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 1 Introduction 

In recent years, the concept of digital twins has gained 

significant attention in a wide range of industries. The term 

was first introduced by Dr. Michael Grieves in 2002 [1] in 

the context of Product Lifecycle Management (PLM) as a 

digital representation of a physical object or system that 

is continuously updated with real-time data. Since then, 

this concept has been applied extensively in many differ-

ent fields, such as the control of manufacturing processes, 

the monitorization of real-time data, or as a support for 

augmented reality (AR) and Internet of Things (IoT) im-

plementations. In the field of engineering, digital twins 

have become a valuable tool for the assessment and man-

agement of physical systems, and bridges are no excep-

tion. 

Despite their rapid adoption, there is still much to be ac-

complished regarding the homogenization and standardi-

zation of digital twins [2]. Under the definition of digital 

twin are included very distinct types of digital representa-

tions of physical objects, which are worthy of being treated 

independently. As a general classification based on the 

source of the information to be treated, we can differenti-

ate geometry-, data- and simulation-based digital twins. 

Geometry-based digital twins are usually based on 3D 

models or Building Information Models (BIM) that provide 

a detailed representation of the physical geometry of a 

bridge. The difference with classical systems representa-

tions lies in the use of information from the real object. 

Some examples applied to bridge engineering are the use 

of scanned point-cloud data to generate the geometry of 

the model [3, 4], the incorporation of BIM data into an AR 

model for monitoring the construction and operation of the 

bridge [5], or checking the clearance for widening projects 

[6]. 

Data-driven digital twins use real-time data from various 

sources, such as sensors, to create a digital representation 

of the physical system. They are typically focused on the 

operation, monitoring, and maintenance of the bridge and 

usually lack information about the system itself. Possible 

applications are the use of Key Performance Indicators 

(KPI) to assess the state of the bridge in real-time [7, 8] 

or as a basis for Structural Health Monitoring (SHM) anal-

ysis [9, 10]. 

Simulation-based digital twins can be understood as a 

combination of both, where real sensor data is used to en-

ORIGINAL ARTICLE

Abstract 

Simulation-based digital twins have emerged as a powerful tool for evaluating 

the mechanical response of bridges. As virtual representations of physical sys-

tems, digital twins can provide a wealth of information that complements tra-

ditional inspection and monitoring data. By incorporating virtual sensors and 

predictive maintenance strategies, they have the potential to improve our un-

derstanding of the behavior and performance of bridges over time. However, 

as bridges age and undergo regular loading and extreme events, their struc-

tural characteristics change, often differing from the predictions of their initial 

design. Digital twins must be continuously adapted to reflect these changes. In 

this article, we present a Bayesian framework for updating simulation-based 

digital twins in the context of bridges. Our approach integrates information 

from measurements to account for inaccuracies in the simulation model and 

quantify uncertainties. Through its implementation and assessment, this work 

demonstrates the potential for digital twins to provide a reliable and up-to-date 

representation of bridge behavior, helping to inform decision-making for 

maintenance and management. 

Keywords 

Digital Twins, Bayesian Inference, Bridge Monitoring, Uncertainty Quantification 

Correspondence 

M.Sc. Daniel Andrés Arcones

Bundesanstalt für Materialfor-

schung und -prüfung (BAM)

Department 7.7 Modelling and Si-

mulation

Unter den Eichen 87

12205 Berlin, Germany

Email: daniel.andres-arcones@bam.de

1 BAM, Berlin, Germany 
2 ZIB, Berlin, Germany 
3 TU Munich, Munich, Germany

Proceedings  
in civil engineering

https://doi.org/10.1002/cepa.2177 wileyonlinelibrary.com/journal/cepa

 ce/papers 6 (2023), No. 5© 2023 The Authors. Published by Ernst & Sohn GmbH.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in 
any medium, provided the original work is properly cited 

734

mailto:daniel.andres-arcones@
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcepa.2177&domain=pdf&date_stamp=2023-09-25


rich information from a geometrical model based on phys-

ical laws. This paper focuses on their potential to provide 

valuable information about the state of the bridge and 

their predictive capabilities. 

