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A B S T R A C T

An analytical expression for the frequency response function of a coupled pedestrian-bridge system is presented
and evaluated using an experimental measurement campaign performed on the Folke Bernadotte Bridge
in Stockholm, Sweden. A finite element model and the modal models that consider the human–structure
interaction effect are calibrated with respect to the measurements. The properties of the spring–mass–damper
model representing the pedestrians were identified, considering the different structural modes of the system.
Good agreement was obtained between the experimental and theoretical frequency response functions. A
sensitivity analysis of the obtained solution was performed, validating the determined analytical expression
for the frequency response function of the coupled pedestrian-bridge system that takes into account the
human–structure interaction effect.
1. Introduction

Footbridges are being designed with more innovative and cutting-
edge features and with shapes that make them more slender and
lighter [1]. Hence, dynamic effects are becoming more important in
such systems [2]. For example, wind loads that can introduce vortex-
induced vibrations, wind flutter and crowd loading scenarios may lead
to undesirable vibrations and potentially produce resonance conditions
that may compromise the serviceability limit state of the system [3].
As shown in [4,5], the human–structure interaction (HSI) effect can
strongly affect the dynamic performance of the system due to the added
damping and the frequency shift effect. This is particularly important
considering that the current design guidelines and recommendations
that address the dynamic performance of footbridges [3,6–14] do not
provide any information regarding added damping or the frequency
shift phenomena due to the HSI effect.

Moreover, despite the many different HSI formulations [15–27],
specialised software would be required to implement the state-of-the-
art formulations. Furthermore, it is important to consider the uncer-
tainty of such systems in the design phase. Van Nimmen et al. [28]
show that uncertainty in the dynamic properties of a footbridge is
unavoidable and that even with a detailed finite element model (FEM),
deviations can be expected. This highlights the need for a design
methodology that is less sensitive to small variations in the inherent
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dynamic properties of the system. Additionally, the guidelines address
the subjective character of the serviceability limit state of the comfort
criteria by (i) establishing ranges of critical frequencies and vibration
responses rather than absolute limits and (ii) classifying the system
according to the desired comfort limit and expected traffic conditions.
In addition, different models for studying the walking load action
were presented in [29], suggesting that the design procedure can be
validated through tests of the system in order to fully validate the
design. Additionally, the serviceability criteria related to the vibration
level of footbridges is an ongoing research subject [30,31], adding
complexity to the design process. A study of the pedestrian loading
for restricted traffic conditions using spectral load models and current
design guidelines is presented in [32], and a benchmark dataset that
can be used to test and validate crowd load models is presented in [33].

A simplified method that can be used to consider the HSI effect
can be found in [34]; it may lead to a good conservative estimate
of the structural acceleration response. An equivalent force model can
be found in [35]; it is limited to bridges with simple supported mode
shapes. It is clear that there is a need for a simplified approach that can
take into account the HSI effect. A review of human-induced vibrations
can be found in [36]; it is focused on the different time-domain load
models.
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The main contribution of this work is to provide a closed-form
expression for the frequency response functions (FRFs) of a coupled
pedestrian-bridge system, along with the corresponding experimental
verification, taking into account the HSI effect. The proposed formu-
lation requires less computation time, and it is tested and compared
with an FEM and Caprani’s formulation [17]. This work presents the
experimental campaign carried out on the Folke Bernadotte Bridge to
characterise the dynamic properties of the system with and without
pedestrians. The FEM of the bridge is developed and calibrated such
that the difference between the theoretical and experimental FRFs
is minimised when no pedestrians are on the bridge. This is done
by adjusting the assumed elastic boundary conditions and material
properties while fixing the identified modal damping ratios. Further-
more, a test with uniformly distributed pedestrians on the bridge is
presented, and the calibration procedure is repeated to adjust the
assumed Single Degree of Freedom (SDOF) human model in the FEM by
using the proposed expression for the FRF and using Caprani’s formula-
tion [17], considering the experimentally identified mode shapes. There
is agreement among the analytical solution, Caprani’s formulation, the
calibrated FEM and the experimental results.

