 2r2

d 2
spot

¸
, (2.61)

with I0 being the intensity measured at Ipr “ 0, z “ 0q. Its effective MTF can then be derived
as follows:

MTFGaussianpζrq “ |FrIr,Gaussianspζrq|

“ I0
2

d
πd 2

spot
2 ¨ exp

˜
´d

2
spotζ

2
r

2

¸
. (2.62)

A detailed derivation of Equation (2.62) can be found in Appendix A2. In Figure 2.18,
MTFGaussian is shown for a representative set of typical spot sizes. While it can be observed
that the maximum transmissible spatial frequency is decreasing with increasing spot sizes and
therefore smaller spot sizes are beneficial for resolving smaller or more detailed structures, there
exists also a lower bound for the spot size. On the one hand, this bound is set by the refractive
power of the lens system used to project the laser beam onto the OuT. While increasing the
refractive power has its limits due to material and geometrical constraints, also the working
distance decreases with smaller spot size further limiting the range of practical values. On
the other hand, by decreasing the spot size and keeping the intensity constant, the irradiance
onto the OuT increases. Therefore, to stay within permissible limits for the irradiance for
nondestructive testing also constrains the spot size.
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Figure 2.18: MTF of the Gaussian beam profile for different spot sizes dspot: for
dspot P t0.1, 0.5, 1umm the transmission behavior of spatial frequencies is shown.
While larger spot sizes lead to significantly lower maximum transmissible spatial
frequencies, the frequency cut-off is still about 10ˆ higher than that shown
in Figure 2.17 for thermal diffusion.

Flat-Top Profile

The spatial structure Irprq of a flat-top profiled beam resembles a rectangular function. For a
rotational symmetric profile with diameter dspot, it can be defined as follows:

Ir,flat-topprq “ I0 ¨ rect
ˆ

2r
dspot

̇
(2.63)

ñ MTFflat-toppζrq “ |FrIr,flat-topspζrq|

“
ˇ̌
ˇ̌dspot

2 ¨ sinc
ˆ
dspot ¨ ζr

2

̇ˇ̌
ˇ̌ , (2.64)

with sincpxq “ sinpπxq{πx. Compared to the MTF of the Gaussian beam, the MTF of
the flat-top profile features multiple zeros at ζr “ 2n

dspot
@n P N`, while the enveloping

amplitude of the MTF decreases with MTFflat-top9 1{ζr slower than the MTF of the
Gaussian beam profile (MTFGaussian9 exp p´ζrq). However, despite those differences the overall
spatial frequency transmission characteristics in the context of TT is qualitatively similar.
In Figure 2.19, MTFflat-toppζrq is shown for several spot diameters. If the flat-top profile is
confined to a rectangular spot with as size of dspot,x ˆ dspot,y instead of a rotational symmetric
spot, the intensity profile can be described analogous as follows:

Ixy,flat-toppx, yq “ I0 ¨ rect
ˆ

2x
dspot,x

̇
rect

ˆ
2y

dspot,y

̇
, (2.65)

with an analogously defined MTF. As mentioned in Section 2.2.1, the MTF of the pixelated
detector of an infrared camera can also be modelled by the MTF of a rectangular aperture (with
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Figure 2.19: MTF of the flat-top profile for different spot sizes dspot: for dspot P t0.1, 0.5, 1umm
the transmission behavior of spatial frequencies is shown. While the shown MTF
for the flat-top profile features several pronounced zeros, the overall transmission
performance in the context of TT is very similar to the MTF of a Gaussian beam
with similar spot size. Additionally, the MTF of pixelated detectors is very well
approximated by the MTF of a flat-top profile with a width equal to the pixel
size.

homogeneous/flat-top profile), as laid out in Equation (2.65), with a spot size corresponding
to the pixel size of the detector.
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2.3 Resolution Enhancement beyond Classical Limits

Even though the resolution of any thermographic measurement is limited by the combined
MTFs of the measurement setup, it is still possible to surpass this limit and achieve so-called
super resolution (SR). SR methods overcome the otherwise insurmountable restrictions caused
by the MTF to the achievable resolution by combining multiple different measurements. Even
though each independent measurement has to still obey the classical resolution limit, carefully
designing each measurement such that a different part of the desired information is captured,
leads to an overall increase in resolution. While performing the same measurement nm times
already helps to increase the achievable signal-to-noise ratio (SNR) by SNR9 ?nm as the
expected value for Gaussian measurement noise E rNnoises “ 0, only varying parts of the
measurement setup (i.e, the illumination, temperature measurement, etc.) can overcome the
limits imposed by the MTF of the measurement setup. However, all SR methods have to
compromise between resolution gain and experimental complexity.

2.3.1 Geometric Super Resolution

Overcoming the resolution limit imposed by the discretization of the image to be measured by
a detector made up of discrete pixels (cf. Section 2.2.1) is the goal of geometric SR methods.
This can be achieved by combining a set of nm different measurements. For each of the
measurements, the sensor has to be moved relative to the OuT in order to create a unique
discretization of the signal to be measured in each case. The working principle of geometrical
SR is displayed in Figure 2.20.
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Figure 2.20: Principle of geometric SR: by combining a total of nm measurements with a
shifted detector position by xshift a denser measurement grid can be constructed,
allowing for the signal to be reconstructed from interpolating all measurements.
As the spatial cut-off frequency is dependent on the pixel size, the now reduced
effective pixel size after reconstruction allows for the recording of higher spatial
frequencies.

34



2. State of the Art

The relative movement between sensor and OuT can be achieved in a variety of ways, e.g., by
deliberately moving the sensor between consecutive captured frames [42], by exploiting vibration
within the measurement setup [43] or by moving the OuT between frames [44]. In addition,
there also exist commercially available modern IR-cameras that directly include a geometrical
SR feature by optically deflecting the captured image to multiple positions onto the internal
sensor [45].

Furthermore, there also exist machine learning based geometrical SR methods that are trained
to extrapolate to a higher resolution from even a single measurement [46]. While this significantly
decreases the experimental complexity as only a single measurement is necessary, the resulting
high-resolution data will only approximate the real signal and no guarantee for its correctness
is given, which makes those methods inadequate for quantitative measurements.

2.3.2 Optical Super Resolution

With the help of optical SR methods, it is possible to overcome the resolution limit of optical
imaging (cf. Section 2.2.1). The limitations imposed by the MTF of optical systems causes that
no structure which is significantly larger than half of the wavelength of light used for imaging
can be resolved (cf. Equation (2.53) as f# Ç 1). Depending on the exact field of application,
there exists a wide variety of optical SR methods to overcome this limit based on exploiting
different physical effects, such as stimulated emission depletion microscopy, whose creator
Stefan W. Hell was awarded the Nobel Prize in Chemistry in 2014 for its invention [47].
Another prominent and illustrative representative within the field of optical SR methods is
structured light microscopy (SIM) [48]. Here, the signal to be measured is superimposed by a
spatially structured illumination pattern and multiple measurements with varying patterns
are performed. Even though each individual measurement is limited by the pass-band of the
MTF of the optical system (and illumination), the patterns are chosen such that for each
measurement the frequency content of the signal is phase-shifted partly into the pass-band of
the optical MTF [49]. Multiple different measurements then allow reconstructing the signal’s
spatial frequency content at much higher resolution. The working principle of optical SR is
illustrated in Figure 2.21. Phenomenologically, this can be described similarly to the formation
of Moiré patterns. When bringing two different frequencies f1 and f2 to interference, beat
frequencies fb “ |f2 ´ f1| will appear. As those are much smaller than any of the two constituent
frequencies, they can be measured much more easily. Furthermore, if one of the constituent
frequencies (i.e., the spatially structured illumination pattern) and the beat frequency is known
(i.e., is measured), the remaining frequency can be calculated. Due to the limited bandwidth
of the MTF, multiple measurements with varying illumination pattern are then necessary to
reconstruct the original signal as every measurement only gives insight into a part of its true
frequency content.
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Â “

Signal Illumination
Structure

Interfered
Signal

Figure 2.21: Principle of optical SR: if a signal (left) is brought to interference with a pattern
with known frequency content (middle), the resulting interfered signal (right) will
show beat tones at a lower frequency than present in the signal to be measured
(cf. Moiré patterns). This allow shifting the frequency content of the signal into the
MTF pass-band of the detector. However, multiple measurements with different
illumination structures are necessary to reconstruct the initial signal.

While SIM-based SR methods are widely applied in conjunction with fluorescence in microscopy,
there are also applications within thermographic testing of thin biofilms [50, 51]. However, the
method is mostly confined to imaging structures which lie on the surface of the OuT or closely
to it.

2.3.3 Photothermal Super Resolution

In Section 2.2, the influence of the illumination, thermal diffusion and the temperature
measurement has been analyzed, and thermal diffusion has been shown to be the worst offender
when it comes to limiting the resolution of TT of internal defects. Therefore, the application
of SR methods targeting the improvement of this shortcoming shows arguably the highest
potential (cf. Section 2.2.2). An important representative of an SR method to overcome the
limits of thermal diffusion is called photothermal super resolution. Initially conceived by an
Austrian researcher group around Burgholzer et al. [52], the method is based on subjecting
the OuT to a set of different illumination patterns photothermally heating the OuT. In an
additional reconstruction step, taking the thermal PSF of the OuT into account, the internal
structure of the OuT is reconstructed iteratively solving a suitably regularized inverse-problem.
While initially flash lamps with exchangeable intensity mask were utilized as a heat source for
the method, Ahmadi et al. [53, 54] developed the method further by using one-dimensional
laser heating (laser line and line patterns), making the method more suitable for detecting
defects deep within the OuT.
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As this thesis heavily builds upon the photothermal SR method and its technological
advancement, the method, its underlying modelling of internal defects and the mathematical
reconstruction approach is set out below.

Defect Model

The temperature evolution for an OuT with unknown defects can be approximated by the
superposition of the temperature evolution for a sound OuT Tdiff,sound and the thermal signal
caused by the defects Tdiff,defect:

Tdiffpr, tq “ Tdiff,soundpr, tq ` Tdiff,defectpr, tq (2.66)

For a sound OuT, the increase in temperature from T0 caused by an external heat flow can be
expressed as the convolution of the thermal PSF ΦPSF,sound, as described in Equation (2.58),
with a heat source distribution function aext:

Tdiff,soundpr, tq “ ΦPSF,soundpr, tq ˚r aextprq . (2.67)

If a single illumination consists of a set of locations aillum “ tpx, yq P R ˆ R | illumination
with structure Ir is centered at px, yqu at which an individual photothermal heating with
structure Ir takes place (e.g., aillum contains the center points of all lines for a line pattern or
the center of the ROI for a homogeneous illumination), then aext forms a set of unit impulses
placed at those locations:

aextprq “
$
&
%

1 if r P aillum

0 otherwise
. (2.68)

With the help of the shifting property of the convolution operator and thanks to the linearity of
the heat PDE, this formulation of Tdiff,sound allows the description of illumination patterns that
consists of illumination primitives (spots, squares, lines), since in practice more complex patterns
can be only feasibly constructed by composing easily generatable illumination primitives.

For the description of the influence of a defect on the temperature difference, a similar approach
can be chosen. For each particular defect, a corresponding PSF ΦPSF,defect can be found that
approximates its thermal response. By also introducing a distribution function aint by which
the defect’s PSF is convolved, the location and distribution of similar defects can be encoded:

Tdiff,defectpr, tq “ ΦPSF,defectpr, tq ˚r aintprq . (2.69)

The internal defect distribution can be suitably defined as follows:

aintprq “
$
&
%
ζi if a defect is present at r

0 otherwise
, (2.70)
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where ζi P r0, 1r is the defect contrast of the ith defect. Due to the fact that defects show in
thermographic measurements as hot-spots in the temperature profile as they impede the heat
flow (due to the positive effusivity contrast), their contribution to the differential temperature
profile appears phenomenologically as if there were an internal heat source at the defect
location. The duality of defects acting as apparent heat sources also shows in the similarity
of Equation (2.69) and Equation (2.67). This connection is further visualized in Figure 2.22.
As the defect signal depends on the energy transfer due to the illumination, it always holds
true that ζi ă 1 due to energy conservation, as a higher value would indicate that additional
heat energy is introduced by the defect.

OuT with defect

OuT with internal heat source

heat source

Te
m

pe
ra

tu
re

T
di

ff

Position r

defect signal:
ΦPSF,defect ˚r aint

sound signal:
ΦPSF,sound ˚r aext

Tdiff “ ΦPSF,sound ˚r aext
` ΦPSF,sound ˚r aint

«

Figure 2.22: Defect model within photothermal SR: The temperature differential caused by
externally heating of a defective OuT can be modelled by the superposition of
the response of a sound OuT and the thermal influence of the defect. Because
defects impede heat flow by presenting a contrast in effusivity, they appear as hot
spots in the temperature difference signal, similar to the influence of a fictitious
internal active heat source at the same location.

However, determining ΦPSF,defect is far from trivial, as every defect features its own individual
ΦPSF,defect depending on its size, depth and effusivity contrast. Since the nature of NDT is to
determine whether an OuT contains a previously unknown set of defects, coming up with a
representative ΦPSF,defect is only possible, if at all, with prior knowledge of very characteristic
defects. Therefore, in order to simplify the problem, a common PSF for the illumination
and the defect signal is chosen and this PSF is defined to be the PSF of the illumination
ΦPSF :“ ΦPSF,sound by making use of the analogy expressed in Figure 2.22. This leads to the
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following simplification:

Tdiffpr, tq “ Tdiff,soundpr, tq ` Tdiff,defectpr, tq
“ ΦPSFpr, tq ˚r paextprq ` aintprqq (2.71)

“ ΦPSFpr, tq ˚r aprq , (2.72)

where aprq “ aextprq ` aintprq is the combined heat source distribution.

Crucially, while this modelling approach offers a straightforward analytical representation
of the surface temperature evolution of an OuT with internal defects subjected to external
heating, one has to be aware that the following greatly simplifying assumptions are made:

All defects are modelled as active internal heat sources.

The PSF of the defect signals ΦPSF,defect is defined to be equal to the PSF of the external
heating ΦPSF,sound.

Defects are sparsely distributed within the ROI.

Mathematical Formulation of the SR Problem

As the information of multiple measurements m P r1, . . . , nms has to be combined in order to
achieve SR capabilities, Equation (2.72) extends to the following:

Tm
diffpr, tq “ ΦPSFpr, tq ˚r a

mprq , (2.73)

where a superscript of m indicates the mth measurement. Every measurement m contains
a subset of information about the internal heat source distribution aint and therefore the
internal defect structure, thus, summing over all measurements fuses this information together.
Since summing also entails the summation of the external heat source distributions for all
measurements am

ext, the following condition in form of a homogeneity constraint for the sum of
all illumination patterns has to be met:

ΦPSFpr, tq ˚r

nmÿ

m“1
am

extprq « const. . (2.74)

Only this necessary condition stated in Equation (2.74) allows inverting the photothermal SR
problem and being able to extract the internal heat source distribution part from the combined
heat source distribution a in a blind reconstruction context. Blind reconstruction means here,
that at no point the external heat source distribution is used as input for the model and only
the homogeneity constraint is enforced. This approach has the advantage that any errors in the
experimental implementation of the illumination pattern projection does not propagate to the
end result. Even though mathematically the weaker condition

řnm
m“1 a

m
extprq « const. would
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suffice for blind reconstruction, this is not enough in practice, as am
int is not independent of am

ext
as the defects are not truly heat sources themselves but only appear accordingly. Therefore,
including the PSF into the condition makes sure that every location r is in total exposed
to equal amounts of heating. On the other hand, to guarantee separability the supposedly
trivial condition of 1{nm

řnm
m“1 a

m
intprq “ aintprq ff const. has to be fulfilled, which is a direct

consequence of the sparsity requirement for the presence of defects, as deviating from this
requirement would mean that the ROI either is fully made up of defective area or there is no
defect at all (trivial case).

By obeying the stated homogeneity constraints, it can be observed that if it is possible to
invert Equation (2.73) to obtain am for every measurement m, then a summation over all
measurements leads to the separation of the internal heat source distribution aint:

nmÿ

m“1
amprq “

nmÿ

m“1
am

intprq `
nmÿ

m“1
am

extprq

ñ ΦPSFpr, tq ˚r

nmÿ

m“1
amprq “ ΦPSFpr, tq ˚r

nmÿ

m“1
am

intprq ` ΦPSFpr, tq ˚r

nmÿ

m“1
am

extprq

Eq. (2.74)ñ ΦPSFpr, tq ˚r

nmÿ

m“1
amprq “ nm ¨ ΦPSFpr, tq ˚r aintprq ` const.

ñ aprq “
nmÿ

m“1
amprq “ nm ¨ aintprq ` const. . (2.75)

The constant offset and the scaling by nm can then easily be removed. As aint is a direct
representation of the internal defect pattern, finding aint when ΦPSF is known as a prior is the
main task within photothermal SR reconstruction.

As commonly most OuTs resemble some kind of plate like structure with known thickness L
and material parameters α, cp and ρ, for the scope of this thesis the following PSF considering
multiple reflections of the thermal wave from the back wall will be used for all SR reconstruction
problems [17, 55]:

ΦPSFpr, tq “
«

2 Q̂
cpρp4παtqndim{2 ¨ exp

˜
´pr ´ r̄q

2

4αt

¸
¨

8ÿ

n“´8
R2n`1 ¨ exp

˜
´p2nLq

2

4αt

¸ff

˚r Irprq ˚t Itptq , (2.76)

where Q̂ is the amplitude of the absorbed heat flow Q9 ptq “ Q̂ ¨Itptq imposed by the illumination,
which already takes the emissivity/absorptivity of the OuT into account. For more complex
parts or anisotropic materials, ΦPSF has to be determined accordingly either by solving the
heat PDE with suitable BCs or by finite-element modelling.
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Numerical Inversion

Trying to solve the severely ill-posed problem stated in Equation (2.73) for am
int for all individual

measurements m leads to the following minimization problem:

minimize:
am

rec

1
2 ¨ ∥ΦPSF ˚r a

m
rec ´ Tm

diff∥2
2 @m . (2.77)

Due to the involved ill-posedness, solving the minimization problem results only in a
reconstruction am

rec of am
int for which ideally am

rec converges to am
int for nm Ñ 8. In order

to improve the reconstruction quality dramatically, regularization is applied. As aint is rather
sparse (defects are rare events) and the underlying physics is constrained by heat conduction,
a ℓ2,1 ` ℓ2 regularization scheme has proven to yield the best results [56]:

minimize:
arec

1
2 ¨ ∥ΦPSF ˚r a

m
rec ´ Tm

diff∥2
2 ` λ2,1 ¨ ∥arec∥2,1 ` λ2

2 ¨ ∥am
rec∥2

2 , (2.78)

where λ2,1 P R and λ2 P R are scalar parameters for tuning the strength of each individual
regularizer. The operator ∥¨∥2,1 is the 2,1-norm, defined as:

∥arec∥2,1 “
ÿ

r

cÿ

m

|am
rec|2 . (2.79)

The core idea of regularization is to add additional terms to the minimization problem which
are meant to be minimized simultaneously in order to promote certain properties of the desired
solution. The ℓ2-regularization, or Tikhonov regularization as it is called, adds the Euclidean
norm of the result to the minimization and thus promotes results containing only small numbers,
preventing the minimization from blowing up. As most physical energy transport processes
tend towards minimization of energy, this is a reasonable addition to make. ℓ2,1-regularization
on the other hand adds the 2,1-norm of the result, which consists of taking the 1-norm in
space and the 2-norm over all measurements m for every individual location r. This so-called
block-sparsity norm promotes sparse results and connects the information of all individual
measurements together by processing the information gathered about a location r for all
measurements into a single output value [57]. As aint does not change over the measurements m
as the internal defect structure is fixed, the information from multiple measurements about a
single location r only gets complemented by the addition of this regularizer. How to efficiently
solve Equation (2.78) for large two-dimensional ROIs and a large number of measurements nm

is laid out in Section 4.1 and is integral part of this thesis.