1.1 Motivation 

Standalone simulations have a long tradition in the field of 

civil engineering, particularly in the design and analysis of 

bridges. The use of finite element models (FEM) has be-

come a standard tool for engineers to predict the behav-

iour of bridges under different loads and environmental 

conditions. In recent years, advances in computational ca-

pabilities have made it possible to use more complex mod-

els with greater detail, providing engineers with a better 

understanding of the performance of bridges. Further-

more, a plethora of commercial tools is available for the 

design and analysis of structures. 

Simulation-based digital twins apply this accumulated 

knowledge from simulation in civil engineering and use it 

to develop connected models enriched by data from their 

physical counterparts which can be used for predictions 

and informed decision-making. Contrary to purely data-

driven digital twins, they can provide information where 

data sources (i.e., sensors) are not available. Additionally, 

they include robust physical laws that govern the potential 

behaviour of the bridge, in opposition to statistical ones 

from data-driven DT. However, their lack of adoption can 

be traced to several challenges, including the need for in-

formation to build the physical model such as material pa-

rameters or modelling assumptions, the high computa-

tional cost and time required to run the simulations, and 

the difficulties associated with implementing the technol-

ogy on already-standing structures. 

Bridges are a clear example of such a structure that would 

benefit from the implementation of simulation-based digi-

tal twins. As bridges age, their structural characteristics 

change, and the predictions made by simulations based on 

their initial design may no longer be accurate. To address 

this issue, it is necessary to continuously update the digital 

twin with real-time data, so that it remains accurate and 

representative of the physical system. A promising ap-

proach is the implementation of a Bayesian framework for 

updating the model based on sensor data.  

1.2 Bayesian framework for model updating 

Bayesian inference is a well-known statistical framework 

that allows for the quantification of uncertainty in the pa-

rameters of a model. It involves updating prior beliefs 

about the parameters with new data to obtain a posterior 

distribution, which encapsulates the updated knowledge 

about the parameters. This ability to quantify the uncer-

tainty present in the model results is key in the context of 

digital twins, as it allows the user to make informed deci-

sions knowing the certainty of the provided results. 

Bayesian inference has been commonly used to incorpo-

rate information from measurements into simulation mod-

els. In the field of civil engineering, it is generally applied 

in the development of predictive maintenance strategies 

[11] or model updating strategies [12]. The latter ones are 

the focus of this study, as they allow the estimation of pa-

rameters based on information from sensors and introduce 

a measurement of the uncertainty of the predictions.  

Furthermore, the Bayesian framework allows to introduce 

a mismatch term to measure the discrepancy between the 

model and the reality [13], which can provide further in-

sight into the adequacy of the digital twin. This approach 

has yet to be applied to model parameter estimation. 

1.3 Structure and objectives 

The objective of this article is threefold: the identification 

of requirements and challenges for simulation-based digi-

tal twins of bridges, the implementation of a Bayesian 

framework in that context, and the validation of such a 

workflow in a demonstrator example. 

Therefore, in the following section, an analysis of the re-

quirements, challenges, and potential applications of sim-

ulation-based digital twins for bridges is presented. Next, 

the Bayesian framework is formally introduced. Finally, its 

application to a simple demonstrator based on the Nibe-

lungenbrücke of Worms (Germany) is presented.  

2 Simulation-based digital twins 

A more precise definition of simulation-based digital twins 

is provided by Lu et al. in [14]: ”A digital twin (DT) refers 

to a digital replica of physical assets, processes, and sys-

tems. DTs integrate artificial intelligence, machine learn-

ing, and data analytics to create living digital simulation 

models that are able to learn and update from multiple 

sources as well as represent and predict the current and 

future conditions of physical counterparts.” Based on that, 

a set of requirements, potential applications and chal-

lenges for their implementation can be analysed. 

2.1 Requirements 

The main features that must be present in a digital twin 

for bridges, identified by Cong et al. in [9], can be sum-

marized as follows: 

- It must be a digital replica of the physical bridge. 

- The DT must be rich in data. 

- It must be connected to the physical bridge, allowing 

for its update and monitoring in near-real time. 

- It spans the whole life cycle of the bridge. 

- The data is stored in a common environment. 

- It can be used as a visualization tool. 