2. Modelling framework for the HSI effect

To simulate human-induced vibrations in a coupled pedestrian-
bridge system, different approaches can be found in the literature that
are formulated in the modal domain or using FE-based methods. In this
section, Venuti’s formulation [18], Caprani’s formulation and the ana-
lytical expression for the FRFs of a coupled pedestrian-bridge system
are introduced. Furthermore, in this work, Caprani’s formulation [17],
the closed-form solution and the FEM in which pedestrians have been
modelled are compared to the measurement results.

2.1. Venuti’s formulation

In Venuti’s formulation [18], the supporting structure is modelled as
an SDOF system and has the dynamic properties, i.e. mass, damping and
stiffness, of the unoccupied structure; each pedestrian in the crowd is
modelled as an SDOF system with its own dynamic properties, i.e. mass,
damping and stiffness. The HSI effect is quantified by evaluating the
effect of the 𝑁p pedestrians on the dynamic properties and the changes
n the FRFs of the coupled system. In this way, the dynamic system is
stablished as follows:

�̈� + 𝐂�̇� +𝐊𝐗 = 𝐅, (1)

where the mass, damping and stiffness matrices are defined as
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and the displacement and force vectors are defined as
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, (3)
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⎣

Xp,𝑁p⎦ ⎣

0
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where 𝑚b,𝑛, 𝑐b,𝑛 and 𝑘b,𝑛 represent the modal mass (𝑚b,𝑛 = ∫ 𝐿
0 𝛾(𝑥)𝜙2

𝑛(𝑥)
d𝑥, 𝛾(𝑥) indicates the linear density), damping and stiffness of the
supporting structure for the given mode 𝑛, respectively. The parameter
𝑥p,𝑟 represents the coordinate of the location of the considered pedes-
trian 𝑟. The parameters 𝑚p,𝑟, 𝑐p,𝑟 and 𝑘p,𝑟 represent the mass, damping
and stiffness of the general considered pedestrian 𝑟. Finally, 𝜙𝑛 and
𝑃𝑛(𝑡) =

∑𝑁p
𝑟=1 𝐹p,𝑟(𝑡)𝜙𝑛(𝑥p,𝑟) are defined as the unit-normalised (mode

𝑛) mode shape of the structure and the modal load, respectively. The
term 𝐹p,𝑟(𝑡) indicates the ground reaction forces. Both the mode shape
and the modal load can be analytically obtained by using the closed-
form frameworks outlined in [37,38] for continuous beam systems
over elastic supports. In this formulation, the system’s matrices are
symmetric and one single structural mode 𝑛 is considered.

2.2. Caprani’s formulation

Caprani and Ahmadi [17] investigated the crowd–structure inter-
action and the pedestrian action considering the moving force (MF),
the moving mass (MM) and the spring–mass–damper (SMD) model.
The main difference between the approaches presented in [17,18] is
that Venuti et al. [18] express the interaction forces as the sum of
the elastic and damping forces of the pedestrian system instead of
considering the inertial forces used in [17]. The mass, damping and
stiffness matrices of Caprani’s formulation are defined as follows:

𝐌 =
[

I𝑁𝑥𝑁 𝐌12
𝟎1𝑥𝑁 𝐦p

]

, 𝐂 =
[

𝐂11 𝟎1𝑥𝑁
𝐂21 𝐜p

]

,

𝐊 =
[

𝐊11 𝟎1𝑥𝑁
𝐊21 𝐤p

]

, 𝐅 =

[

𝐏𝑁𝑥1
𝟎𝑁p𝑥1

]

,
(4)

where 𝑁 is the number of the bridge modes considered in the analysis,
𝑁p is the number of pedestrians, the terms 𝐌12, 𝐂21 and 𝐊21 represent
the pedestrian-bridge coupling terms, 𝐦p, 𝐜p and 𝐤p represent the
pedestrian dynamic properties and 𝐏 represents the applied modal load
on the bridge. The aforementioned parameters are defined as follows:

𝐌12[1,… , 𝑁 ; 𝑖] = 𝑚p,𝑖𝜙(𝑣𝑖𝑡), 𝐂11 = 𝑑𝑖𝑎𝑔[2𝜁𝑗𝜔𝑗 ],

𝐂21 = −𝑐p,𝑖𝜙𝑇 (𝑣𝑖𝑡), 𝐊11 = 𝑑𝑖𝑎𝑔[𝜔𝑗 ],

𝐊21[1,… , 𝑁 ; 𝑖] = −𝑘p,𝑖𝜙𝑇 (𝑣𝑖𝑡), 𝑃𝑗 = 𝐺(𝑡)𝜙𝑗 (𝑣𝑡),

𝐦p = 𝑑𝑖𝑎𝑔[𝑚p,𝑖], 𝐜p = 𝑑𝑖𝑎𝑔[𝑐p,𝑖], 𝐤p = 𝑑𝑖𝑎𝑔[𝑘p,𝑖],

(5)

where 𝑚p,𝑖, 𝑐p,𝑖 and 𝑘p,𝑖 represent the mass, damping and stiffness of
the 𝑖th pedestrian, respectively. The term 𝑣𝑖 is the velocity of the
corresponding pedestrian 𝑖, and 𝜙 represents the mode shape vector.
The terms 𝜁𝑗 and 𝜔𝑗 indicate the damping and the circular natural
frequency of the bridge associated with mode 𝑗. Finally, 𝐺(𝑡) is the
generalised force function, i.e. the vertical force generated by the walk-
ing pedestrians. In this way, Caprani’s formulation makes it possible
to consider multiple modes of the supporting structure, taking into
account the coupling terms between different structural modes due to
the presence of the pedestrians’ SMD models.

2.3. Closed-form solution of the HSI effect

An analytical framework that can be used to quantify the HSI
effect based on Venuti’s formulation [18] can be developed. Following
Venuti’s formulation [18], in which a single mode of vibration 𝑛 of
the coupled system is considered, with 𝑁𝑝 SDOFs that represent the
pedestrians arbitrarily distributed over a general continuous beam [37–
40], the FRF HHSI of the coupled pedestrian-bridge system can be
obtained through the matrix condensation of the original system in the
frequency domain:

−1
ZHSI = 𝐙(1,1) − 𝐙(1,2)𝐙(2,2)𝐙(2,1), (6)
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where
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,

𝐙(1,2) =
[

−𝜙𝑛(𝑥p,𝑟)(i𝜔𝑐p,𝑟 + 𝑘p,𝑟)
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, (7)

where ZHSI is the impedance function of the coupled pedestrian-bridge
system. Finally, the frequency response function of the coupled bridge
system HHSI is

HHSI = 1∕
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Taking as a common factor the modal stiffness of the bridge 𝑘b,𝑛 and
considering the definitions

𝑘b,𝑛 = 𝜔2
b,𝑛𝑚b,𝑛, 𝑘p,𝑟 = 𝜔2

p,𝑟𝑚p,𝑟,

𝑐b,𝑛 = 2𝜁b,𝑛𝜔b,𝑛𝑚b,𝑛, 𝑐p,𝑛 = 2𝜁p,𝑛𝜔p,𝑛𝑚p,𝑛, (9)

where 𝜔b,𝑛, 𝜔p,𝑟, 𝜁b,𝑛 and 𝜁p,𝑛 refer to the (mode 𝑛) circular natural
frequency of the supporting structure, the circular natural frequency
of pedestrian 𝑟, the damping ratio of the considered mode 𝑛 of the
structure and the damping ratio of the pedestrian 𝑟, respectively, HHSI
can be written as
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where 𝛽p,𝑟 is defined as

𝛽p,𝑟 =
(i 𝜔

𝜔p,𝑟
2𝜁p,𝑟 + 1)2

(− 𝜔2

𝜔2
p,𝑟

+ i 𝜔
𝜔p,𝑟

2𝜁p,𝑟 + 1)
. (11)

The determined analytical expression will be used in this work to
quantify the HSI effect.