Elimination of the Time Dimension

As solving the photothermal SR problem stated in Equation (2.73) is quite computationally
expensive, the problem complexity can be drastically reduced by eliminating the time
dependency of the equation. As the time evolution mostly conveys information about the depth
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at which a possible defect is detected to exist at (cf. Equation (2.13): diffusion length), by
choosing a particular time step t “ teval the detection can be restricted to a certain depth range
up to Leval “ ?α ¨ teval. A suitable value for teval can be derived either from a conventional
thermographic measurement by determining the depth of defect structures of interest first,
from SNR-considerations, from the OuT’s functional specification or from prior knowledge
about the origin and nature of the defects ought to be detected. As the photothermal SR
problem is decoupled in time (i.e., it can be solved for every time step independently as no
temporal history is taken into account), it is further possible to solve it for a set of time steps
in order to achieve a three-dimensional representation of the defect. However, as SR is only
achieved in space (x, y), the depth resolution of the method is identical to conventional TT.

While the simplistic approach of choosing one particular time step has proven to already yield
satisfying results [A4], it is also possible to eliminate the time dimension by preprocessing the
measured temperature data first. In general, every preprocessing that condenses the information
conveyed by the time dimension into a smaller dataset is suitable. For example, this can either
be implemented by performing a PPT-evaluation and processing only phase or amplitude
images of certain frequencies or by previous TSR-analysis and subsequent processing of certain
coefficient images (cf. Section 2.1.4).

Moreover, Ahmadi et al. achieved an elimination of the time dimension by finding the maximum
contrast frame after a virtual wave (VW) transformation of the measured data [A5]. The
VW transformation solves an additional ill-posed inverse problem that converts the diffusive
heat signal into an equivalent propagating wave signal. As this transformation is suitable
for increasing the depth resolution of the measurement and already filters out the influence
of thermal diffusion in time, VW transformation is a noteworthy candidate for augmenting
photothermal-SR reconstruction. However, solving the underlying additional ill-posed inverse
problem comes at a significant computational cost.
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This chapter focuses on the motivations and goals for the enhancement and further development
of photothermal SR reconstruction as a technique for resolving deeply buried internal defects.
The discussion encompasses the limitations of conventional testing methods (cf. Section 2.1.4),
the limitations encountered with state-of-the-art photothermal SR reconstruction prior to the
advances made during the work of this thesis, and the overarching research objective.

3.1 Limitations of Conventional Testing Methods

While the different conventional TT methods available all aim to maximize the detection
and resolution power of active thermographic measurements, they mostly still fall short of
defeating the adverse effects of thermal diffusion on the defect response signal. Commonly, this
is expressed by the fact that all conventional detection methods are limited by the thermal
aspect ratio of the defect γdefect, which is defined as the ratio between the spatial (spherical)
width of the defect ddefect and the depth Ldefect at which it occurs [58]:

γdefect “ ddefect
Ldefect

. (3.1)

A schematic depiction of all the involved parameters can be found in Figure 3.1.

OuT

Ldefect
dsep

ddefect

L
ζ

Figure 3.1: Defect aspect ratio as defined within the context of thermographic testing: for
evaluating the detectability of defects, the ratio between the defect size and its
depth needs to be sufficiently high. A similar argument can be made for evaluating
the separability of neighboring defects, where a separation distance to defect depth
ratio can be consulted. Additionally, also the effusivity contrast ζ of each defect
has to be taken into account.
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As a generally accepted rule of thumb for TT, the aspect ratio should be γdefect Ç 1 for a defect
to be detectable [59]. While this is a very simplifying rule and more in-depth limits for the
detectability of defects by their aspect ratio exist [60], it already gives a good approximation of
the capabilities of conventional TT. Furthermore, the detectability of defects is also dependent
on the achievable SNR of the temperature measurement [61], as the defect signal has to be
significantly larger than the measurement noise to be detectable. This can either be influenced
by lowering the measurement noise (e.g., by using an IR-camera with lower NETD or by
performing multiple identical measurements) or by increasing the thermal signal. As the
thermal signal, and the thermal defect signal in turn, is mainly dependent on the emissivity
of the OuT and the heat flow imposed by the illumination, blackening the OuT’s surface or
increasing the irradiance of the illumination can also help to increase the SNR. Furthermore,
the defect signal is also dependent on the effusivity contrast ζ with respect to the bulk material.
While this contrast inherently is predetermined and immutable, it still limits the detectability
of only minute flaws (e.g., impurities) in the OuT.
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(a) Signal of a single defect structure with
ddefect “ 10 mm.
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(b) Signal of two closely-spaced defect struc-
tures with ddefect “ 5 mm at a separation
distance of dsep “ 2 mm.

Figure 3.2: Thermographic defect signals distorted by thermal diffusion: as all thermographic
defect signals are affected by the MTF of thermal diffusion, the defect signal is
severely disfigured depending on the defect depth. While for mere detection of
defects this effect has only a minor influence on the detectability (left), for resolving
the defect signal it is a major issue (right). As can be seen in the right-hand plot,
the separability of closely-spaced defects in particular decreases drastically as the
defect depth increases. In both plots, all signal amplitudes are normalized to a
maximum of 1.
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However, while the detection of defects is already a major step within TT and NDT in general,
the exact resolution of the defect shape is an important aspect as well, as the exact size and
particular shape of defects can have a strong influence on the tolerability of the defect according
to the OuT’s functional specification. Since thermal diffusion acts as a spatial frequency filter
for the defect signal (cf. thermal MTF in Section 2.2.2), the resolution of the size and shape of
deeply buried defects is heavily compromised. This is especially visible when trying to resolve
two closely-spaced defects, as with increasing depth both defect signals overlap so far that
they are no longer separable (cf. Sparrow limit in Section 2.2).

This effect is illustrated in Figure 3.2, where the influence of the thermal MTF on the defect
signal for a single defect is juxtaposed with the effect on a closely-spaced defect pair with
a separation distance of dsep “ 2 mm. For the resolution of closely spaced defects, an aspect
ratio γsep similar to γdefect can be defined:

γsep “ dsep
Ldefect

, (3.2)

where γsep – γdefect can be considered congruent regarding their validity for evaluating
resolvability. In Figure 3.2 it can be observed that for a depth of Ldefect “ 2 mm (i.e., γsep “ 1)
almost no observable minimum between the two defect signals is present anymore.

As active TT with a sufficiently short heating of an internal defect can be considered probing
the defect by sending out a (diffusive) thermal wave and recording the reflected signal, the
resolving power of the method is strongly correlated to the properties of the thermal PSF
for three-dimensional heat flow. By looking at its spatial width quantified by the full width
at half maximum (FWHM), the resolution limit at which certain defect structure sizes can
be resolved can be approximated. The FWHM of the thermal PSF approximated by Gheat

(cf. Equation (2.17)) shows the following dependency:

FWHM pGheatq “ 4
a

lnp2q ¨ ?α ¨ t (3.3)
$
’’’&
’’’%

FWHM pGheatq 9 ?α
FWHM pGheatq 9

?
t

FWHM pGheatq 9 Ldiff

. (3.4)

The proportionalities of the FWHM shown in Equation (3.4) demonstrate that the width of the
thermal PSF increases with increasing thermal diffusivity and evaluation time. Consequently, it
is also linearly increasing by diffusion length (detection depth). This effect can be rediscovered
in the depth dependency of the thermal MTF (cf. Section 2.2.2). All this aforementioned
degradation of the resolution can be at its core attributed to the diffusive nature of the PDE, as
methods based on the physics of propagating waves (i.e., ultrasonic testing (UT), radiographic
testing (RT), etc.) do not suffer from this specific issue. Amongst other reasons, this is
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prominently rooted in the phase velocity dispersion of thermal waves (vwave9?2αωwave) and
the high inherent dispersive attenuation, as any thermal wave is attenuated to an amplitude
fraction of 1{e after a penetration depth of µ “ a

2α{ωwave [62]. Both effects are material
dependent (α) and frequency dependent ωwave. A qualitative side-by-side comparison between
the evolution of a diffusive and a propagating wave characterized by their Green’s functions is
displayed in Figure 3.3, where the difference of propagating and diffusive energy transport can
be clearly distinguished.
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(a) Heat diffusion: Gheatpr, tq ˚t Itptq;
cf. Equation (2.17)
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(b) Propagating wave: Gwavepr, tq ˚t Itptq;
cf. Equation (2.19)

Figure 3.3: Difference between propagating (right) and diffusive (left) energy transport. It

resembles a rectangular pulse with a pulse length of tpulse “ 0.2 s in both cases. For
the propagating wave a (dimensionless) wave speed of c “ 10 has been chosen. It
can be clearly observed that for the propagating transport process the transmitted
wave stays compact over time, whereas in the diffusive process the wave spreads
out thinly in all directions.

Overcoming the resolution barrier imposed by the thermal diffusion is the task of thermal SR
methods. While the resolution limit of thermal SR methods is still SNR-dependent due to
entropy considerations [63], for the case of photothermal SR reconstruction, the limits imposed
by the thermal MTF can be significantly improved up to a resolution of defects with at least
γdefect Ç 1

8 [54].
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3.2 Challenges for Super Resolution Defect Reconstruction

Photothermal SR reconstruction, whose history and working principle have been introduced
in Section 2.3.3, while still a niche method, has already been examined in multiple
publications [52–54, A4, A5, 64, 65]. While it has already proven to be a powerful method
that is able to expand the capabilities of detecting and resolving deeply-buried defects very
significantly, it still suffers in its current state from several shortcomings, which can mostly be
attributed to its recency.

As the method was first conceived, the necessary changing illumination patterns were generated
using a flash lamp with slit masks as a heat source. For the projection of every individual
pattern, a different slit mask had to be used, or a single slit mask had to be moved in several
positions [52], making the experimental implementation very tedious and not very practical.
Furthermore, the theoretical description of the method was limited to detecting emissivity
changes within the ROI, which fell short of describing the interaction with deeply-buried defects.
Later, the technique has been experimentally refined by introducing laser line heating [64].
This allowed to increase the irradiance within the ROI significantly such that it was now
possible to also expand the method to the resolution of internal defects [A4]. However, the
use of flash lamps with slit masks and laser lines as an illumination source only generates a
two-dimensional heat flow within the OuT, since along the direction of the line the illumination
does not change. Even though this limitation still allows a reconstruction of two-dimensional
structures when also changing the orientation of the line pattern for each measurement, it is
far from ideal to exploit the capabilities of the method fully. Due to this issue, research has
been limited to the detection of one-dimensional defects. While this circumvents the problem,
one-dimensional defect structures are not very common in most practical applications, further
restricting the practicality of the method.

For solving the underlying inverse problem, several different inversion methods have been
examined for the simplified problem of two-dimensional heat flow (line heating) [65]. However,
those examinations fall short in the case of three-dimensional heat flow and two-dimensional
defect structures, which are most common in practical applications. Furthermore, prior to the
advances made in this thesis, the state of the art required that the user-provided parameters
for the regularized inversion be determined empirically in all cases, making the inversion very
slow and labor-intensive.
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3.3 Research Objectives

In order to advance the method of photothermal SR reconstruction and increase its technology
readiness level (TRL) [66] up to the point where it starts to become viable for practical use in
demanding industrial NDT applications, the following research objectives are addressed within
this thesis:

Determine an efficient numerical reconstruction algorithm tailored for detecting
and resolving arbitrarily shaped defects within two-dimensional ROIs for arbitrary
illumination patterns (three-dimensional heat flow).

Implement a practical experimental setup/procedure that enables the SR
reconstruction of internal defects for two-dimensional ROIs.

Deal with the complexity explosion that comes with two-dimensional ROIs, both
numerically and experimentally.

Find a method to analytically simulate the measurement process and numerical
inversion step of photothermal SR reconstruction and make predictions about the
influence of the key experimental parameters.

Experimentally validate all findings and compare the achieved reconstructions with
the results of state-of-the-art conventional thermographic detection methods on an
exemplary OuT.

48



4. Approach and Implementation

To achieve the objectives of this thesis laid out in Section 3.3, the following approach was
followed. First, suitable numerical inversion techniques of the ill-posed inverse photothermal
SR reconstruction problem have been studied in order to find a functioning and performant
algorithm with true two-dimensional SR capabilities. Secondly, the experimental approach
behind the method has been refined in line with the requirements of the numerical inversion
dealing with the disproportionately gained complexity by the dimensional expansion. Finally,
a forward problem of the method is developed in conjunction with a method for automatically
determining the necessary inputs to the numerical inversion of the inverse problem for
known ROIs in furtherance of allowing to conduct parameter studies numerically, which
are subsequently carried out to gain insights into the influence of various experimental
parameters.

4.1 Expanding the Numerical Inversion of the Photothermal SR
Problem

When dealing with any linear mapping A acting on a set of inputs x causing an effect b, then
obtaining an unknown set of inputs x from a known result b can be achieved by finding the
inverse mapping to the problem as follows:

Ax “ b , with A P Rmˆn, x P Rn, b P Rm (4.1)
A invertibleñ x “ A´1b

A non-invertibleñ x “ A`b ,
(4.2)

where A` is the Moore-Penrose inverse or pseudoinverse of A. As long as the problem is
well-defined/invertible (A is square and has full rank), finding the inverse mapping A´1 can be
uniquely algorithmically obtained with comparably low effort. On the contrary, for ill-posed
problems there exists an infinite set of solutions. While this makes the problem not uniquely
solvable as it is highly unclear which of the possible solutions is actually of interest in the
context of the stated problem, at least A`b as the solution with the smallest 2-norm stands
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out. However, in the context of photothermal SR reconstruction an equation of the following
form has to be inverted:

A ˚m,n x “ b , with A, x, b P Rmˆn . (4.3)

Here, the matrix A is (linearly) convolved with the unknown matrix x instead of performing a
matrix-vector multiplication like in Equation (4.1). Transforming Equation (4.3) into frequency
space leads to a possible and unique inversion for the special case of circular convolution
(indicated as fm,n) as follows:

FrAfm,n xs “ Frbs
ñ FrAs d Frxs “ Frbs

FrAsi,j‰0ñ Frxs “ Frbs
FrAs

ñ x “ F´1
„

Frbs
FrAs

ȷ
, (4.4)

where d indicates element-wise multiplication (Hadamard product). Circular convolution,
as a special case of the convolution operation, can be transformed into the necessary linear
convolution by suitably rearranging/padding the input data (cf. Section 4.1.2). However,
this naïve frequency space inversion approach unfortunately is not very well suited to
real world problems, as it requires FrAs to be free of zeros and as it is very sensitive to
noise. While the frequency space inversion can be augmented with additional regularizers
(cf. TV-regularization [67]) or additional noise estimation and filtering (cf. Wiener filter [68]),
deconvolution as the operation is colloquially called, is a highly non-trivial task.

In the past, solving the regularized convolutional minimization problem stated in Equa-
tion (2.78) has been mainly carried out iteratively using the fast iterative shrinkage-thresholding
algorithm (FISTA) or derivatives thereof in frequency space [54, 69]. While FISTA is very
performant and easy to implement, within the scope of this thesis it has proven unsuitable
due to its specificity regarding the selection of regularization parameters λ2,1 and λ2, as it
tends to converge rather quickly towards the trivial solution aprq “ 0 when the regularization
parameters are too far off from ideal. Instead, for the scope of this thesis, the alternating
direction method of multipliers (ADMM) algorithm has been utilized [70].

The ADMM algorithm is an iterative algorithm for solving multiplicative minimization problems
of the following structure:

minimize: fpxq ` gpzq
subject to Ax`Bz “ c

, (4.5)
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with vectors x P Rn, z P Rm and matrices A P Rpˆn, B P Rpˆm and vector c P Rp. The
photothermal SR reconstruction problem stated in Equation (2.78) can be split up accordingly
into solving the least-squares minimization fpam

recq and the regularization term gλpam
recq as

follows:

fpam
recq “

1
2 ¨ ∥ΦPSF ˚r a

m
rec ´ Tm

diff∥2
2 (4.6)

gλpam
recq “ λ2,1 ¨ ∥am

rec∥2,1 ` λ2
2 ¨ ∥am

rec∥2
2 . (4.7)

In conjunction with choosing A “ I, B “ ´I and c “á0 where I is the identity matrix this
leads to the following special case of the ADMM algorithm:

minimize: fpxq ` gλpzq
subject to x “ z

, (4.8)

which directly resembles the photothermal SR minimization problem at hand. However, as the
ADMM algorithm is defined for multiplicative minimization problems only, Equation (4.6) has
to be transformed to a multiplicative form first. This can be achieved in several ways.

Within the scope of this thesis, two methods have been developed and are examined in detail.
First, a special convolution matrix can be introduced into the problem in order to transform
the necessary convolution into a matrix-vector multiplication (cf. Section 4.1.1). Second, a
frequency-space based method making use of the FFT is explored (cf. Section 4.1.2). After the
transformation to a multiplicative problem, the general problem Ax “ b is solved by applying
the ADMM algorithm by performing the steps shown in Algorithm 4.1 over niter iterations.

Algorithm 4.1: Basic ADMM algorithm for solving regularized
multiplicative minimization problems.

Input: A P Rpˆn, b P Rp, ρADMM, λ2,1, λ2, niter P R
Output: z P Rn

begin
1 xp0q, zp0q, up0q P Rn Ð initialize randomly
2 for k Ð 1 to niter do
3 xpk`1q Ð

`
AT A` ρI˘´1 `

AT b` ρADMM

`
zpkq ´ upkq

˘˘

4 zpk`1q Ð proxλ2,1{ρADMM, λ2{ρADMM

`
xpk`1q ` upkq

˘

5 upk`1q Ð upkq ` xpk`1q ´ zpk`1q
return zpk`1q
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The ADMM algorithm requires as further user input a scalar penalty parameter ρADMM P R.
This penalty parameter makes a trade-off between the influence of the minimization of fpxq
and the regularizers gλpzq within the ADMM algorithm. While a suitable value for ρADMM has
to be provided by the user for every inversion problem, there exist ways of determining ρADMM

from the measured data directly (e.g., the L-curve method [71, 72]).

Within the ADMM algorithm, three main steps are performed at each iteration:

fpxq is minimized using Tikhonov-regularization with ρADMM as the regularization
parameter (x-update).
gλpzq is minimized using its proximal operator proxλ (z-update).
A minimization step u is computed from the new x and z to advance the algorithm.

Table 4.1: Proximal operators for a set of common regularization tasks: in order to minimize
a regularized function, the corresponding proximal operator for the regularization
used has to be minimized as well [73].

Regularization Proximal Operator
Name Norm proxλ pxprqq

ℓ1 (Lasso) λ1∥x∥1 sign pxprqq ¨max t0, |xprq| ´ λ1u
ℓ2 (Tikhonov) λ2

2 ∥x∥2
2

´
1´ λ2

maxt∥xprq∥2, λ2u
¯
xprq

ℓ2,1 (Block Sparsity) λ2,1∥x∥2,1 max
#

0, 1´ λ2,1břnm
m“1|xmprq|2

+

ℓ1 ` ℓ2 (Elastic Net) λ1∥x∥1 ` λ2
2 ∥x∥2

2
1

1`λ1λ2
¨ proxλ1∥¨∥1 pxprqq

While the minimization of fpxq is quite straightforward as it boils down to solving a set of linear
equations, gpzq must be solved using its proximal operator. A proximal operator is a functional
approximation of the regularizer that, when evaluated iteratively, converges to a solution that
satisfies the constraints imposed by the regularizer itself. A collection of proximal operators for
common regularizers can be found in Table 4.1. Serendipitously, proximal operators feature
the useful property that their effect can be combined by composition. This means that the
proximal operator of the 2,1-norm prox∥¨∥2,1 can be calculated by prox∥¨∥1

´
prox∥¨∥2

¯
[74].