- It can be used as a simulation tool. 

- It can learn from new measurements. 

It can be appreciated that both the fidelity, interconnec-

tivity and accessibility of the data and the digital twin play 

a key role in its deployment. Therefore, it is key that the 

implemented framework allows for such capabilities.  

Additionally, one of the main goals of the digital twin is to 

provide useful information to the end users that they can 

use for making improved decisions. A “black-box” ap-

proach for the digital twin would hinder the insights pro-

vided by the models, as well as hide its potential short-

comings. Measurements of the fitness of the current model 

must be provided together with the predictions, allowing 

an assessment of its quality.  
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Finally, the results provided by the digital twin must be 

reproducible and traceable. Otherwise, obtaining robust 

predictions is not possible, reducing the applicability of the 

model to real-case scenarios. This is especially noteworthy 

in the case of bridges, as accounting for extreme events 

and factoring in operational risks requires extensive relia-

ble information. 

2.2 Challenges 

Based on the given requirements, several challenges to 

the building of a simulation-based digital twin can be iden-

tified. First, simulations are based on physics models that 

include a set of simplifications and assumptions. This limits 

the applications to such a set of assumptions and intro-

duces potential errors and model biases. A methodology 

that limits these biases must be considered. When possi-

ble, they should be quantified as well and given to the user 

as a quantification of the model fitness.  

Additionally, the physical systems usually filter the errors 

coming from faulty sensor measurements. Anomalies and 

artificially extreme values coming from the measured data 

may produce unexpected outcomes from the simulation as 

well, which should be corrected when acquiring and pre-

processing it. 

To properly generate predictions, it is necessary to provide 

the simulation with sufficient data coming from measure-

ments to calibrate it. However, in many cases it is not pos-

sible to place sensors in suitable locations at the bridge, 

either due to technical or economic reasons. The simula-

tion part of the digital twin can be an answer to this short-

coming, but a compromise must be available between the 

amount of available data to calibrate the simulation model 

and the target values to be predicted by such a model. 

2.3 Applications 

A digital twin based on the framework developed here 

would be suitable for numerous applications. First, it would 

provide physical predictions at points where measure-

ments are not available. This can be used for monitoring 

the bridge’s behaviour. Moreover, the analysis of the pre-

dictions of the digital model can influence an efficient sen-

sor placement, saving costs and materials. By applying a 

Bayesian framework, quantification of the uncertainty 

should be available for any provided measurement. 

As previously mentioned, one prominent use case is the 

fitting of digital twins to standing structures subjected to 

aging processes. Fitting the simulation with data from 

measurements allows the implementation of such cases, 

which can be used to assess life-cycle indicators, establish 

maintenance schedules, and identify regions needing in-

spection due to potential damage.  

3 The Bayesian inference framework 

The proposed Bayesian framework can be divided into 

three main steps: the definition of the model, the fitting of 

the parameters and the generation of predictions based on 

the updated model. This framework has been extensively 

applied in general problems from a variety of fields [15]. 

Here we will adapt it for its incorporation in a digital twin 

of a bridge. 

3.1 Model definition 

The model is defined as a Finite Element (FE) discretization 

of the geometry of the bridge, which will be analyzed un-

der a set of physical laws governed by equations (gener-

ally PDEs). The output of this model is represented by u 

(in this case, the displacement field of the bridge under its 

own weight), which depends on a set of latent parameters 

θ and on a set of known parameters λ assumed to be real 

and fixed. Therefore, we can generally express u as a func-

tion of the parameters and the sources as u(θ,λ). This for-

mulation is independent of the model and can be adapted 

to an arbitrary parametrization or discretization. 

Additionally, we define a set of sensors, that can be real 

or virtual measurement. The set of input values supplied 

to u will be expressed as X and the measured outputs as 

Y. At the same time, u(x)=y, where x is in the set of pos-

sible inputs and y is in the set of possible outputs gener-

ated by u. In the case of the u as displacement field, x 

can be a set of material parameters and y the measured 

displacements. 

In a Bayesian framework, it is necessary to include the 

available information on the system through prior proba-

bility distributions. These prior distributions will be de-

noted by ϖpr(θ). The objective will be inferring the poste-

rior probability distributions ϖpos(θ) of the parameters. 