3. Experimental testing

3.1. Introduction to the bridge

The Folke Bernadotte Bridge is an important walking and cycling
bridge across the Djurgårdsbrunn Bay in Stockholm, Sweden. The
pedestrian bridge was inaugurated on 19 September 2019, and it
connects the southern and northern parts of the park of Djurgården.
An image of the Folke Bernadotte Bridge is given in Fig. 1. The
bridge is named after the nobleman, diplomat and negotiator Folke
Bernadotte, who was appointed as the UN’s first mediator following
the Second World War. The construction of the bridge was initiated in
June 2018. Its supports and abutments are made out of concrete, and
they are hidden under the ground. The steel part of the bridge was
produced in a factory and installed in 2019. The total span of 97 m is
covered by a single-arch bridge made of stainless steel. The structural
system was designed as a 3D frame. The structural system consists
of three main continuous tubes, two at the deck surface of cross-
section CHS355.6X12.5 and one on the lower level of cross-section
CHS298.5X25, within CHS355.6X25. The three components are linked
by inclined members within cross-section CHS193.7X5.6 that form the
2251
Fig. 1. The Folke Bernadotte Bridge in Djurgården, Stockholm, Sweden.

truss system. A series of longitudinal trapezoidal components and trans-
verse rectangular elements support the wooden deck. The rectangular
components are welded to the lateral pipes, while the longitudinal
components are connected to the transversal components. Furthermore,
additional diagonal pieces are positioned across the transversal span to
offer major stiffness. Along with the maritime traffic requirements, the
bridge provides a sail-free height of 3 m. Figs. 2 and 3 provide plan
and elevation views of the bridge, respectively.

The foundations are here referred as support 1 (left hand side) and
support 2 (right hand side). The support 1 consists of a trapezoidal
shaped reinforced concrete block with a length of 15.82 m and a
varying depth from 0.9 m to 0.8 m, following the shape of bridge.
Support 1 is laying over the bedrock located at −1.2 m and a new
gravel material layer having an elastic modulus of 50 MPa (having a
friction angle of 45◦). The support 2 consists of a trapezoidal reinforced
concrete block with a length of 16.82 m and a varying depth from
1.552 m to 1.4 m over a layer of clay of 2.4 m of depth with a
characteristic shear strength of 10 kPa, followed by a friction material
of 1.0 m of depth with an elastic modulus of 30 MPa (having a friction
angle of 38◦) and finally the bedrock. The load transfer between the
trapezoidal reinforced concrete block and the bedrock is made by 12
inclined end bearing steel piles (along and transversally with respect
to the axis of the bridge) supported in the bedrock so that negligible
settlements are expected. However, the Soil–Structure Interaction (SSI)
effect is neglected in this study, and it is out of the scope of the
work [41].

3.2. Hammer tests: instrumentation and loading

The Folke Bernadotte Bridge was subjected to two sets of experi-
mental tests on 23 March 2021 (day one) and 11 May 2021 (day two).
Day one was dedicated to capturing the vibrational behaviour of the
(almost) unloaded structure. On day two, the dynamic response of the
structure was evaluated both with and without a pedestrian load.

The ambient conditions were recorded on day one as sunny, with a
temperature of 19 ◦C and a light wind from the west. The temperature
and wind speed were not directly measured on day two but recordings
from nearby weather stations suggest that the temperature was about
23 ◦C, with a light wind from the east. In both cases, no sudden intraday
changes were detected.