4.1.1 Sparse Matrix Stacking

In order to deal with the discrete nature of the spatial resolution of thermographic temperature
measurements, the ROI has to be considered in discrete coordinates. This can be achieved by
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the following discretization:

r “ tpi ¨∆x, j ¨∆yq P Rnxˆny @ i P t0, . . . , nx ´ 1u , j P t0, . . . , ny ´ 1uu , (4.9)

where ∆x, and ∆y respectively, is the spatial sampling period. In total, this leads to a set
of discrete two-dimensional coordinates containing |r| “ nx ˆ nx “ nr elements. Crucial in
this context is the fact that this discretization into a single coordinate r allows reducing
the dimensionality of the underlying problem, as it acts as a vectorization operation where
all spatially resolved quantities are reduced from two-dimensions (x, y-matrix) into a single
dimension (r-vector).

By reducing the dimensionality, it is now possible to perform linear convolution for solving
the photothermal SR reconstruction problem utilizing a convolution matrix hpΦPSFq. As
linear convolution can be considered as a linear mapping, hpΦPSFq can be directly inferred by
discretizing the specific convolution operation with ΦPSF at hand as follows:

ΦPSFprq ˚r a
mprq “ Tm

diffprq
def.ñ

ż

r

ΦPSFpρq ¨ ampr ´ ρq dρ “ Tm
diffprq

discretizeñ
8ÿ

k“´8
amrks ¨ ΦPSFrr ´ ks “ Tm

diffrrs

ñ

»
——————————————–

ΦPSFr0s 0 ¨¨¨ 0 0

ΦPSFr0s ... ......
. . . 0

ΦPSFr0s 0
... ΦPSFr0s

ΦPSFrnr´1s . . .

0 ΦPSFrnr´1s ...

...
0 . . .

...
... ΦPSFrnr´1s

0 0 ¨¨¨ 0 ΦPSFrnr´1s

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon
hpΦPSFqrs,rs

¨

¨

«
amr0s

...
amrnr´1s

ff

looooomooooon
amrrs

“

“

»
—————–

0
...

T m
diffr0s

...
T m

diffrnr´1s
...
0

fi
ffiffiffiffiffifl

looooooomooooooon
T m

r rss

, (4.10)

with h : Rnr Ñ R2nr´1, Tm
r P R2nr´1 and s P t0, . . . , 2nr ´ 2u, where Tm

r is Tm
diff symmetrically

padded with zeros. hpΦPSFq forms a Toeplitz matrix with a high degree of sparsity (only 50%
of its values are non-zero for nr Ñ8). In short, making use of the convolution matrix hpΦPSFq
constitutes the following transformation:

ΦPSFprq ˚r a
mprq “ Tm

diffprq ñ hpΦPSFqrs, rs ¨ amrrs “ Tm
r rss , (4.11)

which transforms the original linear convolution problem into a multiplicative form suitable to
be solved by the ADMM algorithm. However, Equation (4.11) only solves the photothermal
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SR problem for a single measurement m. In order to interconnect the information provided
by the individual measurements and to make use of the joint-sparsity exploited by the ℓ2,1-
regularization, all measurements have to be solved in unison. As the problem has been reduced
to solving a linear set of equations, a combination can be achieved by stacking all measurement
as follows:

H ¨A “

»
—————————————–

hpΦPSFq ¨ ¨ ¨ á0

... hpΦPSFq
...

á0 ¨ ¨ ¨ hpΦPSFq

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffifl

¨

»
———–

a0

...

anm´1

fi
ffiffiffifl “

»
———–

T 0
r
...

Tnm´1
r

fi
ffiffiffifl “ TR , (4.12)

where H P Rp2nr´1q¨nmˆnr¨nm , A P Rnr¨nm and Tr P Rp2nr´1q¨nm . The matrix H is a block-
diagonal matrix with blocks of hpΦPSFq on its main diagonal. This makes it even sparser
than hpΦPSFq itself, as only 1{2nm elements of the matrix are non-zero for nr Ñ 8. While
compared to the initial problem the dimensionality of H , which features in total n2

m ¨ p2n2
r´nrq

elements compared to nr elements initially, is by far larger, its pronounced sparsity keeps it still
manageable with reasonable hardware. Its properties can be exploited by utilizing the sparsity
to significantly improve the algorithmic complexity of the matrix-vector multiplication problem
stated in Equation (4.12), which naïvely would be determined as O

`p2nr ´ 1q2 ¨ nr ¨ n3
m

˘
.

However, quantifying the performance gain by exploiting the sparsity is not trivially possible
as it depends heavily on the details of the implementation [75].

In summary, the sparse matrix stacking approach solves the photothermal SR reconstruction
problem via solving the following adapted minimization problem:

minimize: 1{2 ¨ ∥H ¨A´ TR∥2
2 ` λ2,1 ¨ ∥A∥2,1 ` λ2 ¨ ∥A∥2

2 . (4.13)

For solving Equation (4.13) using the ADMM algorithm, the specific algorithm presented in
Algorithm 4.2 has been developed. While overall this algorithm follows the presented scheme
from Algorithm 4.1, applying the regularization by means of the corresponding proximal
operator is not as straightforward, since the stacking operation has introduced discontinuities
in the data representation. In order to properly apply the proximal operator, the data needs to
be reshaped into its original form (Rnr¨nm Ñ Rnrˆnm) beforehand. After applying the proximal
operator, the data has to be reshaped back.

One of the major advantages of the sparse matrix stacking approach lies in the fact that while
solving Equation (4.13) can be quite computationally expensive for large nr, it is quite easy
to dissect the problem by splitting the matrix-vector multiplication row-wise into smaller
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parts. As the computational complexity of the algorithm scales with 9 nr
3, this can lead to a

major improvement in processing time. Splitting the problem row-wise into parts resembles
reconstructing multiple sub-ROIs. However, to not interfere with the joint-sparse nature of
the problem, the data needs to be split such that for every coordinate r contained in the
subproblem, all data from the corresponding measurements nm is included within. After

Algorithm 4.2: Sparse Matrix Stacking Reconstruction.

Input: H P Rp2nr´1q¨nmˆnr¨nm , TR P Rp2nr´1q¨nm

ρADMM, λ2,1, λ2, niter P R
Output: z P Rnr¨nm

1 function proxℓ21`ℓ2(l, λ2,1, λ2):
2 prr,ms Ð maxp0, 1´ λ2,1?řnm

m“1 |lrr,ms|2 q
lrr,ms
1`λ2

3 return p

begin
4 xp0q, zp0q, up0q P Rnr¨nm Ð initialize randomly
5 for k Ð 1 to niter do
6 xpk`1q Ð

`
HTH ` ρI˘´1 `

HTTR ` ρpzpkq ´ upkqq
˘

7 lpk`1q Ð reshape xpk`1q ` upkq to Rnrˆnm

8 ppk`1q Ð proxℓ21`ℓ2plpk`1q, λ2,1{ρADMM, λ2{ρADMMq
9 zpk`1q Ð reshape ppk`1q to Rnr¨nm

10 upk`1q Ð upkq ` xpk`1q ´ zpk`1q
return reshape zpk`1q to Rnrˆnm

applying the algorithm presented in Algorithm 4.2, the reconstruction of the internal defect
structure can be obtained by summing over all measurements. Finally, in order to get rid of
any offsets and to make different reconstructions comparable to each other, the reconstruction
result is normalized by applying a normalization function ψ : áx P Rnr Ñ r0, 1snr as follows:

arecprq “ ψ

˜
nmÿ

m“1
zm
pniterqprq

¸
, with (4.14)

ψpáxq “
áx ´minpáxq

maxpáxq ´minpáxq . (4.15)

The reconstruction arecprq then resembles a map of all internal defects/inhomogeneities. All
coordinates r where arecprq ą 0 are detected defective by the algorithm. The absolute value of
r indicates the relative contrast of the defects.
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4.1.2 Inversion in Frequency Space

While the previously shown sparse matrix approach already leads to good reconstruction results
(cf. Section 5.2.2), its high computational complexity has proven to be a major bottleneck for
performing photothermal SR reconstruction. Therefore, a more performant method has been
developed in the course of the thesis, which makes use of linear convolution in frequency space.
As has already been shown in Equation (4.4), circular convolution can be achieved by element-
wise multiplication in the frequency domain. However, photothermal SR reconstruction requires
linear convolution, which can be achieved by reordering the data first. A refined numerical
way to perform linear convolution by multiplication in frequency space is as follows:

ΦPSFprq ˚r a
mprq “ Tm

diffprq ñ ifft
´

fft pifftshift pΦPSFrrsqq d fft pamrrsq “ Tm
diffrrs

¯
, (4.16)

where fftp¨q is the FFT function in r, ifftp¨q its inverse and the overline indicates complex
conjugation. The additionally applied shifting function ifftshift : Rm,n Ñ Rm,n rearranges its
input data such that it swaps the first quadrant with the third, and the second quadrant with
the fourth.

Since the ADMM algorithm expects a matrix-vector multiplication problem instead of an
element-wise multiplication, Equation (4.16) has to be further transformed by diagonalizing it
as follows:

ifft
´

fft pifftshift pΦPSFrrsqq d fft pamrrsq
¯
ñ

ifft
´

diag
´

fft pifftshift pΦPSFrrsqq
¯
¨ fft pamrrsq

¯
. (4.17)

The resulting matrix diag
´

fft pifftshift pΦPSFrrsqq
¯
P Rnrˆnr is a diagonal matrix with elements

only on the main diagonal. While this property makes it efficient to store and invert, as the
inverse can be obtained by element-wise taking the reciprocal value, it also leads to significantly
altered matrix properties (singular values, eigenvectors, rank etc.) compared to the non-
diagonalized version, which certainly affect the convergence of the later applied optimization
step to solve the photothermal SR problem. As with the sparse matrix stacking approach
discussed in the previous section, in order to take all the measurements into account and
exploit common features within them, the measurements are stacked on top of each other to
be solved in unison.
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An important aspect to note when performing the necessary convolution operation in frequency
space is that while the minimization algorithm can be performed fully in frequency space for
the most part, applying the regularizers by means of their proximal operator is not feasible
in frequency space. Since the main use of the regularizers is to promote certain properties
of the solution (sparsity, small 2-norm), these properties do not persist the transformation
into frequency space. This can be clearly visualized by taking a look at a single Dirac-pulse,

Algorithm 4.3: Frequency Domain Reconstruction.

Input: ΦPSF, Tdiff P Rnrˆnm , ρADMM, λ2,1, λ2, niter P R
Output: z P Rnrˆnm

1 function proxℓ21`ℓ2(l, λ2,1, λ2):
2 prr,ms Ð maxp0, 1´ λ2,1?řnm

m“1 |lrr,ms|2 q
lrr,ms
1`λ2

3 return p

begin
4 AÐ diag

´
reshape fft pifftshift pΦPSFqq to Rnr¨nm

¯

5 bÐ reshape fftpTdiffq to Rnr¨nm

6 xp0q, zp0q, up0q P Rnr¨nm Ð initialize randomly
7 for k Ð 1 to niter do
8 xpk`1q Ð pATA` ρIq´1pAT b` ρpzpkq ´ upkqqq
9 lpk`1q Ð ifft

`
reshape xpk`1q ` upkq to Rnrˆnm

˘

10 ppk`1q Ð proxℓ21`ℓ2plpk`1q, λ2,1{ρADMM, λ2{ρADMMq
11 zpk`1q Ð reshape fftpppk`1qq to Rnr¨nm

12 upk`1q Ð upkq ` xpk`1q ´ zpk`1q
return ifft

`
reshape zpk`1q to Rnrˆnm

˘

which features a very high sparsity. However, after transforming it into frequency space, the
resulting function has overall constant value, which is quite the opposite of sparse. Therefore,
it is only really valid to apply any regularization outside the frequency space adding an
additional fft and ifft operation to the algorithm. In total, this leads to the algorithm presented
in Algorithm 4.3. The resulting complexity of the frequency space inversion is given by
O pnr ¨ nm ¨ logpnr ¨ nmqq.
After applying the frequency space inversion algorithm, as shown in Algorithm 4.3, the
reconstruction result arecprq can be obtained by summing over all measurements and subsequent
normalization as already laid out before in Equation (4.14).
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4.2 Experimental Implementation

In order to make use of the two-dimensional SR capabilities of the two inversion algorithms
introduced in Section 4.1, the experimental approach of photothermal SR reconstruction has to
be adapted accordingly. In the following sections, two different adaptations of the experimental
approach are discussed.

4.2.1 Sequential Laser Scanning

The first experimental approach designed within the scope of this thesis is based on the extension
of the already existing laser step-scanning approach for the one-dimensional subproblem
introduced by Ahmadi et al. [64]. In the one-dimensional case, the most accurate illumination
strategy has proven to be the step-wise subsequent illumination of the ROI with a laser line or
an array of lines [A4]. In order to transform this approach so that it is capable of achieving SR
in two dimensions, the line-wise illumination has to be interchanged with a spot-wise heating
of the ROI as shown in Figure 4.1.

ROI

1 2 3 4 5 6 7 8 9 10 11 12 13 14

m “

LROI,1D

rd

(a) Line-wise illumination of a one-dimensional
ROI. Only the resolution of vertically ori-
ented defects is improved.

OuT
ROIrd

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72

LROI,2D

L
R

O
I,2

D

m “

(b) Point-wise illumination of a two-
dimensional ROI using an equidistant
measurement grid.

Figure 4.1: Necessary transformation of the illumination strategy for sequential laser scanning:
the well-established step scanning with a laser line (left) provides only one-
dimensional SR capabilities for defects parallel to the laser lines. In order to
achieve a fully two-dimensional SR reconstruction, also the illumination pattern
needs to be structured in two dimensions. This can be achieved by point-wise
illumination with an equidistant measurement grid (right).
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Illumination Strategy

If for the one-dimensional SR reconstruction case an ROI with a length of LROI,1D has to be
investigated, then the number of measurements necessary to cover the ROI with an equidistant
measurement grid with a grid spacing rd can be calculated as follows:

nm,1D “
Z
LROI,1D
rd

^
(4.18)

If now the method is expanded to yield fully two-dimensional SR capabilities, then instead of a
linearly arranged grid of line illuminations an equidistantly two-dimensional grid of point-like
illuminations has to be chosen. In total, this leads to a grid arrangement forming equilateral
triangles between the different measurement positions. The number of measurements necessary
to span a square ROI with side length LROI,2D can then be calculated as follows:

nm,2D “
[?

3
2 ¨ L

2
ROI,2D
r2

d

_
(4.19)

As can be directly observed from Equation (4.18) and Equation (4.19), the number of
measurements necessary scales with the size of the ROI. While there is a linear relationship in
the one-dimensional case with nm,1D9LROI,1D, in the two-dimensional nm scales quadratically
with the side length of the ROI with nm,2D9L2

ROI,2D. This means that when a similar ROI
is to be investigated using two-dimensional SR reconstruction compared to the established
one-dimensional variant, the necessary number of measurements (and therefore also the
measurement effort/complexity) increases quadratically:

nm,2D
nm,1D

«
?

3
2 ¨ L2

ROI,2D
LROI,1D ¨ rd

(4.20)

LROI,1D«LROI,2Dñ nm,2D «
?

3
2 ¨ n2

m,1D . (4.21)

In practice this means that if an ROI has been measured using nm,1D “ 200 one-dimensional
illuminations with a laser line, in order to achieve a two-dimensional reconstruction of the
same square ROI, nm,2D « 34641 point-wise illuminations are necessary, if the grid spacing rd

is kept constant. As this is an exorbitant number, it should be clear that for two-dimensional
reconstruction, a coarser measurement grid must be adopted. In turn this also leads to a
presumably worse maximum possible reconstruction quality in the two-dimensional case.

Nevertheless, in order to keep the resulting measurement efforts manageable, the other
leverage that exists on the resulting number of measurements to be performed – namely
increasing the grid spacing – has to be made use of. However, in order to also fulfill the
homogeneity requirement for photothermal SR reconstruction as stated in Equation (2.74),
there exists an upper limit for the maximum grid spacing. Fortunately, as the PSFs of the
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4.2.1 Sequential Laser Scanning

individual illuminations have to overlap and not only the measurement positions themselves,
the homogeneity of the illumination pattern in total is also dependent on the evaluation
time teval, as the width of the thermal PSF is time-dependent. This leads to the following
requirement for the grid spacing rd:

rd ď 2
?

2α ¨ ?teval ô rd ď 2
?

2 ¨ Ldiff . (4.22)

For a detailed derivation of Equation (4.22) see Appendix A3. Equation (4.22) shows that the
necessary grid spacing can be increased (and therefore the necessary number of measurements
decreased) by evaluating the acquired thermographic data at a later time step. While this
sounds promising for decreasing the experimental complexity, one has to keep in mind that the
recorded temperature signal drops off over time with Tdiff9 t´3{2

eval for three-dimensional heat
flow and therefore also the achievable SNR. As a result, this effect sets a hard limit to the
evaluation time and therefore the maximum reasonable grid spacing. The trade-off necessary
is further illustrated in Figure 4.2.
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Figure 4.2: Selection of the optimal measurement grid spacing. While ideally the grid spacing
rd should be as small as possible in order to achieve the best reconstruction results,
small values severely increase the necessary experimental efforts. Therefore, one
has to make a trade-off between the penetration depth (diffusion length L) and
the measurement’s SNR (Tdiff) by choosing a suitable evaluation time teval. The
temperature evolution shown has been calculated for α “ 5 mm2{s and tpulse “ 0.2 s.
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4.2.2 Two-dimensional Pattern Projection

While the previously discussed experimental method of sequentially illuminating an ROI using
nm different point-wise illumination patterns already leads to good results, its experimental
complexity and therefore the necessary measurement times are very high, making the method
impractical for most industrial applications. In order to eliminate this shortcoming, a different
illumination approach has been developed during the course of this thesis.

OuT
ROIrd

“ on “ off

(a) Point-wise illumination with multiple laser
spots. All red colored positions are illumi-
nated simultaneously.

ñ

OuT
ROIrd

“ on “ off

(b) Abstraction of the multiple spot illumi-
nation onto a regular rectangular grid
leading to a binary pixelated pattern of
measurement positions.

Figure 4.3: Multiple simultaneous illuminations and measurement grid abstraction: the
sequential scanning experimental approach can be accelerated by illuminating
multiple positions at once (left). As generating multiple individually steerable laser
spots is non-trivial, the overall process can be abstracted onto a regular rectangular
grid allowing the use of projector technology to generate binary pixelated patterns
instead.

From the sequential point-wise illumination of the ROI can be observed that each single
illumination only affects a small region of the ROI while the rest of the ROI is not affected.
This can be utilized, as multiple illuminations can be performed simultaneously as long as they
are far enough apart to not influence each other ("FWHMpΦPSFq). In the limit, combining
multiple point-wise illuminations into a single measurement leads to the projection of a binary
pixelated pattern where every measurement position that is illuminated can be considered
activated (photothermally active or boolean 1), or deactivated (photothermally inactive or
boolean 0). As combining multiple illumination spots that are independently steerable is
experimentally non-trivial, the resulting binary measurement grid can be transformed into
a regular rectangular grid. This allows using modern projector technology to experimentally

61



4.2.2 Two-dimensional Pattern Projection

implement the projection of such patterns as is discussed in detail in Section 5.3.1. The
experimental approach is further illustrated in Figure 4.3.