These parameters can have a predetermined correlation 

structure or be considered independent, depending on the 

problem and its applications. 

Information on the error model and the model bias can be 

included as well, allowing a better-informed use of the fit-

ted model. The measurement noise e is typically known 

beforehand and can be applied additively or multiplica-

tively to the response model. In this project, we will de-

fine: 

𝒚 = 𝒖(𝜽, 𝛌) + 𝒆   (1) 

where 𝒆~𝑁(0, 𝜎2𝑰). This noise term supposes independence 

between different sensors with the same uncertainty mod-

elled as white noise, as is usual the case. This structure is 

generally provided during the measurement phase after 

processing the raw sensor signals. If the model bias is to 

be included as in [13], it suffices with adding a term d that 

represents that bias and whose parameters are to be in-

ferred. It is often modelled as a Gaussian Process (GP) 

governed by its mean and correlation structure. The inclu-

sion of such a bias requires further considerations on the 

chosen inference procedure that are out of the scope of 

this work, therefore it will not be included. 

3.2 Fitting of the parameters 

A Bayesian inference approach is implemented to solve the 

inverse problem by fitting the model parameters to a set 

of initial data measurements. In this approach, Bayes’ the-

orem is used to obtain the posterior distributions of the 

parameters. The theorem reads: 

𝑝(𝒖|𝒚) =  
𝑝(𝒚|𝒖) 𝑝(𝒖)

𝑝(𝒚)
    (2) 

Where p(u|y) is the posterior distribution of u given the 
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measurements y, p(y|u) is the likelihood of the model 

given a set of measurements, p(u) is the prior distribution 

of the model and p(y) is the marginal likelihood of the 

measurements. 

We can differentiate four steps to solve the inverse prob-

lem in a Bayesian framework [15]: 

1. Define the prior distributions of the parameters. 

2. Define the data generating process. 

3. Define the likelihood function of the model. 

4. Explore the posterior density from Bayes’ theorem. 

The prior distributions are chosen from experience, as al-

ready mentioned. The likelihood model includes infor-

mation on the variability of the measurements and the er-

ror and differs from case to case. Obtaining the posterior 

distribution is usually not possible analytically and involves 

the evaluation of integrals over high-dimensional parame-

ters. Therefore, iterative sampling approaches are com-

monly used to estimate the posterior distribution from 

samples of the priors. The approach to be used is the ap-

plication of Markov-Chain Monte-Carlo sampling (MCMC). 

This method generates a chain of samples of θ that even-

tually converges to a stable distribution that represents 

the posterior distribution of the parameters ϖpos(θ).  

3.3 Prediction on the updated model 

Once the model parameters are fitted, they can be used 

to perform predictions on the model. One of the ad-

vantages of using the Bayesian framework is that the pa-

rameters are fitted in a posterior probability distribution, 

which can be used to quantify their uncertainty and eval-

uate their dispersion. 

An important application of these fitted posterior distribu-

tions is the generation of so-called posterior predictive dis-

tributions. Using the parameters that have been fitted 

from real measurements, the forward model is evaluated 

to generate predictions that were not available from the 

data. An example would be generating measurements at 

points where no data is available. These predictions will 

generally have a probability distribution that allows for un-

certainty quantification on them. 

Alternatively, the predictions from the fitted model can be 

used to calculate the required KPI with information on its 

variability. This is an invaluable tool to assess the behav-

iour of the fitted model integrated into the digital twin.  

4 Use case: the Nibelungenbrücke 

Located in the city of Worms (Rheinlad-Palatinate), the Ni-

belungenbrücke (see Figure 1) connects it across the 

river Rhine with the state of Hesse [16]. The history and 

conditions of the bridge make it the perfect candidate for 

a digital twin approach. A close monitoring of its behaviour 

is key for the continuation of its service life, and accurate 

predictions of the state of the bridge can be used to take 

decisions on the safety of its operation. Additionally, the 

bridge’s properties have been subjected to large modifica-

tions due to ageing processes from its use and the reha-

bilitation process. This renders the original model assump-

tions outdated; hence a Bayesian framework can be useful 

to provide information on the new parameters and behav-

iour of the bridge.  