The experimental datasets for the unloaded footbridge include ham-
mer, running, walking and jumping tests. In general, for bridge system
identification (SI), these are the dominant modes of the global struc-
tural behaviour [42,43]. Furthermore, these modes are also the closest
to the frequencies of the human system and human walking and
running paces; thus, for these modes, the structure is most prone to
exhibiting high levels of vibrations and interactions, i.e. the HSI effect.
For these reasons, the hammer test was selected for the input–output
SI of the target structure. Hence, only this type of test will be described
in detail for both the unloaded and loaded cases.

The datasets of interest consist of eight series of hammer hits, as
described in Table 1. Series 1 to 4 were recorded on the first day of
experiments (23 March, only the unloaded case), while series 5 to 8
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Fig. 2. Plan view of the Folke Bernadotte Bridge.
Fig. 3. Elevation view of the Folke Bernadotte Bridge.
Table 1
Details of the experimental campaign (hammer tests).

Series
ID

Date Carried human
load (static)

Sensor layout Excitation
source
location

1 23 March 2021 2 operators layout A E1
2 23 March 2021 2 operators layout A E2
3 23 March 2021 2 operators layout B E1
4 23 March 2021 2 operators layout B E2
5 11 May 2021 2 operators layout C E2
6 11 May 2021 2 operators layout C E2
7 11 May 2021 2 operators + 33

pedestrians
layout C E2

8 11 May 2021 2 operators + 33
pedestrians

layout C E2

were acquired during the second day (11 May, loaded and unloaded
cases).

For series 1 to 6, only two operators, who were needed to perform
the hammer hits at two distinct locations, were allowed on the bridge
deck at the two points E1 and E2. In this case, the bridge can be
approximated as unloaded.

For series 7 and 8, the bridge was loaded with 35 bystanders, with
all of them standing still and equally spaced (1.5 m) along the bridge
line, as shown in Fig. 4(a). The total additional mass was 2794.7 kg,
with an average pedestrian weight equal to 79.85 ± 14.90 kg (𝜇 ± 𝜎);
the weights of the pedestrians ranged from a minimum of 56.3 kg to
a maximum of 110.0 kg. These pedestrians were intended to act as
both localised additional masses and additional dampeners (dynamic
vibration absorbers). As the Folke Bernadotte Bridge is particularly
lightweight even by the standards of pedestrian bridges (with a density
of about 1000 kg per linear metre), the designed experiment was
expected to noticeably affect its modal properties.

Series 1 and 2 used the sensor layout A, while series 3 and 4 used
the alternative layout B. Both layouts (portrayed in Figs. 5(a) and 5(b),
respectively) included 14 vertical output channels, denoted by a1 to
a14, plus three horizontal output channels (a15 to a17); the results
from the horizontal output channels are not reported here, as this
study focus solely on the vertical dynamics of the slender footbridge.
Series 5 to 8 used the sensor layout C, with a reduced number of
vertical acquisition channels (a1 to a6) and no horizontal recordings.
This third layout consisted of six sensors placed in the same locations
as a2, a3, a4, a11, a12 and a13 in layout B (see Fig. 5(c)). This choice
was made due to the necessity of moving the external modules of
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the acquisition setup, which were initially placed on the bridge at
its midpoint, away from this location to accommodate the standing
pedestrians. This specific choice introduced some slight limitations in
the identification of the mode shapes, which will be discussed in more
detail in the next subsection.

In all layouts (A, B and C), each channel corresponded to a PCB
393A03 uniaxial accelerometer (Fig. 4(b)). These accelerometers have
a sensitivity of 1 V/g and a frequency range from 0.5 Hz to 2 kHz, and
they can record a maximum acceleration of 5 g. A very high sampling
frequency (𝑓𝑠 = 1200 Hz) was set for the recordings; the signals were
then subsampled to 𝑓 ∗

𝑠 = 200 Hz in post-processing.
The input signals were acquired as force recordings using one

Dytran 5803A instrumented sledgehammer (Fig. 4(c)). Two distinct
locations were used for the excitation source: the aforementioned E1
(series 1 and 3) and E2 (series 2, 4 and 5 to 8) points, as indicated in
Fig. 5. Thus, the first four signals contain all the possible permutations
of the placements of two input sensors and two output sensors. The
input and output signals were all synchronised thanks to three external
modules.