For photothermal SR reconstruction to work, still multiple of those illumination patterns have
to be projected. However, as every individual measurement already contains information over a
large fraction of the ROI, the amount of measurements necessary is drastically reduced. While
for the sequential laser scanning an full matrix capture (FMC) approach needs to be followed,
meaning that every measurement position has to be measured individually, for the pattern
projection not all possible pattern combinations have to be investigated in order to achieve a
suitable reconstruction result. In this regard, the method follows a compressed sensing (CS)
approach in order to minimize the experimental efforts, while still trying to achieve reasonable
reconstruction results. The exact amount of measurements necessary is not easily determinable
as it depends on a multitude of factors. A numerical assessment of the necessary amount of
different patterns projected is laid out in Section 4.3.3.2.

Properties of Binary Illumination Patterns

The proposed illumination strategy to address the disadvantages of the sequential laser scanning
approach consists of sequentially projecting a set of binary pixelated patterns. Each pattern
forms a regular rectangular grid containing in total npix,total individual addressable pixels.
Within each pattern, npix,on pixels out of the total npix,total pixels are turned on (photothermally
active). Therefore, for every pattern a fill factor β P r0, 1s can be specified, which describes the
fraction of activated pixels over the total amount of pixels in the pattern:

β “ npix,on
npix,total

. (4.23)

This fill factor is kept constant over all measurements nm, while the exact set of activated
pixels is altered with every measurement.

Each individual pixel is considered to be square with a side length of dpix. However, it has
proven useful to be able to artificially increase the pixel size by combining multiple neighboring
pixels into a square pixel cluster in which every constituent pixel is activated in unison. This
clustering has the effect that with the pixel size the conveyed optical power is increased,
as mostly the total optical power delivered by the pattern is fixed, but it then distributes
over a smaller number of clusters. When clustering nclustered ˆ nclustered pixels together, the
resulting pixel cluster has a size of dspix “ nclustered ¨ dpix. As a result, the conveyed power
per pixel increases from Q̂total{npix,total to Q̂total ¨ n2

clustered{npix,total, while the total number of
individual addressable pixels decreases by a factor of 1{n2

clustered. As all constituent pixels of
any pixel cluster act in unison, the fill factor β is not affected by the clustering. Conversely,
clustering too many pixels together has also adverse effects on the reconstruction quality. If
the pixels become too large there will be no three-dimensional heat flow at their projected
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center, thus invalidating the PSF assumed for the reconstruction step. This effect is further
studied in Section 4.3.3.1.

A visual representation of the different properties of a binary pixelated illumination pattern,
as described before, can be found in Figure 4.4.

OuT

rd

dspix dpix

dspix
dpix

“ on “ off

nclustered “ 2

Figure 4.4: Schematic depiction of a binary pixelated illumination pattern and its properties:
the shown pattern features a 10ˆ 10 grid pattern of individual pixels. Neighboring
pixels are clustered together (nclustered “ 2) to form a 5ˆ 5 grid of pixel clusters
increasing the conveyed optical power per pixel cluster by a factor of 4. The pattern
features a fill factor of β “ 0.6.

Illumination Pattern Generation

In order to generate a suitable set of nm binary pixelated patterns am
pattern, within the scope

of this thesis, a pseudo-random generation approach has been developed. In general, the
illumination patterns need to fulfill two requirements. Firstly, summing over the set of patterns
has to lead to a constant uniform value as it is fundamentally required for photothermal SR
reconstruction (cf. Equation (2.74)), and secondly, the projection of those patterns should
generate the maximum amount of information about the internals of the OuT without
introducing any artifacts. While the homogeneity constraint can be fulfilled by a vast amount
of possible pattern generation methods, the amount of added information content about the
OuT per individual pattern projection is not trivially determinable. However, one can make use
of the experience gained within the field of CS, which shows that it is beneficial to minimize
the coherence of the measurement matrix (here the illumination patterns) to achieve the best
possible reconstruction results for sparse signals. For a fixed fill factor β, generating a set
of patterns containing β ¨ npix,total randomly distributed activated pixels each will already
minimize the coherence of the individual patterns. However, the homogeneity constraint is
only fulfilled for such patterns if the number of projected patterns nm is large, as due to
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4.2.2 Two-dimensional Pattern Projection

the randomness involved homogeneity can only be guaranteed asymptotically. This property
stands in stark contrast to the initial goal of the pattern projection approach to reduce the
number of measurements necessary to a manageable minimum.

Algorithm 4.4: Pseudo-random pattern generation.
Input: β P Q, npix,total, nm P N
Output: am

pattern P t0, 1unpix,totalˆnm

1 function fill(x P t0unpix,total , nfill):

2 xÐ x filled uniformly at random with at most nfill ones
3 return x

begin
4 ntarget Ð rβ ¨ npix,totals
5 a0

pattern Ð r0, . . . , 0s
6 a0

pattern Ð fill
`
a0

pattern, ntarget
˘

7 for mÐ 1 to nm ´ 1 do
8 am

pattern Ð r0, . . . , 0s
9 shareon Ð 1{mřm

i“0 a
i
pattern

10 shareon,low Ð arg where pshareon ă βq
11 am

patternrshareon,lows Ðfill
`
am

patternrshareon,lows, ntarget
˘

12 nm
pix,on Ð

řnpix,total´1
i“0 am

patternris
13 if nm

pix,on ă ntarget then
14 ntarget,left Ð ntarget ´ nm

pix,on
15 am

patternr␣shareon,lows Ðfill
`
am

patternr␣shareon,lows, ntarget,left
˘

return am
pattern

Fulfilling the homogeneity constraint, even for a small number of measurements, requires
a modified approach. For a fixed fill factor β and a fixed number of measurements nm, a
corresponding set of illumination patterns am

pattern is generated as follows. The first pattern
is generated at random by randomly activating pixels until the desired fill factor is exactly
reached. For the second pattern onwards, it is first checked which pixels need to be activated
in order to fulfill the homogeneity requirement for the patterns generated so far. These pixels
are then prioritized when randomly choosing which pixels to activate for this pattern. If no
prioritized pixels are left, then the remaining pixels will be activated at random from the
remaining deactivated subset of pixels for this pattern. This is repeated until all patterns are
appropriately generated. The described algorithm can be considered an adaption of Bresenham’s
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algorithm, which is a fundamental contribution to the field of drawing rasterized lines in
computer graphics [76]. The described pattern generation approach is laid out algorithmically
in Algorithm 4.4.

4.3 Numerical Modelling

The expansion of the photothermal SR reconstruction technique towards making use of fully
two-dimensionally structured illumination patterns, either experimentally implemented with
sequential scanning or pattern projection, introduces a vast space of experimental parameters
to set up before performing any measurement. A non-exhaustive list of possible parameters
influencing the method is given in Table 4.2. As the method relies on multiple measurements

Table 4.2: Experimental parameters of the presented photothermal SR reconstruction approach:
each parameter can be varied to optimize the method and achieve the best results.

Category Parameter Symbol

Illumination

grid spacing rd

number of measurements nm

fill factor β
cluster size dspix

Defects

shape ddefect
separation distance dsep
depth Ldefect
contrast ζ

OuT/PSF material parameters α, cp, ρ
evaluation time teval

IR-camera spatial resolution ∆x,∆y
NETD Nnoise

per reconstruction, experimental testing of a new set of parameters is quite costly. Therefore,
it would be a significant step to be able to simulate the effects of the different parameters
without performing any real-world measurements. This can be achieved by finding a forward
solution to the inverse photothermal SR problem, which allows the user to create synthetic
measurement data for a given set of experimental parameters. Furthermore, in order to judge
if a given set of parameters results in an improvement of the method, automation of the
reconstruction step is necessary to eliminate the need for manual tweaking of the regularization
parameters necessary. Additionally, a suitable metric has to be found allowing the quantitative
comparison of reconstructed defect maps in the first place in order even to be able to define
what improvement in this context means.
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4.3.1 Forward Solution

In the following chapter, these points are addressed by formulating a forward solution to the
inverse reconstruction problem, defining a cost function that quantifies the reconstruction
quality of defect maps and laying out an automation strategy for finding the (optimal)
set of regularization parameters for a known reconstruction problem. Secondly, this then
allows studying the influence of any experimental parameter on the method, which is used to
exemplarily investigate the impact of the cluster size and number of measurements for random
pattern excitation based photothermal SR reconstruction.

4.3.1 Forward Solution

The photothermal SR reconstruction problem constitutes a severely ill-posed inverse problem.
As inverse problems deal with predicting the causal factors (here amprq) that lead to a set of
observations (Tm

diffprq in this context), finding a solution is a highly non-trivial task since the
causing effects tend to be non-orthogonal/non-linearly independent and are therefore hard to
separate. The inverse of the inverse problem, the so-called forward problem, on the other hand,
takes a set of causal factors and calculates their effect. Thus, in order to formulate a forward
solution to the photothermal SR reconstruction problem, the causal effects that cause a change
in temperature of the OuT in the given context need to be modeled. Within the photothermal
SR reconstruction context, two distinct effects have to be described: the effect of the external
heating of a sound OuT and the deviations from that caused by the defects. For the case of
the fundamental model of the photothermal SR reconstruction stated in Equation (2.71), this
is done by appropriately defining the heat source distributions am

ext for the external heating
and am

int for the defect interaction.

For the effect of the external heating on the sound OuT, the corresponding heat source
distribution can be trivially generated as it is equivalent to the distribution of the external
illumination itself:

am
extprq “ am

illumprq . (4.24)

am
illum resembles either a single Dirac-pulse in r for the sequential laser scanning approach

and a set of Dirac-pulses for the pattern projection approach, where every activated pixel is
designated as a single impulse. Additionally, the spatial structure Ir of the heating primitive
used (dot for sequential scanning; square for pattern projection) has to be considered within
the PSF ΦPSF.

For determining the contribution of the internal defects, finding a suitable heat source
distribution function is not as easily possible. As already mentioned in Section 2.3.3, the effect
of the internal defects on the temperature evolution of the OuT is tightly coupled to the
external illumination as internal defects are no real heat sources themselves and only interfere
with the internal heat flow in such a way that they can be treated as heat sources due to their
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apparent resemblance. Naïvely, the internal heat source distribution aint can be modelled as
the product of a known defect map Dprq P t0, 1unr , which indicates all coordinates where a
defect is present by a value larger than zero, and a contrast factor ζ P r0, 1r, which models the
strength of the effusivity contrast the defects introduce. Additionally, to model the dependency
on the external heating, this now weighted defect map is combined with a normalized factor of
ψ pΦPSFprq ˚r a

m
extprqq by element-wise multiplication:

am
intprq “ ζ ¨Dprq d ψ pΦPSFprq ˚r a

m
extprqq , (4.25)

where ψp¨q is the normalization function as defined in Equation (4.15). This additional factor
acts as a spatial filter that attenuates the defect signal according to its distance to the actually
heated area of the ROI. This is necessary, since the defects can only influence areas that are
actually heated due to their sole ability of interfering with existing heat flows. The width of
this spatial filter is chosen to be the PSF of the OuT, as it also governs the size of the thermal
imprint the illumination generates. It has to be noted that adding this dependency on the
external heat source distribution adds also a dependency on the exact measurement m as am

ext
varies accordingly. This stands in stark contrast to the nature of the defects themselves as they
are an inherent property of the OuT and therefore are unchanging. Combining the external
and internal heat source distributions as described and inputting them into the basic model
of photothermal SR reconstruction, leads to the following equation for generating synthetic
measurement data Tm

meas,simpr, tq:

Tm
meas,simpr, tq “ ΦPSFpr, tq ˚r

”
am

extprq
` ζ ¨Dprq d ψ

`
ΦPSFprq ˚r a

m
extprq

˘ı

`Tm
0 prq `N m

noiseprq ,
(4.26)

where Tm
0 prq is the temperature distribution at time t “ 0 s and N m

noiseprq is the measurement
noise governed by the NETD of the simulated IR-camera. With Equation (4.26) it is now
possible to generate arbitrary sets of measurement data for variations of the experimental
parameters applicable as stated in Table 4.2. An experimental validation of the proposed
forward solution can be found in Section 5.3.3.

4.3.2 Automatic Inversion Parameter Determination

While with the proposed forward solution, as stated in Equation (4.26), arbitrary measurement
data can be generated with low computational effort in an analytical way, in order to fully
automate the exploration of the parameter space for photothermal SR reconstruction also an
automatic way to find the best set of regularization parameters needs to be found. Currently,
the state-of-the-art process for finding the regularization parameters is still to determine them
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manually by trial and error. While with some prior training the time expenditure of this process
can be reduced to a reasonable amount, it is still by far too slow to test larger parameter
spaces.

The manual trial and error approach follows in principle two steps. First, a set of regularization
parameters is guessed to serve as a candidate for the potential optimal set of regularization
parameters leading to the optimal reconstruction result. Second, a reconstruction using these
candidate values is obtained, and its quality is assessed qualitatively in comparison to previously
obtained results. This process is repeated feeding back the information gained from previous
iterations for guessing the next set of parameters until a satisfactory reconstruction result is
obtained or no increase in reconstruction quality can be observed anymore. To automate the
process in its entirety, the two sub-tasks of educated guessing an improved set of regularization
parameters as well as judging the reconstruction quality in a quantitative way have to be
automated.

Table 4.3: Candidate metrics for quantitatively comparing photothermal SR reconstruction
results.

Name Description Range Ref.

Normalized Mean
Square Error (NMSE)

Pixel wise distance determination (ℓ2-
norm). Smaller values indicate higher sim-
ilarity.

r0,8r Eq. (4.27)

Intersection Over
Union (IoU)

Fraction of correctly identified defective
area and union of arec and D. Larger values
indicate higher similarity.

r0, 1s [77]

Structural Similarity
(SSIM)

Perception based comparison based on
statistical moments (amplitude, contrast,
correlation). Larger values indicate higher
similarity.

s´8, 1s [78]

Custom
Implementation

Weighted NMSE with included penalty
function for false-positive detection de-
pending on the distance to the next true
positive defect. Smaller values indicate
higher similarity.

r0,8r Eq. (4.28)

Various strategies can be employed to quantitatively compare two reconstruction results. In
this specific use case, the optimal result is known beforehand (ideally, the reconstructed image
arec should directly resemble the defect map D). Hence, an assessment scheme that grades each
reconstruction based on its similarity to the underlying defect map D is suitable. However,
defining similarity in this context is challenging. Several metrics can be used to quantify the
similarity between two different reconstruction results. A curated set is listed in Table 4.3.
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The probably simplest metric to assess the quality of a reconstruction result is the normalized
mean square error (NMSE) with respect to the known defect map. The NMSE calculates the
ℓ2-distance vectorially between the reconstruction and the defect map in a point-wise fashion
as follows:

NMSE
`
arecprq, Dprq

˘ “ }Dprq ´ arecprq}22›››Dprq ´Dprq
›››

2

2

. (4.27)

While the NMSE is widely used and easy to evaluate, it has limitations in evaluating
photothermal SR reconstruction results. Specifically, it neglects any underlying structure
in the defect map and performs poorly on sparse defect maps. Another commonly used
metric is the intersection over union (IoU), which measures the fraction of correctly identified
defective area over the total unified area spanned by the defects in the defect map and the
reconstruction result [77]. However, like the NMSE, the IoU struggles to judge the convergence
of reconstruction quality when starting with non-optimal guess values.

As the reconstruction result and the defect map can be interpreted as images, several
image similarity metrics can be possibly applied. One popular metric is the structural
similarity (SSIM), which compares pixel, contrast, and correlation values analytically [78].
Moreover, recent advancements in artificial intelligence (AI)-based methods for image similarity
recognition can also be applied in this context [79]. These methods (SSIM and AI-based) focus
more on detecting the underlying structure in the defect map and are less sensitive to minor
disturbances. However, they may not be suitable for accurately quantifying reconstruction
quality as they rely on a hardly quantifiable perception-based approach, which is similar to
the manual qualitative comparison process performed by a human operator.

Knowing the advantages and disadvantages of the presented methods, for the scope of this
thesis a custom metric has been developed. The proposed custom metric C : arec Ñ R P r0,8r
assigns every reconstruction result a single number ranging from 0 to 8, where a smaller
number indicates a better reconstruction quality (i.e., a higher similarity with the underlying
defect map D). It works by combining the NMSE between any reconstruction result arec

and the defect map D with a location dependent penalty function that is used to improve
convergence behavior. This metric is given as:

C parecprqq “ NMSE pDprq, arecprqq ` ∥p1´ ψ pηprqqq d arecprq∥2 , (4.28)

where ψp¨q is the normalization function as defined in Equation (4.15) and 1 ´ ψ pηprqq is
the penalization mask, which is added to the metric by element-wise multiplication with
the reconstruction result arec. This penalization mask is used to continuously penalize false
positive signals more that are further away from the true defect positions leading to a smoother
metric function what the NMSE provides. The locality of this penalization is governed by the
transition function ηprq, which makes again use of the thermal PSF ΦPSF to incorporate the
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thermal properties into this metric. ηprq is defined as follows:

ηprq “ Dprq ˚r ΦPSFprq . (4.29)

With the custom metric defined in Equation (4.28) it is now possible to quantitatively compare
reconstruction results. However, while the stated cost function has a clearly defined optimal
value of CpDq “ 0, it is hard to reason about the scaling of the metric (how much better is a
reconstruction with Cparecq “ 0.1 compared to one with Cparecq “ 1 ?), as its absolute value
is dependent on multiple factors. Therefore, the metric is best suited for relative comparisons
only, which fits the proposed use case for the automated inversion of the photothermal SR
reconstruction problem.

Now being able to quantify progress in determining the optimal set of regularization parameters
for a given reconstruction problem, the missing part is still to automate searching through
the parameter space. Finding the optimal set of regularization parameters Λbest boils down to
minimizing the applied comparison metric for a reconstruction obtained taking those parameters
into account. This process can be formulated as the following minimization problem:

Λbest “
!
λbest

2,1 , λ
best
2

)
“ arg min

λ2,1, λ2
C parecprqq . (4.30)

For every guess value for Λbest, the inverse photothermal SR reconstruction problem as defined
in Equation (2.78) has to be solved in order to obtain a reconstruction result arec, making
solving for the optimal set of regularization parameters exceptionally computationally expensive.
Any method applied to solve it should therefore only take a very limited amount of trials in
order to keep the computation time within feasible limits. In contrast, as the parameter space
is quite large, non-linear and not necessarily convex with an unknown local derivative, these
boundary conditions have to be considered as well.

For solving the minimization problem stated in Equation (4.30) the use of the differential
evolution (DE) algorithm is proposed [80]. This heuristic search algorithm is well-suited
for searching through vast parameter spaces and does not require a differentiable or even
continuous search space.

The DE algorithm works by maintaining a population of candidate solutions, which are
represented as vectors in a search space. Within DE, each candidate solution is updated using a
differential operator, which generates new candidate solutions based on the differences between
a set of randomly selected solutions. The algorithm then evaluates the solutions based on the
provided comparison metric to evaluate the quality of each candidate solution and selects the
best ones to generate new solutions in the next iteration. The key to the effectiveness of the DE
algorithm is the differential operator, which generates new candidate solutions that are likely
to be better than the current ones. This is achieved by creating new candidate solutions for
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the next generation by evaluating for each new candidate solution a scaled difference between
two randomly selected solutions from the previous generation. This scaling factor controls the
step-size for the iteration, and it is constantly adjusted during the search process to explore
the search space more effectively. While this process shows good convergence behavior, it does
not strictly guarantee reaching the global minimum (optimal solution). Therefore, it has to be
ensured that the generation size is appropriately large such that convergence is likely [81, 82].