 

Figure 1 Nibelungenbrücke, Worms. Source: Bob Cortright, Bridge Ink 

4.1 Model descriptions 

The model will represent a simplified version the first com-

plete span on the western shore of the bridge. It is a box-

girder bridge built using the balanced cantilever method. 

The measurements of the simplified model are taken from 

the available datasheets [17]. A scheme of the cross-sec-

tion is observed in Figure 2.  

The geometry is modelled as a 3D purely elastic solid. As 

prestressed concrete is the main material, it is chosen a 

Young’s modulus E of 40 GPa, a Poisson’s ratio ν of 0.2 

and a density ρ of 2350 kg/m3 as the real material param-

eters. This simple model suffices for demonstrative pur-

poses of the Bayesian framework. 

This set-up is going to be tested under the self-weight of 

the bridge. In this case, artificial measurements of the dis-

placements in vertical and transversal directions with re-

spect to the deck are collected at 27 virtual sensors posi-

tioned across the bridge (see Figure 3). No noise has 

been added to such measurements, and only one data 

point has been collected at each location. The geometry 

and mesh have been generated using the package Gmsh 

[18], the finite element problem and solution were imple-

mented using FEniCSx [19].  

 

Figure 2 Scheme of the model's cross-section, in meters. Source: BAM 

 

Figure 3 Sensor positions on the deck. Source: BAM 
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4.2 Inference procedure 

The objective of the inference procedure is to estimate the 

real density, Young’s modulus E and Poisson’s ratio ν of 

the bridge. To do that, the prior distributions indicated in 

Table 1 are introduced in the model. Despite not including 

an error term σ in the measurements, an additive Gauss-

ian error model is added to the procedure, expecting it to 

become zero.  

It must be noted that this problem is very ill-posed, as 

there are many possible combinations of ρ, E and ν such 

that a given set of loads generates the measured displace-

ments. Therefore, the inferred parameters are not ex-

pected to reflect exactly the initial ones. The inference pro-

cedure is performed using MCMC for 300 steps with 50 

steps of burn-in, which is enough in this case for clear con-

vergence. The inference problem is defined using probeye 

(https://github.com/BAMresearch/probeye), a python 

package developed to this end. It creates an interface for 

the methods of the package emcee [20], that runs the FE 

model for every proposal of the parameters. The program 

is executed on a virtual machine with 4 CPUs of an AMD 

EPYC 74F3 processor and 8 Gb of RAM. 

Table 1 Material parameters to be inferred 

Parameter Unit Prior 

E Pa LogNormal(31,0.2) 

ν - LogNormal(-1.5,0.2) 

ρ kg/m3 LogNormal(8.0,0.5) 

 

4.3 Results 

The pair plot of the inference procedure can be observed 

in Figure 4. As previously mentioned, the problem is 

clearly ill-posed, and the true values, represented by the 

red dot, lays far from the obtained level curves of maxi-

mum probability. This is the case despite the posterior dis-

tributions having been updated in the inference procedure, 

as observed in the diagonal plots.  New methodologies to 

reduce this effect must be considered to generate results 

that allow drawing conclusions on these parameters. The 

predicted parameters are ρ with mean 1700 kg/m3 and 

standard deviation 89 kg/m3, E with mean 28.9 GPa and 

standard deviation 0.71 GPa, ν with 0.22 and standard de-

viation 3E-3, and noise (σ) with mean 2.6E-5 (which lays 

on the limit of the feasible do-main) and standard devia-

tion 2.1 E-6. As expected, there is also a clear correlation 

between E and ν for a given ρ, as seen by the correspond-

ing noise plot displaying a narrow linear band. The noise 

error was predicted accurately as almost zero. Prior distri-

butions with means closer to the true value would poten-

tially render better results for material parameters, prov-

ing the importance of this choice in the inference 

procedure.  

Figure 5 shows the histogram of 100 sampled displace-

ments for the point with coordinates (0.0, 0.0, 50.0) in x 

and y directions. The obtained values are shown in Table 

2. We can observe a great agreement with the results, and 

the probability distribution provides invaluable information 

about the uncertainty of the measurement. Generating re-

sults on demand at an arbitrarily located virtual sensor en-

riches the information provided by the digital twin and al-

lows better-informed decision-making. 