For each series, all the hammer hits were performed consecutively
in one recording and without interruption. However, some hammer hits
generated corrupted data at one or more output channels. This handful
of signals of hammer hits (two out of twelve in Series 1, two out of
eleven in Series 2, one out of nine in Series 3, and two out of eleven in
Series 4) were thus discarded according to engineering judgement. In
terms of cumulative coherence, the FRFs of these signals proved to be
much less reliable than the other signals, which all scored more than
98%.

3.3. Hammer tests: post-processing of the experimental results

The experimental data have been investigated in terms of the abso-
lute value and phase angle of accelerance FRFs. The output channels
directly recorded the bridge vibrations in units of m/s2, while the data
from the instrumented hammer were originally in units of kN and were
then multiplied by 103 in post-processing. Both the output and input
signals have been filtered (Butterworth filter of order 3), bandpassing
between 0.5 and 12 Hz. The lower cut-off frequency 𝑓𝑐,1 was needed to
remove the very-low-frequency deviations. 𝑓𝑐,1 is well below the first
mode. The upper cut-off frequency 𝑓𝑐,2 was set according to the modes
of interest. Each hammer hit was isolated from the rest of the signal and
investigated on its own. According to the suggestions of [44] (Chapter
13.8), the offset of each input and output signal was corrected by
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Fig. 4. Photographs from the in situ survey on day two: (a) Pedestrians in position for the loaded case. (b) One of the accelerometers.
Fig. 5. Sensor layouts (a) A, (b) B and (c) C; the sensors are indicated by the red circles. For A and B, only the vertical output channels (a1 to a14) are shown. The black X’s
(E1 at 35.5 m from the south edge and E2 at 29 m) in (a) and (b) indicate the excitation sources, i.e. the locations where the hammer hits were applied. The locations of the
35 standing pedestrians are indicated in (c), with the two operators highlighted. Units of [m] are used. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
subtracting the mean of each signal and performing detrending where
and if needed. The noise floor of the signals was removed using an
exponential window (Fig. 6(b)), which was applied for each hammer
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hit at all output channels and to the input as well (to avoid distortions
in the damping estimates). The force signals were windowed with a
Gaussian time window as well to remove the after-impact measurement
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Fig. 6. Examples of (a) input (𝑓 (𝑡) [N]) and (b) output (𝑠(𝑡) [m∕s2]) signals with their corresponding windowing functions, plus (c) the resulting FRF. The dashed lines in (a) at
the beginning and end of the signal indicate the previous and following hammer hits from the same recording.
Table 2
Identified natural frequencies (in Hz) and damping ratios (in %).

Mode Series 1 Series 2 Series 3 Series 4 Series 5 Series 6 Series 7 Series 8

f1 1.57 1.57 1.53 1.53 1.69 1.67 1.46 1.46
𝜁1 1.75 1.63 1.91 2.12 1.52 1.48 2.61 2.65
f2 3.00 2.99 3.00 3.00 3.02 3.03 2.92 2.92
𝜁2 0.79 0.85 0.56 0.73 0.80 0.76 1.77 1.74
f3 5.24 5.23 5.23 5.24 5.30 5.31 5.12 5.15
𝜁3 0.91 0.86 0.91 1.06 0.77 0.81 2.37 2.31

noise, as shown in Fig. 6(a). Fig. 6(c) shows an example of the resulting
accelerance FRFs.