4.3.3 Photothermal Super Resolution Parameter Studies

With the previously discussed automatic inversion method for photothermal SR reconstruction
problems with known defect map D it is now possible to gain insights into the dependency of the
achievable reconstruction quality when different parameters of the experimental implementation
are varied. For the case of two-dimensional random pattern illumination, the influence of
clustering multiple pixels into larger pixel clusters with size dspix as well as the influence of
the conducted number of measurements nm is simulated in the following sections. While in
general the influence of most if not all experimental parameters as stated in Table 4.2 can
be examined via numerical simulation, these two parameters have been chosen due to their
direct significance on the main objective of this thesis, namely to minimize the experimental
efforts necessary to perform a fully two-dimensional photothermal SR reconstruction of any
ROI. Therefore, exactly knowing the minimum amount of measurements necessary (nm) for
a certain minimum reconstruction quality as well as getting an insight into the behavior of
the pixelized pattern illumination approach (dspix) is key and the scope of this thesis will be
limited to the examination of those parameters only.
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Figure 4.5: Defect map D to be used within the subsequent parameter studies on photothermal
SR reconstruction with projected pixel patterns as illumination: three different
defect maps containing a pair of 2 mmˆ2 mm wide defects with varying separation
distances dsep P t0.2, 0.5, 1.5umm are investigated.

For both parameter studies, three different ROIs as shown in Figure 4.5 have been taken into
account. Every ROI contains a pair of 2 mmˆ 2 mm square defects at a separation distance
dsep of 0.2 mm, 0.5 mm and 1.5 mm respectively, featuring an even effusivity contrast of ζ “ 0.3.
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The remaining experimental parameters shared for both parameter studies can be found
in Table 4.4.

Table 4.4: Shared experimental parameters assumed for the subsequent parameter studies on
photothermal SR reconstruction with pixel pattern illumination.

Category Parameter Value

OuT/PSF

thermal diffusivity α “ 3.76 mm2{s
density ρ “ 7950 kg{m3

specific heat capacity cp “ 502 J{pkg Kq
heating pulse duration tpulse “ 0.5 s

Defects
shape ddefect “ 2 mmˆ 2 mm
separation distance dsep P t0.2, 0.5, 1.5umm
contrast ζ “ 0.3

IR-camera
spatial resolution ∆x,∆y “ 0.1 mm
evaluation time teval “ 0.5 s
NETD Nnoise “ 5% ¨maxpTdiffq

Illumination
total pixels (x-direction) npix,x “ 1280
total pixels (y-direction) npix,y “ 800
pixel size on ROI dpix “ 20 µm

ADMM

penalty parameter ρADMM “ 9900
ℓ2,1-regularization λ2,1 P s0, 1000s
ℓ2-regularization λ2 P s0, 2000s
iterations niter “ 100

4.3.3.1 Pixel Cluster Size

In order to determine the influence of the pixel size with two-dimensional pixel pattern illumina-
tion, the three ROIs presented in Figure 4.5 are investigated with patterns with varying square
pixel cluster size of dspix P t0.02, 0.04, 0.08, 0.1, 0.16, 0.2, 0.32, 0.4, 0.64, 0.8, 1.6, 3.2u mm
performing nm “ 50 independent measurements each. This leads to a total of 36 photothermal
SR problems to be solved for the three ROIs at 12 different pixel sizes. For each of the 36
photothermal SR problems, an optimal set of regularization parameters has been determined
using the DE heuristic search algorithm and the quality metric as presented in Section 4.3.2.
The specific parameters used can be found in Table 4.5.

As a result, the graph shown in Figure 4.6 has been obtained. Figure 4.6 shows the
achieved reconstruction quality over the pixel cluster size dspix in fractions of the defect
size ddefect “ 2 mm for the three different ROIs. While it can be clearly observed that for larger
separation distances the reconstruction quality increases, as can be expected since the aspect
ratio γsep increases, the reconstructions in total show hardly any influence of the pixel size
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at all. However, the reconstruction quality suddenly increases when the pixel size matches
the defect size and strongly decreases when the pixel size exceeds the defect size. From these
results it can be concluded that clustering pixels can be used as a tool to increase the contained
optical power per pixel for sufficiently heating materials with higher thermal diffusivity as long
as the pixel cluster size does not exceed the minimum defect size to be resolved.

Table 4.5: Illumination parameters used for studying the influence of the number of pixels
clustered together (nclustered) on the reconstruction quality of photothermal SR
reconstruction with pixel pattern illumination.
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Figure 4.6: Study results on the dependence of the pixel cluster size on the reconstruction
quality as measured by the quality metric Cparecq proposed in Equation (4.28) for
three different defect separation distances. It can be observed that the reconstruction
quality is not significantly affected by the cluster size as long as it stays below the
defect size. A similar plot has already been published in [C4].

However, it has to be considered that for the underlying forward solution, which generated
the synthetic measurement data in the first place, to be valid, the resulting heat flow induced
by the illumination has to be three-dimensional. Therefore, there exists a physical limit to
the maximum amount of clustered pixels to be sensible to still achieve an SR reconstruction,
as is experimentally validated in Figure 5.3.3. Yet, this effect will not show in the numerical
simulations conducted here, as the validity of the used PSF is assumed as a prior. This
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4.3.3 Photothermal Super Resolution Parameter Studies

circumstance emphasizes the importance of experimental validation of any numerical simulation
conducted.

In order to bring the loss of reconstruction quality that can be observed for cluster sizes larger
than the defect size into perspective, Figure 4.7 shows three different reconstruction results for
a separation distance of dsep “ 0.5 mm and cluster sizes of dspix P t0.02, 0.32, 3.20u mm. As can
be seen, for the two smaller cluster sizes, which do not exceed the defect size of ddefect “ 2 mm,
the reconstructions are equally satisfactory. In contrast, for a cluster size of dspix “ 3.2 mm
the reconstruction is only of poor quality.
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Figure 4.7: Reconstructed defect pairs for a separation distance of dsep “ 0.5 mm and cluster
sizes of dspix P t0.02, 0.32, 3.2u mm. The three reconstructions each form a data
point in Figure 4.6. While for the left two reconstructions with cluster sizes smaller
than the defect size of ddefect “ 2 mm the reconstruction quality is almost identical,
the right reconstruction with a cluster size of dspix “ 3.2 mm shows a drastic decline
in reconstruction quality.

4.3.3.2 Number of Projected Patterns

Another very valuable information to know upfront before performing any real-world
experiments is the dependency of the achievable reconstruction quality on the amount
of patterns projected (nm). It can be expected that the reconstruction quality increases
with the amount of performed measurements as any additional measurement adds some
information about the internal structure of the OuT. However, this effect should taper
off when nm gets larger, as there is a physical upper limit to the reconstruction quality
imposed by the joint effect of all experimental parameters considered. While photothermal
SR is applied to overcome the limits set by the effects of thermal diffusion, the remaining
parameters still more or less fully affect the achievable reconstruction quality. Therefore, for
nm Ñ 8 the corresponding reconstruction a8rec should be optimal with respect to the other
experimental parameters at play and accordingly, Cpa8recq should reach a minimum. In order to
explore this behavior, the three ROIs from Figure 4.5 have been reconstructed by projecting
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nm P t2, 4, 6, 8, 10, 16, 20, 32, 40, 50, 80, 100u patterns with a pixel size of dspix “ 0.4 mm.
The illumination parameters are summarized in Table 4.6. In total, projecting pixelated

Table 4.6: Illumination parameters used for studying the influence of the number of different
measurements performed (nm) on the reconstruction quality of photothermal SR
reconstruction with pixel pattern illumination.

Parameter Value
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separation distance dsep P t0.2, 0.5, 1.5umm
cluster size nclustered “ 20
pixel size dspix “ 0.4 mm

illumination patterns with 12 different number of measurements over the three ROI and
subsequent SR reconstruction leads to 36 data points. For finding the optimal regularization
parameters for each data point, 25 000 SR reconstruction problems (cf. Equation (2.78)) at
a rate of « 8 - 30 seconds per inversion on modern high-performance hardware have been
performed, resulting in the graph shown in Figure 4.8.
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Figure 4.8: Study results on the dependence of the number of measurements performed on
the reconstruction quality as measured by the quality metric Cparecq proposed
in Equation (4.28) for three different defect separation distances. It can be observed
that the reconstruction quality is exponentially approaching a limit Cpa8recq when
nm Ñ 8. Each data point shows the mean and ˘1σ standard deviation for the
reconstruction of all investigated separation distances combined. A similar plot has
already been published in [A1].
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In Figure 4.8 it can be observed that the data seems to follow the predicted progression, namely
it seems to converge to a maximal reconstruction quality Cpa8recq in an exponential fashion. To
further illustrate this behavior, the data is fitted with the following general exponential decay
function:

C panpatterns
rec q “ A ¨ exp

`´α ¨ pm´ bq˘` C pa8recq , (4.31)

where A, α, b, C pa8recq P R. While for each individual data point the achievable reconstruction
quality shows a large variation (large standard deviation), the standard deviation of the data
points globally decreases with larger nm, showcasing the effect of additionally added information
on the ambiguity of the best reconstruction result. To better illustrate the exponential behavior
of reconstruction quality, the data can be plotted in a semi-log graph as shown in Figure 4.9.
As in log-space exponential functions describe straight lines, it can be visually verified that
the data points approximate a line with negative slope and the deviation from this behavior is
uncorrelated. As can be seen, this is fulfilled for the presented data.
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Figure 4.9: Data points as shown in Figure 4.8 plotted with logarithmic y-scale. As the
reconstruction quality is approximately exponentially converging to a maximum
reconstruction quality limit, the used comparison metric should decrease linearly
in a semi-log scale, which can be observed for the presented data. A similar plot
has already been published in [A1].

As the study shown in Figure 4.8 is only able to generate a relative comparison between the
data points, the overall achievable reconstruction quality over the number of measurements
C
`
a

npatterns
rec

˘
is of lesser interest than its overall progression when nm gets larger. Thus, the

relative progress in achieving the best reconstruction quality C pa8recq should be examined,
which can be calculated as follows:

1´ C
`
a

npatterns
rec

˘

C pa1
recq

“ 1´ exp
`´α ¨ pnpatterns ´ 1q˘ , for npatterns ě 1 . (4.32)

For the presented data, a best fit coefficient of α “ 0.034 has been determined. This means
that, according to Equation (4.32), after nm “ 50 measurements performed, the maximal
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reconstruction quality is already reached by 81%. Further increasing nm only leads to a
diminishing return, making nm “ 50 a well-rounded starting value for any experimental
measurement according to the findings of this study.

The effect of this diminishing return at higher number of measurements can be further
emphasized by looking at actual reconstructions for a separation distance of dsep “ 0.5 mm at
three different nm P t2, 50, 100u, as presented in Figure 4.10. While for a very low number of
measurements of nm “ 2 the reconstruction is still lacking, as can be seen in the first image on
the left, for an increase from nm “ 50 (middle image) to nm “ 100 (right image) hardly any
improvement is made.
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Figure 4.10: Reconstructed defect pairs for an investigated separation distance of dsep “ 0.5 mm
and different number of simulated measurements of nm P t2, 50, 100u. The three
reconstructions each form part of a data point in Figure 4.8. It can be observed that
while a small number of measurements still leads to a perfectible reconstruction,
after reaching a certain threshold (here « 50), no significant improvement is made.

An experimental validation of the exponential convergence of the reconstruction quality can
be found in Section 5.3.3 (cf. Figure 5.14).
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Within the following chapter, the previously proposed experimental approaches for achieving
an SR reconstruction of internal defects are experimentally validated on a purpose-made OuT
in conjunction with the proposed dedicated inversion techniques for the resulting photothermal
SR reconstruction problem.

5.1 Object Under Test

For the validation of the proposed extension of the photothermal SR reconstruction technique
to achieve true two-dimensional SR for arbitrary ROIs, a dedicated OuT has been designed
and manufactured. The OuT resembles a L “ 4.5 mm thick plate made from 316L stainless
steel. It has been additively manufactured layer-wise by means of laser powder bed fusion
(PBF-LB) in a 2.5D process, which allows incorporating arbitrarily shaped internal defect
structures. Each defect is introduced by locally not fusing the applied metal powder layer,
which ultimately yields closed-off internal defects filled with the non-fused powdered base
material. Due to different effective thermal conductivity (and slightly different effective density)
of the bulk material and the powder, each defect also poses an effusivity contrast detectable
by TT. A wireframe view of the OuT with visible internal defects is shown in Figure 5.1.

In order to be able to quantify the added benefit of the method, the OuT has been designed to
incorporate several different pairs of identical cubical defects at different separation distances.
This allows not only to quantify the reconstruction of the shape of individual defects, but also
to visualize the improvement of detecting closely spaced defects as separate (cf. Figure 3.2).
Furthermore, all defect pairs are available for testing at different orientations, allowing to
additionally assess the SR-capabilities for directions that are not coinciding with the pixel grid
of detector inside the IR-camera. A listing of all important dimensions and properties of the
OuT can be found in Table 5.1.

Within the many different defect patterns contained in the OuT, two different ROIs have been
utilized to be investigated within this thesis. The size and location of the two ROIs is shown
in Figure 5.2.
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5.1 Object Under Test

Figure 5.1: OuT specifically designed for the experimental validation of two-dimensional
photothermal SR reconstruction. It has been additively manufactured (PBF-LB)
from 316L stainless steel and measures 58.5 mmˆ 58.5 mmˆ 4.5 mm. It features
several internal defects (regions of non-fused powder) at various separation distances.
An overview over the important parameters can be found in Table 5.1.

Table 5.1: Properties of the OuT designed for the experimental validation of two-dimensional
photothermal SR reconstruction.

Category Parameter Value Ref.

OuT

material 316L stainless steel
side length dOuT “ 58.5 mmˆ 58.5 mm
thickness L “ 4.5 mm
thermal diffusivity (calc.) α “ 3.76 mm2{s
thermal conductivity k “ 15 W{pm Kq [83]
density ρ “ 7950 kg{m3 [83]
specific heat capacity cp “ 502 J{pkg Kq [84]

Defects

shape ddefect “ 2 mmˆ 2 mm
depth below surface Ldefect “ 0.5 mm
separation distance dsep P t0.5, 1, 2, 4umm
contrast ζ « 0.494 Fig. 5.12
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Figure 5.2: ROIs used for the experimental validation of the proposed two-dimensional
photothermal SR reconstruction methodology. For the validation of the sequential
laser scanning approach an ROI (ROISLS ; red dashed area) containing three defect
pairs and a single defect is used. The pattern projection approach is validated
using an ROI (ROIpattern ; blue dashed area) containing three defect pairs oriented
at different angles.

For validating the sequential laser scanning experimental approach, a horizontally drawn-out
ROI near the top of the OuT has been investigated. It features three different defect pairs
with different separation distances leading to γsep P t1, 0.5, 0.25u and a single defect with
γdefect “ 0.25. As this ROI can be considered the two-dimensional variant of the prototypical
one-dimensional ROI with internal defects investigated in the available literature on one-
dimensional photothermal SR reconstruction, it enables (direct) comparison [54, A4, A5].

The two-dimensional pixel pattern projection approach on the other hand is examined on a
different ROI more suitable to the aspect ratio of the utilized projector (cf. Section 5.3.1).
Similarly, it features three different defect pairs with different separation distances leading to
γsep P t1, 0.5, 0.25u, of which two are oriented at a 45° angle towards the outer dimensions of
the OuT. This allows also showcasing the performance for achieving SR along directions that
do not by chance coincide with the pixel grid of the IR-camera utilized.

As the OuT has been purpose-made to specification for the work culminating in this thesis,
the exact defect map D for both ROIs is known as a prior (deviations from the manufacturing
tolerances are insignificant). This enables the application of the automated inversion method
proposed in Section 4.3.2 to find the (optimal) regularization parameters for solving each
individual photothermal SR reconstruction problem per ROI.
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5.2 Sequential Laser Scanning

As the sequential laser scanning experimental approach to two-dimensional photothermal SR
reconstruction can be implemented using common laboratory equipment also used for other
laser-based TT, validation measurements as a proof-of-concept study have been conducted
first using this approach. Additionally, its experimental implementation overlaps strongly with
the already well-examined one-dimensional SR reconstruction variant to a certain extent, thus,
previously gained experience could be transferred to the problem. However, the main focus
was not yet directed towards optimal reconstruction quality and minimized efforts, which has
been tackled afterwards by introducing two-dimensional pattern projection to the method.

5.2.1 Laser Scanning Setup

For examining the chosen ROI (cf. Figure 5.2) of the sequential laser scanning experimental
approach the setup shown in Figure 5.3 has been utilized. Within this setup, the ROI has been

x-translation

IR-camera OuT

Laser

d
b

y-translation

Figure 5.3: Laboratory setup for validating the sequential laser scanning experimental approach.
The OuT is heated at every measurement grid position with a laser spot and the
resulting change in temperature is recorded using an MWIR IR-camera. A dichroic
mirror is used to align IR-camera and laser coaxially. While the OuT stays fixed
with respect to the IR-camera, the laser is moved laterally and vertically to be
able to point-wise scan the whole ROI.

illuminated point-wise with a laser spot with a diameter of dspot “ 0.6 mm with Q̂ “ 15 W and
tpulse “ 0.5 s. The resulting temperature increase has been recorded with a spatial resolution
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of ∆x, ∆y “ 52 µm at fcam “ 100 Hz using an ImageIR 9300 cooled MWIR IR-camera made
by the company Infratec. In order to align the laser illumination and the IR-camera coaxially,
a dichroic mirror has been utilized. This mirror is highly reflective for the laser wavelength of
λ “ 940 nm, but transparent in the MWIR frequency band. The ROI has been heated for a
total of nm “ 403 measurements spaced at a grid spacing of rd “ 0.743 mm. To move the laser
spot to the next measurement position, two motorized linear stages have been employed that
either move the laser up and down (y-direction), or move the camera, OuT and dichroic mirror
assembly as a unit in lateral direction (x-direction). This way, the ROI stays fixed within the
field of view of the IR-camera, reducing the necessary post-processing efforts. A summary over
all important measurement parameters is given in Table 5.2.

Table 5.2: Experimental parameters for validating the sequential laser scanning approach. The
corresponding measurement setup is shown in Figure 5.3.

Category Parameter Value

Measurement
grid

ROI size 43 mm ˆ 4.3 mm
number of measurements nm “ 403
grid spacing rd “ 0.743 mm

Illumination
laser output power Q̂ “ 15 W
spot size dspot “ 0.6 mm
pulse duration tpulse “ 500 ms

Temperature
measurement

spatial resolution ∆x, ∆y “ 52 µm
sampling frequency fcam “ 100 Hz
frequency band MWIR

In order to guarantee the independence of each of the measurements and to not build up any
thermal history within the OuT, between each of the nm “ 403 measurements the OuT has
been given 20 s to cool back down to T0. Overall, this leads to a total measurement duration
of « 150 min. While there is also the possibility to decrease the waiting time by compensating
the data for the then occurring temperature build-up, ultimately, this has not been considered
within this work as the focus was directed towards the potential improvements in measurement
time introduced by the two-dimensional pattern projection (cf. Section 5.3.1).
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5.2.2 Reconstruction Results

The obtained reconstructions of the ROI can be found in Figure 5.4. Here, in order to validate
both of the proposed inversion techniques for the photothermal SR reconstruction inverse
problem (sparse matrix stacking and inversion in frequency domain; cf. Section 4.1), the results
of both methods are shown next to each other. Both methods are able to detect all the defects
at reasonable quality. However, the reconstruction of the shape of each defect is still lacking.
The reconstruction result obtained by inversion within the frequency domain also features
some artifacts close to both ends of the ROI.
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Figure 5.4: Reconstruction results obtained from the sequential laser scanning measurement
approach: the reconstruction result generated by the sparse matrix stacking
inversion technique is shown on the top, while the results obtained after inversion
in the frequency domain is shown on the bottom. The true defect positions are
indicated by white boxes. All specific parameters applied for each reconstruction
can be found in Table 5.3.