 

Figure 4 Pair plot of the marginal distributions of inferred parameters. 

ρ in kg/m3, E in Pa, ν and σ dimensionless. Source: BAM 

 

Figure 5 Histogram for posterior predictive at y=50 m. Displacement 

for Y (vertical), in meters. Source: BAM 

Table 2 Posterior predictive results 

Param-

eter 

Displacement X [m] Displacement Y 

[m] 

True 7.200E-9 -3.136E-5 

Mean 7.867E-9 -3.148E-5 

Stand-

ard de-

viation 

6.550E-10 2.372E-6 
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4.4 Potential technical challenges 

Once the main inference model is implemented and de-

fined, it must be integrated into the digital twin. This in-

volves numerous potential technical challenges that must 

be addressed. First, it must be observed that the model 

that is updated in the inference procedure will never per-

fectly reflect the real system. This is an inherent effect of 

the modelling choices, and it must be considered when de-

ciding on the monitoring conditions. Increasing the num-

ber of parameters or adding a greater number of modelling 

assumptions could lead to a better-fitted model, but at the 

expense of an increase in complexity and cost, and a po-

tential risk of overfitting and loss in prediction power. Ad-

ditionally, the more complex a system, the more difficult 

is to choose the correct assumptions and data that reflect 

the current state of the system. This includes the choice 

of noise, correlation and bias structures or the decision of 

which results to consider. 

Additional issues arise from the technical implementation 

of the digital twin. Simulation-based DTs require a contin-

uous flow of data supplied for refitting purposes while be-

ing accessible to the users for predictive calls. The location 

of the databanks, the digital services, and the interfaces 

with each other and with the users must be decided be-

forehand, considering the requirements of the implemen-

tation. Online access to the DT can be advantageous but 

may be discouraged for some uses due to security and re-

liability concerns, or directly unavailable. A monitoring/up-

dating schedule with must be set for an efficient use of 

resources. The same monitoring concept must be carefully 

designed, deciding which data is to be supplied to the DT, 

with which temporal windows and under which conditions. 

This information influences greatly the modelling assump-

tions previously mentioned. 

Finally, in the context of Structural Health Monitoring, it 

must be decided which values are to be provided to the 

end user. The predictions from the fitted simulation-based 

DT can be used for estimations of the remaining service 

life of an ageing bridge, the calculations of Key Perfor-

mance Indicators of the structural state, or even for fur-

ther structural optimization in the case of systems with 

active components. Each type of end user will have differ-

ent requirements to be satisfied, which must be consid-

ered when designing the DT. Nevertheless, every part in-

volved in the process benefits from well-documented and 

referenced elements. This translates to appropriate and 

comprehensive data descriptions within a clear and gen-

eral meta-data framework, and tested, maintained, and 

documented software implementations with transparent 

code. 

5 Conclusion 

In this study, the viability of a Bayesian framework for a 

simulation-based digital twin of bridges was analysed. It 

was observed that the advantage of providing richer and 

more informative data from the simulation and of allowing 

for uncertainty quantification outweighs the potential chal-

lenges of lacking data or ill-posed problems. Furthermore, 

the framework is proved in a demonstrative example of a 

hypothetical digital twin of the Nibelungenbrücke of 

Worms. In this simplified example, it was possible to gen-

erate reliable predictions out of a very limited set of meas-

urements, as well as measurements of their uncertainty. 

The implementation of such DT is a very complex problem 

that involves many different parts. This generates a pleth-

ora of potential technical challenges to be resolved, rang-

ing from the modelling assumptions to the transference of 

data to the end user. The early identification of such chal-

lenges is found to be key for a swift implementation of 

simulation-based DTs. In future work, the application of 

the framework to a more realistic example with real meas-

urements will be pursued. Additional analysis on the fit-

ness of the model, the error and correlation models and 

the model bias must be carried out. Nevertheless, the cur-

rent analysis serves as a first step in the implementation 

of the Bayesian framework in a functional digital twin of a 

bridge. 
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