The estimated natural frequencies for the first three modes of the
unloaded and loaded bridge are reported in Table 2. The damping
ratios were compensated to account for the influence of the exponential
window, which was intentionally applied to both the input and output
channels following [44]. The differences in terms of damping ratio
quantitatively reported in Table 2 can be also seen in Fig. 7. This
shows a continuous wavelet transform (CWT) analysis (with a Morlet
wavelet) performed on some examples of hammer hits taken from
Series 5 (Fig. 7(a) - no pedestrians) and 7 (Fig. 7(b) - with pedestrians),
respectively. These highlight that the response signals are consistent for
hammer hits belonging to the same series. They also help in visualising
what is reported in Table 2, that is to say, how the footbridge becomes
much more damped due to the pedestrians. In fact, as the damping
increases (due to the standing pedestrians acting as added dampers),
the frequency content, especially at the higher frequencies, fades out
much earlier.

Fig. 8 portrays the mode shapes of the same modes for the unloaded
bridge and sensor layout A. The fitted functions for the experimental
modes are given in Eq. (A.1). The fitting of the mode shapes was done
using the nonlinear least squares method implemented in MATLAB,
with acceptable values of the coefficient of determination (R2). The
eigensystem realisation analysis (ERA) algorithm [45] was used for the
estimation of all these modal parameters.

In terms of mode shapes, the results were in agreement within the
three different layouts. The modal assurance criterion (MAC) matrix
between the first and second series of hammer hits (not reported here
for brevity) showed a value always larger than 0.990 for all terms on
the main diagonal and always lower than 1.8⋅10−4 for all the remaining
terms outside of it. That proves how the mode shapes captured with
layout A are consistent among themselves. Similarly, for layout B, the
MAC matrix between series 3 and 4 showed values always larger than
0.995 on the main diagonal and always lower than 2.1 ⋅10−4 for the off-
diagonal terms. On the other hand, Fig. 9 portrays the MAC matrices
between the identified modes of interest extracted from the day two
recordings. These correspond to the modes of vibration of the unloaded
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(Series 5 and 6) and loaded (Series 7 and 8) cases, taken for the same
sensor arrangement (layout C). The eigenshapes of series 5 and 6 are so
similar that their cross-MAC values are comparable to their respective
auto-MAC values. The same can be said for the modes identified in
series 7 and 8. On the other hand, the cross-MAC values between the
unloaded (Series 5 and 6) and loaded (Series 7 and 8) cases show
some minimal yet visible variations induced by human loading. In all
cases, the relatively high values of the off-diagonal terms between the
second mode and the other modes are due to the specific sensor layout,
which is limited to one half of the bridge length. For this reason, the
results from layout A were used to report the unloaded mode shapes
(as depicted in Fig. 8).

4. Model calibration

4.1. Full-bridge FE model

A FEM of the Folke Bernadotte Bridge was created in Abaqus
(copyright 2002–2020 Dassault Systémes Simulia Corp). For the sake
of simplicity, the bridge was modelled in four portions and then as-
sembled. Tie constraints were used in the model to account for full
interaction, i.e. axial, shear and bending forces were transferred. The
numerous bridge components were modelled as cubic Euler–Bernoulli
B33 beam elements and accounted for the design dimensions and ma-
terials. The wooden deck and the railings were considered by adjusting
the density of the steel members from 7850 kg/m3 to 8800 kg/m3.
However, given the uncertainties of the looser timber pieces form-
ing the supporting deck, the density parameter is further adjusted
in the modal updating process in order to minimise the differences
between the theoretical and experimental FRFs. The FEM of the Folke
Bernadotte Bridge is depicted in Fig. 10.

The boundary conditions (BCs) at the six supports were investigated
considering three different configurations. In the first configuration,
as shown in Fig. 11a, the right lower support allows longitudinal
displacements. In the second configuration, as shown in Fig. 11b, the
right lower support does not allow longitudinal displacements. In the
third configuration, as shown in Fig. 12, the longitudinal displacement
of the boundary condition is considered using a linear spring with
a stiffness 𝑘1. Finally, the third configuration in which an elastic
boundary condition is considered is used for update the model.