The relative poorness of the reconstruction of the defect shapes can be mostly explained
by the rather sparse measurement grid (nm “ 403 distributed over 43 mm ˆ 4.3 mm yields
a measurement density of « 2.18 1{mm2). For the one-dimensional pre-cursor of this work,
typical measurement densities of « 5.9 1{mm were utilized in order to achieve proper shape
reconstruction [A4], which would translate to an infeasible nm « 6400 for the two-dimensional
case for the ROI at hand. Furthermore, the analytical investigations conducted in Section 4.3.3.2
also hint at the exponential penalty in shape reconstruction quality taken for conducting too
few measurements. Even though this analytical study has been conducted for the compressed
sensing (CS)-based pattern projection experimental approach (compared to the full matrix
capture (FMC)-based sequential laser scanning approach), the overall tendency showcased
by the study should remain valid. A mismatch in reconstructed shape is also an intractable
challenge of regularized defect reconstruction as thoroughly investigated by Alazne Castelo
Varela in her doctoral thesis [85].
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Figure 5.5: Sectional view of the reconstructions presented in Figure 5.4. The true defect
positions are highlighted in blue color.

In this context the appearance of false positive signals within the reconstruction obtained
by inversion in frequency space is not surprising, as near the edges of the ROI the
information gained is reduced as the required homogeneity constraint for SR reconstruction
(cf. Equation (2.74)) is more and more violated. However, the fact that the sparse matrix
stacking approach does not show such artifacts indicates that the method is performing better
at suppressing false positive signals.

The regularization parameters applied to each method leading to the reconstructions as
presented in Figure 5.4 are stated in Table 5.3.

Table 5.3: Regularization parameters utilized to obtain the reconstruction results as presented
in Figure 5.4.

Inversion Method Parameter Value

Sparse Matrix
Stacking

penalty parameter ρADMM “ 16
ℓ2,1-regularization λ2,1 “ 1570
ℓ2-regularization λ2 “ 100
iterations niter “ 400

Frequency Domain
Inversion

penalty parameter ρADMM “ 16
ℓ2,1-regularization λ2,1 “ 27
ℓ2-regularization λ2 “ 500
iterations niter “ 400

A quantitative comparison of the achieved reconstruction result with well-established TT
methods can be found in Section 6.2.
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5.3 Two-dimensional Pattern Projection

After the initial proof-of-concept experimental validation of two-dimensional photothermal SR
reconstruction in its proposed form, more emphasis was laid onto making the experimental
implementation of the method more viable for potential industrial application. As sequential
laser scanning does not scale well to larger ROIs, and the shortcomings encountered are
mostly based on the lack of sufficient measurements performed, the experimental approach
has been fundamentally revised to make use of the projection of binary pixel patterns for the
photothermal heating. Switching from an FMC to a CS based experimental approach also
tackles the problem of lacking the necessary measurement densities to achieve optimal shape
reconstruction.

5.3.1 Projection of Illumination Patterns

While illuminating an ROI with a round laser spot photothermally heating the OuT for
performing TT is already a well-known concept within the field and can be performed using
well available equipment, projecting pixelated patterns requires the use of a suitable projector.
Even though there is already precedence to the use of digital micromirror device (DMD)-based
digital light processing (DLP)-projectors for TT, their application so far has been mostly
limited to theorizing their applicability and proof-of-concept studies [86–89], or use-cases
within microscopic material characterization [90]. This can be mostly attributed to them only
achieving rather small optical output power due to technological limits. At the heart of most
DLP-projectors lies a DMD that is used to toggle individual pixels on and off in the output
image and therefore controlling the resulting brightness of the individual pixel. Every pixel
on a DMD consists of a microscopic MEMS-based flip-mirror that can be electrically toggled
to flip into distinct orientations. A schematic view of the basic components of a DMD-based
DLP-projector can be found in Figure 5.6.

However, thanks to steady technological advancement of the DLP technology mostly driven
by the film/consumer electronics industry and more recently the additive manufacturing (AM)
industry, the permissible optical power irradiating onto the DMD has increased dramatically
and therefore also their achievable irradiance for the use-case of photothermal heating. An
overview of the achievable irradiance with different DLP-projector technologies can be found
in Appendix A4.

Within the work presented in this thesis, a top-of-the-line industrial laser-coupled DLP-
projector based on the DLP650LNIR DMD chip manufactured by Texas Instruments has been
procured (cf. Figure 5.7) [91]. This chip is rated for up to 160 W of incident optical power
on the DMD in the near infrared (NIR) region. It features a total of 1280ˆ 800 individually
addressable pixels and is able to project arbitrary binary patterns with an optical output power
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of up to Q̂ “ 86 W at β “ 1 when coupled with a sufficiently powerful laser. In this case, the
same NIR-laser operating at a wavelength of 940 nm as used for the sequential laser scanning
setup is coupled to the projector set to a maximum output power of 270 W. This discrepancy
in the ratio of input to output power directly indicates the heavy cooling necessary to operate
the projector. In order to reach the output power as specified, the DMD-chip needs to be
simultaneously water-cooled (from the back) and air-cooled (from the front) with a stream of
compressed air.
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Figure 5.6: Schematic of a DMD-based DLP-projector: the heart of many modern DLP-
projectors forms a DMD, consisting of a MEMS-device containing an array of small
flip-mirrors. Depending on whether they are activated, the incoming laser beam is
either directed toward the OuT or a beam stop on a per-pixel basis. Before hitting
the DMD chip, the laser beam is spatially homogenized in intensity, typically by a
light pipe, guaranteeing an even intensity distribution over all the pixels.

As the procured projector has been designed for the direct integration into AM machines,
a mechanical mounting structure and an electrical input/output (I/O)-interface has been
engineered as part of this thesis. An overview of the available interfaces of the projector for
I/O, power and cooling can be found in Figure 5.8.

For projecting pixel-patterns onto an OuT, the projector has been integrated into the
experimental setup as shown in Figure 5.9. Here, the projector is coupled to the same
940 nm NIR-laser as used for the sequential laser scanning setup. With the help of a 1.85ˆ
magnification objective, a pixel size on the ROI of dpix “ 20 µm has been achieved leading to a
maximum irradiance of « 21 W{cm2. Due to the rather small working distance of the utilized
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Figure 5.7: DLP-projector used within this thesis. This projector is based on a DLP650LNIR
DMD chip, features 1280ˆ800 individually addressable pixels and is able to project
arbitrary binary patterns with an optical output power of up to Q̂ “ 86 W (β “ 1).
The output objective is exchangeable, allowing to adjust the size of the projection.

Fiber connection

Compressed air Water cooling

Ethernet

Power & I/O

(a) Cooling (water and compressed air), laser
and electrical interfaces necessary for oper-
ating the DLP-projector.

Power & I/O

Indicator LEDs
I/O level shifting

(b) Electrical interface box containing several
I/O-level shifter, power filtering and indi-
cator LEDs.

Figure 5.8: I/O-capabilities of the DLP-projector in use: the projector requires continuous
cooling (compressed air & water) of its DMD chip, as well as an Ethernet and
power connection (left). Its operation is synchronized by I/O-ports, which are made
accessible by an electrical interface circuit developed as part of this thesis (right).

88



5. Experimental Validation and Results

objective, a dichroic mirror has been used to fold the beam path, such that the resulting
change in temperature due to the photothermal heating by the pixel patterns could be recorded
coaxially using the same MWIR IR-camera as has already been utilized for the sequential laser
scanning setup.

For the validation of the pattern projection approach, a projection of nm “ 20 different pixel
patterns with a fill factor of β “ 0.5 has been chosen as a representative parameter set for
showcasing the capabilities of this specific experimental approach based on the observations
made by analytical simulation of the expected performance (cf. Section 4.3.3). A detailed
overview of the realized experimental parameters can be found in Table 5.4.
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Figure 5.9: Laboratory setup for validating the two-dimensional pattern projection experi-
mental approach. The OuT is heated using a DLP-projector, which projects two-
dimensionally structured pixel patterns onto the ROI. The resulting temperature
change is recorded with an MWIR IR-camera, which is coaxially aligned with the
optical path via a dichroic mirror.

Between projecting each pattern, the OuT has been given 20 s to cool down back to T0. For
nm “ 20 projected patterns, this leads to a total measurement time of « 8 min, which is 20ˆ
faster for a « 2.2ˆ larger ROI than the measurement conducted with the sequential laser
scanning approach.

While for the sequential laser scanning experimental approach all employed devices (laser,
camera, linear stages) can be easily synchronized using a control computer, the pattern
projection approach using the presented industrial grade DLP-projector is slightly more
complex. In order to operate the projector, it is necessary to precompute all patterns used
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5.3.1 Projection of Illumination Patterns

Table 5.4: Experimental parameters for validating the two-dimensional pattern projection
approach. The corresponding measurement setup is shown in Figure 5.9.

Category Parameter Value

DLP-projector

pixel size on ROI dpix “ 20 µm
total pixels (x-direction) npix,x “ 800

(y-direction) npix,y “ 1280
laser output power (at β “ 1) Q̂ “ 86 W

Illumination
pattern

ROI size 16 mm ˆ 25.6 mm
number of measurements nm “ 20
fill factor β “ 0.5
pixel cluster size dspix “ 0.4 mm
pixels clustered nclustered “ 20
pulse duration tpulse “ 500 ms

Temperature
measurement

spatial resolution ∆x, ∆y “ 100 µm
sampling frequency fcam “ 160 Hz
frequency band MWIR

for the nm measurements and upload them to the projector via the Ethernet connection.
Furthermore, the projector features an internal FPGA-based sequencer that mediates the
projector’s operation. It has to be programmed for every measurement by uploading program
code written in a proprietary Turing-complete imperative programming language via the
Ethernet connection. This sequencer code allows, among other things, to send images to
the DMD-chip, cycle through the measurements, toggle the projector’s I/O-ports to trigger
the laser and IR-camera and wait for predefined durations for the OuT to cool down to T0

between the measurements. Therefore, the whole experiment can be controlled using just the
DLP-projector providing that a suitable sequencer code is uploaded beforehand.

To facilitate the communication with the DLP-projector, an extensive interface
library (6000 LOC) has been programmed from scratch as part of this thesis as there
is no software supplied by the manufacturer due to the projector being designed to be
integrated directly into industrial machinery. A schematic overview of the interoperation of
the experimental hardware used for pattern projection based photothermal SR reconstruction
can be found in Figure 5.10.
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Figure 5.10: Interoperation diagram of the utilized hardware for pattern projection based
photothermal SR reconstruction: a control computer uploads the set of nm pixel
patterns to the projector. Afterwards, the internal sequencer of the projector is
programmed to project the patterns in sequence, trigger the camera and the laser
via its I/O-ports and wait between the measurements for the OuT to cool down.

5.3.2 Reconstruction Results

Utilizing the previously described measurement setup and the experimental parameters
described in Table 5.4, a reconstruction result as presented in Figure 5.11 has been obtained.
The identified set of parameters applied for the inversion of the photothermal SR problem
leading to this reconstruction can be found in Table 5.5. The regularization parameters have
been determined automatically using the automatic regularization parameter determination
method proposed in Section 4.3.2 without any further manual interference. As can be seen
in Figure 5.11, all defects have been identified by the reconstruction without any false positive
indication and their shape has been reconstructed with good accuracy. Only close to the edge
of the ROI (especially visible for the rightmost defect), the reconstruction of the defect shapes
is lacking, which can be explained by them already being to close to the edge of the ROI
such that a degradation of reconstruction quality due to the local beginning violation of the
homogeneity constraint for SR reconstruction (cf. Equation (2.74)) starts to occur. A sectional
view of the reconstruction result at yeval “ 2.8 mm (uppermost defect pair) exemplarily shows
that the defects can be undoubtedly separated with the gap separating both defects accurately
reconstructed.

As the reconstruction has been obtained using only nm “ 20 measurements, the reconstruction
result can be expected to still be improvable as there is still room to further increase the
number of measurements for which an increase of reconstruction quality is predicted to occur
(cf. Section 4.3.3.2). However, as one of the main goals of this work is to reduce the necessary
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5.3.2 Reconstruction Results

Table 5.5: Regularization parameters utilized to obtain the reconstruction results as presented
in Figure 5.11.

Inversion Method Parameter Value

Frequency Domain
Inversion

penalty parameter ρADMM “ 9900
ℓ2,1-regularization λ2,1 “ 490
ℓ2-regularization λ2 “ 34.4
iterations niter “ 100

time and effort to a minimum, the number of performed measurements has been deliberately
chosen ambitiously low to showcase that nm “ 20 and the achieved result already pose a
suitable compromise. Compared to the reconstruction results obtained using the sequential
laser scanning experimental approach, the pattern projection experimental approach shows
clearly superior reconstruction quality for a larger ROI at significantly reduced measurement
efforts.
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(a) Reconstruction result after pattern pro-
jection. The true defect positions are
indicated as white boxes.
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(b) Sectional view of the reconstruction result at
yeval “ 2.8 mm. The true defect positions are
highlighted with blue color.

Figure 5.11: Reconstruction results obtained from the pattern projection experimental
approach: all specific parameters applied for each reconstruction can be found
in Table 5.5. Similar figures have already been published in [A2].

A quantitative comparison of the achieved reconstruction result with well-established TT
methods can be found in Section 6.3.

92
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5.3.3 Validation of the Forward Solution

In order to also experimentally validate the forward solution to the photothermal SR
reconstruction problem as proposed in Section 4.3.1, the previously described experimental
setup for photothermal heating with pattern projection has also been utilized to generate
measured temperature profiles for gauging them against synthetic data generated by the
forward solution for identical parameters. This validation process aims to assess the accuracy of
the forward solution by comparing the measured temperature profiles with the corresponding
synthetic data, further confirming the observations made analytically on the influence of certain
experimental parameters on the achievable reconstruction quality (cf. Section 5.3.3). In order
to quantify the similarity of the synthetic data compared to the ground-truth measured data,
the coefficient of determination R2 P s´8, 1s between them is evaluated. R2 is defined as
follows:

R2pTm
meas,sim, T

m
measq “ 1´ ∥Tm

meas ´ Tm
meas,sim∥2

2
∥Tm

meas ´ Tm
meas∥2

2
, (5.1)

where a value of R2 close to R2 « 1 indicates a high agreement of the measured data and
its synthetic approximation and R2 ă 0 indicates a poor concordance such that assuming a
constant temperature value over the ROI would lead to better agreement than the simulation
itself.

The temperature data for one representative measurement Tdiff,meas overlaid with the predicted
temperature distribution Tdiff,sim by the forward solution for identical experimental parameters
as given in Table 5.4 at yeval “ 12.5 mm is shown in Figure 5.12. At this offset in the ROI, one
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Figure 5.12: Quality of the forward solution and estimation of ζ. For the experimental
parameters shown in Table 5.4, the quality of the forward solution is evaluated at
yeval “ 12.5 mm. For reference, on top the projected pattern apattern generating
the temperature profile is shown. The defect contrast factor ζ “ 0.494 has
been determined as best-fit. Measured and synthetic data lie in good agreement
(R2 “ 0.902). A similar figure has already been published in [A2].
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5.3.3 Validation of the Forward Solution

of the defects at a 45° angle is present. The defect contrast ζ necessary for the generation of
the synthetic data (cf. Equation (4.25)) – previously unknown for the defects in this particular
OuT – has been determined as the best fit value over all pixel coordinates and measurements,
such that the coefficient of determination between the model and measured data is maximized.
This way, a ζ “ 0.494 has been determined, leading to R2 “ 0.902 for the presented portion of
the data, which indicates a reasonable performance of the forward solution in approximating
measured data. As can be seen, the overall trend of the data is well captured by the synthetic
data, equally near the defect present as well as near the edges of the ROI. For reference,
the exact pattern leading to the temperature distribution at this location in the ROI shown
in Figure 5.12 is displayed on the top.

Therefore, at least for the parameters utilized in this validation measurement, it can be
argued that the forward solution proposed reasonably approximates measured data to a point
that it can be confidently used for analytical investigations as performed in Section 4.3.3. In
order to gain additional confidence, the two representative investigations on the achievable
reconstruction quality (dependence on the pixel cluster size and number of measurements
performed) already carried out, can be experimentally validated in a similar fashion.

Influence of the Pixel Cluster Size

In Section 4.3.3.1, the influence of the pixel cluster size dspix has been explored by means
of synthetic data generated by the proposed forward solution. To substantiate the validity
of this study, the proposed forward solution has to also closely resemble measured data
independent of the cluster size used for generating the illumination pattern. In order
to evaluate this issue, multiple measurements with varying cluster size but otherwise
identical experimental parameters as presented in Table 5.4 have been carried out. In total,
patterns with cluster sizes of dspix P t0.02, 0.1, 0.2, 0.4, 0.8u mm corresponding to a clustering
of nclustered P t1, 5, 10, 20, 40u and nm “ 20 each have been projected, and the resulting
temperature distributions have been compared to the predicted temperature distributions by
the forward solution by means of the coefficient of determination between them. The result of
this procedure is shown in Figure 5.13.

In Figure 5.13 it can be observed that while the forward solution poses a suitable approximation
for the measured data for small cluster sizes dspix ď 0.2 mm, its validity drops off for larger
values and also the variance in the quality of the agreement increases. This can be rooted
in the decreasing dimensionality of the heat flow as dspix increases. As the proposed forward
solution is dependent on the PSF of the OuT, the PSF has to be valid for the investigated
parameters as well. For larger dspix this is not the case as the considered PSF within this
thesis requires a three-dimensional heat flow, while for increasing dspix the resulting heat flow
converges to be one-dimensional. This phenomenon is also studied in literature [92, p. 69],
where a rather conservative bound of dspot – dspix ą 20 ¨ Ldiff for dspix is given at which
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Figure 5.13: Influence of the pixel cluster size dspix on the quality of the presented forward
model measured by the determination coefficient. For each cluster size dspix,
nm “ 20 patterns have been projected, and the resulting temperature has been
compared to the prediction of the forward model over all coordinates and all
performed individual measurements. The presented data is normalized to the
maximum achieved determination coefficient max

`
R2˘ “ 0.723, which has been

calculated over the full ROI including all edge effects and overlay errors for all
measurements. The shown error bars indicate ˘1σ standard deviation. A similar
figure has already been published in [A2].

the transition towards a fully one-dimensional heat flow is completed. Therefore, it can be
concluded that when trying to correlate experimentally acquired data with synthetic data
generated by the proposed forward solution, a cluster size of dspix « 0.2 mm should not be
exceeded for similar OuTs. As the derivation of the forward solution is tightly coupled to
the underlying modelling approach of the photothermal SR reconstruction method itself, this
threshold should be considered also for reconstructions on experimentally acquired data.

However, for the study presented in Section 4.3.3.1 where even larger cluster sizes up to
dspix “ 3.2 mm have been investigated, this restriction does not invalidate the results obtained
for those larger cluster sizes as both the data generation by means of the proposed forward
solution and the reconstruction step have been performed with the same analytical PSF.
Therefore, in this particular case, the PSF is always valid independent of the cluster size.
This fact can be seen as an extrapolation of the expected behavior without considering the
deterioration of the dimensionality of the resulting heat flow.
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5.3.3 Validation of the Forward Solution

Reconstruction Quality vs. Number of Measurements

For the dependency of the achievable reconstruction quality on the number of performed
measurements as investigated in Section 4.3.3.2, a similar validation measurement campaign
can be conducted. Utilizing the experimental parameters as presented in Table 5.4 in order to
generate reconstruction quality data points for nm P t2, 4, 6, 8, 10, 16, 20, 32, 40, 50, 80, 100u
for a cluster size of dspix P t0.4, 0.8u mm each, the graph shown in Figure 5.14 has been
obtained.
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Figure 5.14: Experimental validation of the numerical study on the influence of the
number of performed measurements on the reconstruction quality as pre-
sented in Figure 4.8. The achievable reconstruction quality has been quan-
tified by means of the proposed quality metric for data points taken for
nm P t2, 4, 6, 8, 10, 16, 20, 32, 40, 50, 80, 100u at two different cluster sizes of
dspix P t0.4, 0.8u mm. For the data, the exponential trend line with parameters
as obtained from the previously performed analytical study is shown. The
experimentally obtained data closely resembles the same exponential convergence
in reconstruction quality as predicted by the analytical study. A similar plot has
already been published in [A1].

Here, the experimentally obtained reconstruction quality as quantified by the proposed quality
metric (cf. Section 4.3.2) has been overlaid with the exponential trend line using the same
parameters exactly as obtained from the previously performed analytical study. For better
comparability, the experimental data has been linearly scaled to equal scale as the analytical
results (same amplitude A as denoted in Equation (4.31)). It can be observed that the
experimentally acquired data follows the previously determined exponential trend to the same
extend as the analytically generated data. As has already been observed utilizing analytically
generated data, increasing the number of performed measurements increases not only the
achievable reconstruction quality but also decreases the observable scatter introduced by the
reconstruction. Overall, this experimental validation measurement reinforces the observation
made analytically, namely, that it is advisable to perform around at least nm “ 50 measurements
for similar OuTs when a high fidelity in the reconstruction result is required.
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6. Discussion of the Results

In order to benchmark the added benefit of the photothermal SR reconstruction results obtained
in the previous chapter, the reconstruction results need to be put further in context with
more well-established TT methods. As these methods commonly make use of homogeneous
illumination of the ROI, reference measurements with homogeneous illumination have been
conducted in the same setup as utilized to obtain the SR reconstructions. An exemplary
thermogram obtained from such a homogeneous illumination measurement covering the whole
OuT is shown in Figure 6.1 for reference.
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Figure 6.1: Maximum thermogram for a homogeneous illumination of the whole OuT as
presented in Figure 5.1: for a tpulse “ 500 ms pulsed homogeneous laser illumination
with Q̂ “ 456 W the shown thermogram at teval “ 500 ms has been obtained.
The visible hot spots indicate defective areas. Similar homogeneous illumination
measurements will be used to benchmark the previously presented reconstruction
results.

As reference methods, the acquired data from the homogeneous illumination measurements
has been processed using the difference thermography method as well as PPT evaluation
(cf. Section 2.1.4). Both methods have been selected as they are widely applied and well-studied.
Furthermore, both methods require a representative and sound reference area, which is present
in all the investigated ROIs. This allows both reference methods to be used under ideal
conditions.
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6.1 Comparison Metrics

Comparing inherently different thermographic data processing techniques is not a trivial task,
as, by the nature of the underlying properties they make use of, they enhance the thermographic
measurement result in different ways. Commonly in the field, different methods are compared
by their improvement of the SNR or signal-to-background ratio (SBR), which are defined as
follows [93]:

SNR “ 20 ¨ log10

ˆ
Asignal
σnoise

̇
dB (6.1)

SBR “ 20 ¨ log10

ˆ
Asignal

Abackground

̇
dB , (6.2)

where Asignal and Abackground are the mean signal amplitude and the mean background signal
amplitude, respectively. However, for the case of sparse defect reconstructions, as it is the case
for the presented photothermal SR reconstruction results, these metrics can not be reasonably
applied due to the lack of any background signal and the full suppression of measurement
noise. Thus, in this case both metrics tend towards infinity (SNR, SBR Ñ8).

Therefore, other metrics are necessary for the quantitative comparison of the different data
processing methods. One identified metric that can be utilized, is the NMSE (cf. Equation (4.27))
between the processed data and the true defect map D, which, in this special case, is well
known for all investigated ROIs. The NMSE compares the processed data to the true defect
map by essentially evaluating pixel-wise the ℓ2 distance between both. As Dpx, yq P r0, 1s, for
fair comparison, all data is scaled to the same interval first. This leads to the following metric
having been evaluated for all results:

NMSEevalpAsignal, Dq “ NMSE pϕp|Asignal|q, Dq , (6.3)

where ϕp¨q is the normalization function introduced in Equation (4.15).

Additionally, the coefficient of determination R2 (cf. Equation (5.1)) has been identified as
a well-suited metric for comparison of the results of different data processing methods. R2,
as a statistical measure quantifies, how much of the variance in the processed data can be
attributed to the desired resemblance of the defect map D. Similarly to calculating the NMSE,
the input data needs to be scaled first for a fair comparison as well:

R2
evalpAsignal, Dq “ R2 pϕp|Asignal|q, Dq . (6.4)

Lastly, Ahmadi [54] examined the use of the Wasserstein distance as a quality metric for
evaluating the reconstruction quality of sparse SR reconstructions. It provides a measure of
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the cost it takes to transform one distribution into another (mean distance each element needs
to be moved). Mathematically, the Wasserstein distance of the first moment between two
one-dimensional distributions µx and νx is defined as follows:

W1pµx, νxq “
ż

R

|CDF´1
µ pxq ´ CDF´1

ν pxq| dx , (6.5)

where CDFµ and CDFν are the cumulative distribution functions of µx and νx respectively. In
the presented TT context, µx and νx are considered to be continuous uniform distributions.

While the one-dimensional Wasserstein is sufficient for assessing one-dimensional thermographic
problems as state-of-the-art for laser-based photothermal SR reconstruction prior to this work,
for two-dimensional reconstructions it has to be expanded as well. Here, most commonly the
sliced Wasserstein distance Wsliced

1 pµx,y, νx,yq can be applied, which is defined as the mean
Wasserstein distance W1pµr, νrq evaluated along all arbitrarily oriented one-dimensional slices
rx,y through both two-dimensional distributions µx,y and νx,y [94]. This can be implemented
by means of a Monte Carlo approach by sampling both distributions along randomly oriented
slices rx,y and subsequently calculating the one-dimensional Wasserstein distance of each
sample, which ultimately converges to Wsliced

1 pµx,y, νx,yq given sufficiently many samples. As
every W1pµr, νrq can be calculated very efficiently, Wsliced

1 pµx,y, νx,yq can be determined in this
iterative process even up to high precision (guaranteed by a large amount of samples taken).

This leads to the following metric, by which all data processing methods have been evaluated
by:

WevalpAsignal, Dq “ Wsliced
1 pϕp|Asignal|q, Dq . (6.6)

An overview over all utilized metrics is given in Table 6.1.

Table 6.1: Overview over all applied metrics for quantitative comparison of different ther-
mographic data processing methods with the achieved results by two-dimensional
photothermal SR reconstruction.

Metric Range
NMSEeval Normalized Mean Square Error r0,8r lower is better

R2
eval Coefficient of Determination s´8, 1s higher is better

Weval Wasserstein Distance r0,8r lower is better

Evaluating the quality of the processed data using the aforementioned metrics, however, is
only accurately possible up to a certain threshold, as those metrics do not incorporate any
knowledge about the nature of typical defects. This can be illustrated when evaluating a dataset
where all values are set to zero. As defects are most often rare events, this trivial reconstruction
approximates the true defect map already quite well. This effect is especially pronounced for
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the Wasserstein distance and NMSE metrics, while the R2 metric is less affected due to its
statistical nature. As a consequence, the results of both affected metrics have to be rated
significantly above the score attributed to the all zeros dataset in order for any dataset to be
considered reasonably portraying the true defect map. Those threshold values evaluated per
investigated ROI can be found in Table 6.2.

Table 6.2: Proposed metrics evaluated for the trivial all zeros dataset for both investigated
ROIs: for NMSEeval and Weval all results that are rated better than the indicated
values for the trivial dataset do not unambiguously indicate a better resemblance of
the true defect map D.

Metric All Zeros Dataset
ROISLS ROIpattern

NMSEeval 1.18 1.07
R2

eval ´0.18 ´0.07
Weval 3.87 0.69

6.2 Sequential Laser Scanning

Evaluating the chosen reference methods (PPT and DT) on temperature data obtained by
homogeneous illumination for the ROI utilized for the sequential laser scanning experimental
approach, the datasets as shown in Figure 6.2 have been obtained.

Here, the added benefit of post-processing of thermographic measurement data is clearly
showcased qualitatively by the very noticeable increase in the reconstruction quality of the
underlying defect map. However, the shortcoming of classical thermographic data processing
methods can also be observed, as all methods to their own extent feature a pronounced noise
background that for more challenging OuTs/ROIs can make a proper defect reconstruction
or even detection not viable. Furthermore, all defect signals are very circular in their shape,
also showing clear evidence for the influence of the thermal diffusion process on the shape
reconstruction (cf. Section 2.2.2). In contrast, both obtained photothermal SR reconstruction
results as already introduced in Figure 5.4 are shown besides for reference. While those
reconstructions are still lacking in form accuracy, the added benefit of the SR reconstruction
can be clearly observed, as both reconstructions show no interfering noise background. The
reconstruction obtained by the sparse matrix stacking reconstruction approach also already
tends to correctly reconstruct the square shape of the defects. However, both reconstructions
are far from perfect, which can be mainly attributed to the very coarse measurement grid
(cf. analysis in Section 5.2.2) utilized, which was necessary to keep the experimental efforts
manageable.

100



6. Discussion of the Results

ho
m

og
en

eo
us

ill
um

in
at

io
n

st
ru

ct
ur

ed
ill

um
in

at
io

n

0 4 7 10 14 18 21 24 28 32 35 38 42
0.0
1.4
2.8
4.2y R

O
I

rm
m

s

Measured Data

0.0
1.4
2.8
4.2y R

O
I

rm
m

s Difference Thermogram

0.0
1.4
2.8
4.2y R

O
I

rm
m

s PPT: Amplitude

0.0
1.4
2.8
4.2y R

O
I

rm
m

s PPT: Phase

0.0
1.4
2.8
4.2y R

O
I

r m
m

s Sparse Matrix Stacking Reconstruction

0 4 7 10 14 18 21 24 28 32 35 38 42
xROI rmms

0.0
1.4
2.8
4.2y R

O
I

rm
m

s Frequency Domain Reconstruction

1.0
1.2
1.4
1.6
1.8

Tdiff rKs

0.1
0.2
0.3
0.4
0.5

TDT rKs

´2.0
1.4
4.8
8.2
11.6
15.0

∆Afft
“
K{?

Hz
‰

0.1

0.2

0.3

∆ϕfft rrads

0.0
0.2
0.4
0.6
0.8
1.0

aSMS
rec r-s

0.0
0.2
0.4
0.6
0.8
1.0

aFDR
rec r-s

Figure 6.2: Qualitative comparison of the reconstruction results obtained via the sequential
laser scanning approach with well-established TT reference methods based on
homogeneous heating of the ROI (cf. Figure 5.4): for setting the reconstruction
results into context, the temperature difference Tdiff for a homogeneous illumination
of the ROI with a laser pulse with tpulse “ 500 ms and Q̂ “ 456 W in conjunction
with further post-processed versions of this dataset are shown, namely, the result
of difference thermography TDT and phase and amplitude PPT images ∆Afft and
∆ϕfft for the 2nd frequency component (ffft “ 0.105 Hz). The true defect positions
are indicated by white boxes. A similar figure has already been published in [A3].
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To better visualize the datasets presented in Figure 6.2, a sectional view at yeval “ 1.8 mm of
the DT dataset and the amplitude of the PPT evaluation dataset is shown overlaid with the SR
reconstruction aSMS

rec obtained by the sparse matrix stacking inversion technique in Figure 6.3.
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Figure 6.3: Sectional view of the difference thermography and PPT evaluation data presented
in Figure 6.2 at yeval “ 1.8 mm overlaid with aSMS

rec obtained by the sparse matrix
stacking inversion technique. Overlaying the inherently sparse SR reconstruction
result further underlines the significant gain in contrast that can be achieved by
SR reconstruction. The true defect positions are highlighted in blue color.

In order to quantify the differences seen in the different datasets and to rank the different
methods, inputting all datasets in the proposed comparison metrics summarized in Table 6.1
leads to the values presented in Table 6.3.

Here, it can be observed that the SR reconstruction result obtained by the sparse matrix
stacking inversion technique performs best according to the NMSE and R2 metrics but performs
slightly worse than the difference thermography result according to the Wasserstein metric. The
sparse matrix stacking inversion technique has also overall (qualitatively and quantitatively)
shown to outperform the frequency domain inversion technique when combined with coarse
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measurement grids for data obtained with the sequential laser scanning experimental approach.

Table 6.3: Comparison metrics results for the SR reconstructions obtained by the sequential
laser scanning experimental approach for sparse matrix stacking inversion (aSMS

rec )
and frequency domain inversion (aFDR

rec ). The result for the best performing dataset
for each metric is underlined and colored blue.

Metric Datasets
Tdiff TDT ∆Afft ∆ϕfft aSMS

rec aFDR
rec

NMSEeval 2.42 0.85 1.03 0.94 0.78 0.96
R2

eval ´1.42 0.15 ´0.03 0.06 0.22 0.04
Weval 11.66 2.91 3.77 3.15 3.04 3.29

6.3 Two-dimensional Pattern Projection

While the achieved reconstruction results by the sequential laser scanning approach were
sufficient for a first proof of concept for two-dimensional SR reconstruction, the achieved
reconstruction quality so far after investing reasonable experimental efforts leaves still room
for improvement. Thus, the two-dimensional pattern projection experimental approach has
been developed, analyzed and optimized, culminating in the exemplary reconstruction results
already presented in Figure 5.11.

Acquiring the difference temperature Tdiff after homogeneous illumination of the ROI utilized
for two-dimensional pattern projection in the same setup projecting a single pattern with β “ 1
(all pixels activated) at maximum output power (Q̂ “ 86 W) of the projector and performing
the selected post-processing methods (PPT and DT) for reference, leads to the datasets as
presented in Figure 6.4.

While especially the amplitude image of the PPT and the DT results show a clear defect contrast
improvement when compared with the initial dataset, qualitatively, both of these conventional
methods are clearly outperformed by the SR reconstruction. The achieved reconstruction
results shown features not only a perfectly sparse representation of the underlying defect
map D, but also correctly reconstructed each defect with a high form accuracy. Solely the
rightmost defect in the ROI is not fully reconstructed, which can be attributed to it lying
very close to the edge of the ROI and therefore the illuminated area, leading to insufficient
information about this area and a beginning local violation of the SR homogeneity constraint
(cf. Equation (2.74)).
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Figure 6.4: Qualitative comparison of the reconstruction results shown in Figure 5.11
obtained via the pattern projection approach with well-established TT methods
based on homogeneous heating of the ROI serving as reference: for setting the
obtained reconstruction results into context, the temperature difference Tdiff for
a homogeneous illumination of the ROI with a laser pulse with tpulse “ 500 ms
in conjunction with further post-processed versions of this dataset are shown,
namely, the result of difference thermography TDT and phase and amplitude PPT
images ∆Afft and ∆ϕfft for the 3rd frequency component (ffft “ 0.516 Hz). The
laser power has been set to Q̂ “ 86 W in order to guarantee a fair comparison with
the constrained output power capabilities of the utilized laser projector. The true
defect positions are indicated by white boxes in each plot. A similar figure has
already been published in [A2].

Figure 6.5 further illustrates these qualitatively outstanding results by showing a section of the
different reconstructions at yeval “ 2.8 mm, which intersects the upper defect pair featuring
a separation distance of dsep “ 1 mm. Both defects are well reconstructed in their respective
shape and the separation distance is accurately reflected. Both conventional reference methods
on the other hand only give an indication about the presence of the defect pair but severely
lack information about the true defect shapes as can be expected by conventional non-diffusion
corrected thermographic post-processing methods.
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Figure 6.5: Sectional view of the difference thermography and PPT evaluation (amplitude)
data presented in Figure 6.4 at yeval “ 2.8 mm overlaid with arec obtained via the
frequency domain inversion approach. The defect pair centered in this section of the
data is well reconstructed by the SR reconstruction result, while both conventional
reference methods only vaguely indicate the true defect geometries. The true defect
positions (defect pair with dsep “ 1 mm) are highlighted in blue color. A similar
figure has already been published in [A2].

When inputting all acquired data sets into the comparison metrics identified in Table 6.1, the
results as shown in Table 6.4 are obtained. In this quantitative comparison, for the NMSE
and R2 metrics the SR-reconstructions clearly outperforms all reference methods by a large
margin. Again, only for the Wasserstein metric Weval the PPT phase image performs slightly
better than the SR reconstruction. However, due to the high degree of sparsity of the true
defect map within the ROI, both best performing methods according to the Wasserstein metric
(SR reconstruction and the PPT phase image) perform close to a dataset containing all zeros
(cf. Table 6.2). Therefore, the Wasserstein metric is less significant in this circumstance.

Table 6.4: Comparison metrics results for the SR reconstructions obtained by the two-
dimensional pattern projection experimental approach for frequency domain
inversion (arec). The result for the best performing dataset for each metric is
underlined and colored blue.

Metric Datasets
Tdiff TDT ∆Afft ∆ϕfft arec

NMSEeval 6.24 1.78 1.03 1.38 0.59
R2

eval ´5.24 ´0.78 ´0.03 ´0.38 0.41
Weval 6.20 1.80 0.93 0.45 0.47
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6.4 Key Result Summary and Observed Limitations

The following key observations have been made evaluating the different experimental results
presented in Chapter 5 and the quantitative comparison of the achieved reconstruction results
with well-established conventional TT post-processing techniques as presented in Chapter 6:

True two-dimensional photothermal SR reconstruction has been achieved and the resulting
sparse reconstruction of the underlying defect map outperforms representative well-
established TT reference methods.

Analytical studies given the novelly introduced forward solution and automated inversion
represent a viable tool for parameter studies and optimization and their predictions
withstand experimentally validation.

The two-dimensional pattern projection experimental implementation approach has
proven to at least reduce measurement efforts by a factor of 20ˆ compared to the more
traditional sequential laser scanning experimental approach.

Quantitatively and qualitatively, the two-dimensional pattern projection experimental
implementation approach has resulted in the best SR reconstruction of the true defect
map.

Frequency domain based inversion of the photothermal SR problem has shown to be the
preferred inversion technique due to its better computational complexity and accurate
reconstruction results given sufficient information density in the SR measurements.

In contrast, the sparse matrix stacking inversion technique has proven to better
suppress noise or false-positive signals (homogeneity constraint violations), but at high
computational complexity.

Ultimately, the following limitations have been identified:

Noise based quantitative comparison (SNR, SBR) of reconstruction results is not viable
due to the sparse nature of the SR defect reconstruction.

Frequency domain based inversion of the photothermal SR problem has proven to be
less suited for very coarse measurement grids (cf. Figure 5.4; artifacts)

A quantitative comparison of the results ideally requires a more sophisticated metric as
well-established metrics cannot correctly quantify the sparsity benefit (cf. Table 6.2; all
zeros dataset).
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7.1 Summary

Even though thermographic nondestructive testing (NDT) is a well-established method for
detecting internal defects in several fields of industrial application, it inherently lacks in terms
of the resolution of the shape of those defects. While this is a crucial aspect in the assessment
of the impact of those defects on the object under test’s (OuT’s) specification, the diffusive
nature of heat conduction sets a natural limit towards the achievable reconstruction quality for
conventional thermographic NDT methods (cf. Section 3.1). Exceeding this limit is the main
goal of thermographic super resolution (SR) methods, which achieve this goal by combining the
information gathered from multiple differing measurements with spatially structured heating
by applying mathematical optimization algorithms that exploit the use of physically relevant
priors.

Starting from pre-existing foundational work on theorizing the principle of achieving a SR
reconstruction of internal defects by means of the photothermal SR reconstruction method
and foundational academic work to its application for the reconstruction of deeply-buried
one-dimensional defect structures, the work conducted within this thesis elevated the method
towards an applicability for two-dimensional regions of interest (ROIs) containing arbitrarily
shaped defects, as it is the norm for most industrial application scenarios. In order to meet
this challenge, the following achievements have been made:

The underlying severely ill-posed and heavily regularized inverse problem of photothermal SR
reconstruction has been reformulated for two-dimensional ROIs and two distinct methods for
its inversion have been proposed (sequential matrix stacking: cf. Section 4.1.1; inversion in
frequency space: cf. Section 4.1.2), studied and put to the test.

From the ill-posed inverse problem a forward solution has been derived that allows for
the generation of synthetic measurement data (cf. Section 4.3.1). In conjunction with the
introduction of an automated method to determine the necessary regularization parameters
for the photothermal SR reconstruction, these advances make it possible to make predictions
about the performance of the method based on analytical simulations.
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Utilizing those newly available tools, two exemplary numerical studies have been conducted in
order to thoroughly investigate the influence of the number of conducted measurements and
the pixel size of the laser illumination used for photothermal heating. For both parameters,
their dependency on the achievable reconstruction quality has been analyzed in this way within
a parameter space that could not have been feasibly covered prior by a purely experimental
study (cf. Section 4.3.3).

On the practical side, the experimental implementation of photothermal SR reconstruction has
been expanded to deal with arbitrarily sized two-dimensional ROIs. This has been achieved
first by upgrading the already established sequential scanning approach towards the scanning
of two-dimensional ROIs in a proof-of-concept phase (cf. Section 5.2.1). Subsequently, as
the sequential scanning approach is not feasibly scalable to larger ROIs in practical use
cases, the latest laser-coupled digital light processing (DLP) projector technology has been
adapted to the method. This has required as an integral part of this work the planning,
designing and procuring of the experimental setup and the extensive creation of software
to facilitate the communication with the projector and its synchronization with all involved
measurement equipment. Ultimately, the use of a DLP-projector has sped up the experimental
implementation significantly (up to 20ˆ; cf. Section 5.3.1) by projecting binary pixel patterns
that cover the whole ROI. While there is some precedence to the use of DLP projectors in
thermographic testing, their application within this thesis mark the first point where the
application for testing macroscopic metallic objects has been proven feasible.

Utilizing this novelly adapted experimental strategy, all analytical results acquired have
been put to the test and validated in dedicated measurement campaigns. Overall, as a high
consistency between the measured data points and corresponding analytically generated data
points could be observed, the proposed analytical simulation approach proved to be a successful
tool to make predictions about the behavior of the method (cf. Section 5.3.3).

Furthermore, different ROIs of a purpose-made OuT have been thermographically tested for
internal defects using the proposed two-dimensional photothermal SR reconstruction approach
as well as several well-established thermographic reference methods based on homogeneous
illumination. In direct qualitative and quantitative comparison, the proposed photothermal SR
reconstruction approach has proven to significantly outperform the available reference methods
in terms of shape reconstruction of the internal defects (cf. Chapter 6).
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In conclusion, the research objectives as stated in Section 3.3 have been widely met and the
accomplishments of this thesis can be summarized as follows:

Laser-based photothermal SR reconstruction has been expanded to cope with two-
dimensional ROIs encompassing arbitrarily shaped defects.

Two different numerical methods for the inversion of the underlying severely ill-posed
inverse problem have been proposed and successfully applied to experimentally acquired
data.

A proof-of-concept experimental approach has been implemented which is capable of
investigating two-dimensional ROIs using standard equipment commonly found in laser-
based active thermography. This experimental approach has already been able to prove
a significant improvement of the achievable resolution of the reconstruction of internal
defects.

The experimental approach has been refined by the introduction of a state-of-the-art
digital micromirror device (DMD)-based laser-coupled DLP-projector, which so far has
only seen very limited use in thermography but enabled a significant reduction in the
required experimental efforts at better reconstruction results.

An analytical approach to simulating a photothermal SR reconstruction experiment
has been derived, which allows studying the influence of different parameters on the
reconstruction result accelerating the optimization of method and adaption to other
experimental requirements.

The analytical simulation has been automated by deriving a forward solution to the
photothermal SR reconstruction inverse problem which allows for the generation of
synthetic measurement data for arbitrary ROIs and defect distributions. Furthermore,
the inversion of the ill-posed inverse problem has been automated by automatically
determining the (optimal) set of regularization parameters for the inversion.

Concomitantly, all findings have been thoroughly experimentally validated and all
analytically obtained results could be recreated using experimentally acquired data.

The technology readiness level (TRL) level of the method could be steadily improved
from an initial TRL 3 to an estimated TRL 4–5 thanks to the work encompassed by this
thesis.
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7.2 Outlook

While the work culminating in this thesis has managed to increase the TRL of the method
from an estimated TRL 3 to TRL 4–5, the current state of the photothermal SR reconstruction
method has clearly not reached full maturity. The auspicious results that have been already
obtained further corroborate that investing in further work to increase the TRL even more is
well worth the effort.

Automated Photothermal Super Resolution Reconstruction

When trying to envision the next steps that naturally unfold, it is beneficial to illustrate the
process of performing a photothermal SR reconstruction measurement as shown in Figure 7.1 (a).
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(a) Current state of the overall process behind two-dimensional photothermal SR reconstruc-
tion: as the method is still at TRL 4-5 after the improvements by the works of this thesis,
a trained expert is still required for performing all individual steps.
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(b) Long-term vision for two-dimensional photothermal SR reconstruction: the involvement
of trained experts is minimized such that the method can be viably used in an integrated
Industry 4.0 environment.

Figure 7.1: Current state and vision for two-dimensional photothermal SR reconstruction

In its current state, all necessary steps to test a single OuT have to be performed by a trained
expert. While this is acceptable for very highly specialized application fields where accuracy
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of the method is valued above the inherent cost, for wider application a larger degree of
automation has to be introduced to the method. This necessary automation has to take several
forms, as the different tasks to be performed feature their own unique set of requirements. On
the practical side, the currently static experimental implementation of the method needs to be
adapted to be able to deal with complex shaped OuTs, which requires automated manipulation
of the OuT (e.g., by means of a robotic arm [95, 96]). On the data processing side, a substantial
automation effort needs to be undertaken to be able to automatically determine suitable
regularization parameters even for unknown OuTs, as this is currently the main bottleneck in
every measurement campaign. Furthermore, the final evaluation of the achieved reconstruction
result invites to be automated such that it can be performed algorithmically, as the significantly
improved machine readability of the result is one of the major benefits of the photothermal SR
reconstruction method compared to other available thermographic testing (TT) techniques.

The envisioned idealized future for the application of two-dimensional photothermal SR
reconstruction measurements comprises the following steps, which are also displayed graphically
in Figure 7.1 (b):

Choose experimental parameters on basis of simulations (forward solution & numerical
studies) suitable for the OuT/ROI at hand.

Run a fully automated version of the experimental implementation suitable for OuTs
with arbitrarily curved surfaces.

Reconstruct the defects from the measurements with the optimal set of regularization
parameters tλ2,1, λ2u, determined automatically from the measurements themselves
(cf. first works by Ahmadi et al. [97] and Hauffen et al. [98]).

Automatically evaluate the reconstruction results and process them further as part of
the documentation of the OuT’s lifecycle.

Further Experimental Improvement

The introduction of laser-coupled DLP-projectors to the photothermal SR reconstruction
method lead to a massive improvement in reducing the experimental efforts while achieving
high reconstruction quality. However, the limited power output of available DLP-projectors
– even though constantly improving (cf. Appendix A4) – is problematic for resolving deeper
defect depths. This influence on the depth at which defects can be detected is governed by the
following points:

The detectability of defects is closely bound to the achievable signal-to-noise ratio (SNR)
of the individual measurements that are combined by the photothermal SR reconstruction
algorithm. As the measurement noise is mostly fixed to the noise equivalent temperature
difference (NETD) of the utilized infrared camera, increasing the signal amplitude is the
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only feasibly accessible way to increase the SNR. Thus, sufficiently strong photothermal
heating is required (i.e., high irradiance on the ROI and therefore high optical output
power of the projector).

As the method is formulated to utilize short pulses (i.e., tpulse ! tdiffpLdefectq), especially
for thermally fast materials (high thermal diffusivity α) the duration of the illumination
should be kept short. This further limits the photothermally deposited energy.

The thermal signal strength decays with 9pα tq´3{2 (cf. Equation (2.17)). Therefore, for
a sufficient SNR for the detection of deeply-buried defects, substantial initial heating is
necessary such that at t « tdiffpLdefectq the SNR is still high enough.

In summary, the ideal photothermal heating comprises a short pulse at high irradiance such
that sufficient heating and therefore adequate SNR can be guaranteed. However, in reality,
current DLP-technology quickly reaches its limits. The fact that the utilized approach consists
of projecting patterns with significant white-content (β ď 0.5), further limits the maximum
possible deposited energy. As the DLP-technology at least needs to improve in this regard for
another order of magnitude before the achievable irradiances cannot be considered the major
bottleneck for the testing of thermally fast materials (like most metals) anymore, on the short
to mid term scale another solution needs to bridge this gap.

An obvious solution would be provided by the utilization of more powerful illumination sources.
While for a single DLP-projector the limits are already reached, the combination of multiple
projectors similar to the three-chip design of modern consumer grade DLP-projectors could
be a viable solution. While with three-chip based DLP-projectors the individual light sources
with one DMD each are combined as individual color channels [99], in the proposed approach,
several projectors could be combined to increase the overall irradiance on the ROI. Another
possibility would be to directly combine multiple laser sources, such that each pixel of the
illumination is facilitated by its own laser source. Such an approach can already be observed
in experimental laser powder bed fusion (PBF-LB) setups, where each layer in the PBF-LB
process is fused by a single-shot illumination utilizing an array of « 106 diode lasers (cf. EOS
«LaserProFusion» technology [100]).

However, so far this process has not reached commercial maturity and such vast laser diode
arrays are not yet available on the market. Until then, what is left would be to take advantage
of the general versatility of laser-based active TT by combining the pattern projection approach
with different photothermal techniques, introducing a temporal structuring of the illumination
to increase the depth range of the defect detection. Temporal structuring has already proven
to be a viable approach for increasing the depth range of TT and their experimental
implementation can be easily superimposed onto the photothermal SR reconstruction problem.
Possible temporal structuring methods for the photothermal excitation that are proposed to
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be investigated, comprise thermal wave radar [101], chirped pulse excitation [102] or pulse
compression using coded excitation [103, 104].

Three-dimensional Photothermal SR Reconstruction

While this thesis has improved the photothermal SR reconstruction method from only operating
on one-dimensional ROIs to being capable of reconstructing arbitrarily shaped defects in two-
dimensional ROIs, the method still only outputs a two-dimensional defect map. With the
vision of a photothermal computed tomography (CT) method in mind, the next step would be
to extend the method to three-dimensional defect reconstruction. This can be tackled in several
ways: one possibility would be to evaluate the current “planar” version of the photothermal
SR reconstruction problem for multiple depths by choosing multiple teval values (corresponding
to multiple diffusion lengths according to Equation (2.13)) and perform one reconstruction
each. Afterwards, the resulting defect maps could be combined into a single three-dimensional
defect map. Another option would be to perform a continuous evaluation of the depth by
extending the photothermal SR problem as follows (cf. Equation (2.71)):

Tdiffpr, z2{αq “ ΦPSFpr, z2{αq ˚r paextprq ` aintpr, zqq
“ ΦPSFpr, z2{αq ˚r apr, zq

. (7.1)

On the downside, the introduction of the depth information will increase the sparsity of the
defect map and therefore further increase the ill-posedness of the problem, which in conjunction
with the increased computational complexity will make the reconstruction problem even more
challenging. However, the introduction of depth information will also increase the information
content of the measurements and therefore the potential increasing the reliability of the method
for the reconstruction of complex defects in demanding testing scenarios.

Another possibility would be to extend the photothermal SR reconstruction problem to
three-dimensional defect reconstruction by adding depth information via the virtual wave
(VW) transformation, which is a well suited post-processing technique to increase the depth
resolution of active TT [105]. Ultimately, the results from the photothermal SR reconstruction
and additional post-processing of the initially acquired thermographic data based on the VW
transformation could be fused together to yield a high-resolution three-dimensional defect
reconstruction.
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Appendices

A1. Derivation of the Fourier Transform of the Thermal Point
Spread Function

The continuous Fourier transform of the Green’s function of the heat partial differential
equation (PDE), as stated in Equation (2.17), evaluated at the diffusion time t “ L2{α for a
penetration depth of L can be derived as follows:

F rGheatpr, L2{αqs pζrq “
8ż

8

1
p4πL2q3{2 ¨ exp

ˆ
´∥r∥2

2
4L2

̇
exp p2πiζr∥r∥2q dr (A1.2)
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̇
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Abramowitz and Stegun give the following identity [106, p. 302: Eq. 7.4.6]:

8ż

0

exp
`´at2˘ cos p2xtq dt “ 1

2

c
π

a
exp

ˆ
´x

2

a

̇
for Repaq ą 0 . (A1.6)

Inserting Equation (A1.5) into Equation (A1.6) yields the following:

F rGheatpr, L2{αqs pζrq “ 1
2πL ¨ exp

`´4π2L2ζ2
r

˘
. (A1.7)
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A2. Derivation of the Fourier Transform of a Gaussian Beam Profile

The intensity profile of a Gaussian beam focused onto the x-y plane in cylindrical coordinates
r “a

x2 ` y2 is given as:

Ir,Gaussianpr, z “ 0q “ I0 ¨ exp
˜
´ 2r2

d 2
spot

¸
, (A2.8)

with I0 being the intensity at Ipr “ 0, z “ 0q and dspot the 1{e2 diameter of the intensity profile
(spot size). The Fourier transform of Equation (A2.8) can be acquired in a similar argument
to the one presented in Appendix A1. According to Equation (A1.6), FrIr,Gaussianspζrq for
a “ 2{d 2

spot is given as follows:
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ñ FrIr,Gaussianspζrq “ I0
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πd 2

spot
2 exp

˜
´d 2

spotζ
2
r

2

¸
. (A2.10)

A3. Derivation of the Thermal Sparrow Limit

If two thermal point spread functions (PSFs) are arranged at a separation distance of d next
to each other, they are inseparable by definition of the Sparrow limit (cf. Section 2.2.1) if no
minimum can be observed between them. This is true, if the following conditions are fulfilled:

δ

δr

`
Gsumpr “ 0, L2{αq˘ “ 0 (A3.11)

δ2

δr2
`
Gsumpr “ 0, L2{αq˘ ď 0 , (A3.12)

where Gsumpr, L2{αq “ Gheatpr ` d{2, L2{αq `Gheatpr ´ d{2, L2{αq . (A3.13)

The condition stated in Equation (A3.12) demands that the second derivative in space at the
center of the two PSFs is less or equal to zero, which means that the sum of the two PSFs
needs to still be concave or flat at this position leading to no observable minimum. For an
extremum to occur in the first place, the first derivative also needs to equal zero as demanded
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by Equation (A3.11). The second derivative in space of Gsumpr, L2{αq is given as:
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(A3.16)

From Equation (A3.15) it can be already inferred that the condition for the first derivative
to equal zero, as stated in Equation (A3.11), holds true for all separation distances d and
diffusion lengths L:
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This thermal Sparrow Limit is then met, if the following inequality is fulfilled:

δ2

δr2
`
Gsumpr “ 0, L2{αq˘ ď 0 (A3.19)

Eq. (A3.16)ñ 1
p4πL2q3{2 ¨
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Lą 0, dě 0ñ d2 ´ 8L2 ď 0 (A3.21)

ñ d ď 2
?

2L (A3.22)
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A4. Achievable Irradiances using DLP-based Projectors

DLP-based projectors are widely encountered in daily live as they are used to project all sorts
of imagery (movies, presentations, etc.). One of the main key specifications of any projector is
its brightness (emitted luminous flux Φv measured in Lumen [lm]), as it determines the image
contrast and governs the visibility of the projected image with respect to the ambient lighting
conditions. However, for considering their application for photothermal heating of objects, the
emitted radiant flux Φ (measured in Watt [W]) is the required characteristic. Both are linked
by the luminous efficacy Kpλq rlm{Ws:

Kpλq “ Φv

Φ , (A4.23)

which is modelled after the sensitivity curve of the human eye for daylight vision (cf. Fig-
ure A4.1) [108].
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Figure A4.1: Spectral luminous efficacy Kpλq of the human eye for photopic vision (well-lit
conditions). The luminous efficacy correlates the photometric luminous flux
(perceived brightness) to the radiometric radiant flux. Kpλq has a maximum at
λ “ 555 nm with Kp555 nmq “ 683 lm{W. For a true white light source, a mean
value of

ş
λKpλq dλ « 183 lm{W is reached, while white light that is created

by the combination of red (630 nm), green (532 nm) and blue light (465 nm),
achieves a luminous efficacy of « 300 lm{W.

Typical modern DLP-based projectors feature in the order of „ 1000 lm to 10000 lm of luminous
flux exiting the projector depending on the built-in light source. Notably, the brightest laser
projectors that are in public use are three-chip DLP laser projectors (one DLP and laser light
source per color channel) featuring „ 55 000 lm [99]. Those are used in the largest cinemas
with screen sizes up to « 500 m2. Due to them having independent laser light sources per color
channel, they also offer high luminous efficacies of „ 300 lm{W, leading to a total radiant flux
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of:
Φ “ 50 000 lm

300 lm{W « 167 W . (A4.24)

While a radiant flux of 167 W is a quite a lot in the context of photothermal heating, these
projectors are very costly, very large and weigh multiple hundred kilograms [99]. To achieve
the irradiance values typically necessary to guarantee sufficient photothermal heating for
higher conductivity materials such as metals (10 W{cm2 to 100 W{cm2), the image of such a
projector would need to be projected down to a total area of 16.7 cm2 to 1.67 cm2 to reach
sufficient irradiance values, which ranges several magnitudes outside their contemplated area
of operation. In contrast, most consumer grade laser-based DLP-projectors do not feature
independent laser sources for each color channel and instead only come with a single laser light
source that is used to handle several color channels at once. This drastically decreases the
radiant flux to a point where it is hardly viable for macroscopic TT (microscopic applications
exist, cf. [90]). An overview of different projector types is given in Table A4.1.

Table A4.1: Different projector types with typical brightness, radiant flux and max. ROI size
to achieve sufficient irradiance for photothermal heating. For all projectors, a
luminous efficacy of « 300 lm{W is assumed [107, 109].

Projector Brightness
typ. [lm]

Radiant flux
typ. [W]

projection area [cm2]
at 10 W{cm2 at 100 W{cm2

LED-based „ 1000 3 0.3 0.03
LCD-based „ 3000 10 1 0.1
DLP-based
(standard) „ 8000 27 2.7 0.27

DLP-based
(top tier) „ 50000 167 16.7 1.67

DLP-based
(Fig. 5.7) - 86 8.6 0.86

Table A4.1 also comprises the industrial grade DLP-projector utilized within this thesis
(cf. Figure 5.7) for reference. As it is designed to be used with a NIR laser source, no brightness
value can be attributed. However, it can be seen that for an affordable single chip design, it
features a substantial radiant flux, which is only outmatched by the largest cinema projectors.
However, as it is designed to be used for industrial applications it is much more adaptable to
laboratory use.
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