Pedestrians were modelled by assuming that an SDOF SMD system
was linked to the two main tube beams of the bridge system. Conse-
quently, two vertical parallel springs with half of the corresponding
pedestrian stiffness and two vertical parallel dampers with half of the
pedestrian damping are used. A schematic of the modelling approach
is shown in Fig. 13a. For the Abaqus FEM, the proposed modelling

approach is shown in Fig. 13b.
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Fig. 7. CWT analysis for the hammer hits of (a) series 5 (no pedestrians) and (b) series 7 (with pedestrians).
Fig. 8. Identified mode shapes of interest: (a) First (R2 = 1), (b) second (R2 = 0.9992) and (c) third (R2 = 0.9935) vertical bending modes. Red dots: experimental data. Black line:
Estimated curve. Lateral view of accelerometers a1 to a7 moving from south to north.
4.2. Simplified HSI formulations

One of the main hypotheses of Caprani’s formulation [17] of the
HSI framework is that the structural mode shapes will have negli-
gible changes when pedestrians are considered. A representation of
the coupled system in the modal domain is shown in Fig. 14; in this
representation, the primary system is represented by the SDOF, with its
corresponding modal mass, modal stiffness and associated damping of
the considered mode 𝑛, and it is connected with the modulated pedes-
trians with their corresponding SDOF properties. Considering Caprani’s
formulation [17] in the frequency domain, under the hypothesis of a
linear time-invariant system with non-moving pedestrians, it follows
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that
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(12)

where the FRFs of each mode are found in the first 𝑛 components of the
diagonal of the FRF matrix and the off-diagonal terms represent the
coupling terms of the system between structural modes and between
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Fig. 9. MAC matrices of series 5 to 8 (with pedestrians and without pedestrians, layout C).
Fig. 10. FEM of the Folke Bernadotte Bridge.
Fig. 11. (a) First boundary condition configuration and (b) second boundary condition configuration of the FEM of the Folke Bernadotte Bridge.
Fig. 12. Third boundary condition configuration, which considers a linear spring 𝑘1
in the longitudinal direction of the FEM of the Folke Bernadotte Bridge.

structural modes and pedestrians. In order to validate Venuti’s formu-
lation [18] and the proposed closed-form expression for the FRF of the
coupled pedestrian-bridge system in which a single mode is considered
at a time, a quantification of the coupling terms of the more general
Caprani’s formulation [17] is performed in the following subsection,
using as a reference the case study of the Folke Bernadotte Bridge.
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4.2.1. Quantification of the direct and coupling terms
A theoretical evaluation of the HSI effect for the Folke Bernadotte

Bridge was performed by computing the FRFs of the coupled sys-
tem using Caprani’s formulation [17]. The direct terms 𝐇1,1, 𝐇2,2 and
𝐇3,3 are evaluated by varying the natural frequency of the modelled
pedestrians from 0 Hz to 10 Hz in the matrix formulation presented
in Eq. (12). A damping of 40% was assumed for the pedestrians, and
the reference natural frequencies and damping of the structural system
for the theoretical analysis are (𝑓1 = 1.69 Hz; 𝜁1 = 1.5%), (𝑓2 = 3.02 Hz;
𝜁2 = 0.8%) and (𝑓3 = 5.29 Hz; 𝜁3 = 0.8%). The FRFs at the measurement
points 𝑥𝑗 due to hammer hits at 𝑥h are obtained as follows:

�̂�𝑥𝑗 ,𝑥h (𝜔) =
3
∑

𝑛=1
𝜙𝑛(𝑥𝑗 )𝜙𝑛(𝑥h)𝐇𝑛,𝑛(𝜔). (13)

The results of the theoretical evaluation are shown in Fig. 15. The
influence of the HSI effect on the considered modes of vibration can
be seen in the reduction of the magnitude of the FRFs; the natural
frequency of the pedestrians falls within the region around the natural
frequencies of the structural system, which are denoted by the three
vertical red dashed lines. Fig. 15 also exposes the frequency shift of the
coupled system; the natural frequency of the pedestrians falls within the
range of the natural frequencies of the structural system.
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Fig. 13. (a) Schematic of the modelling approach of the SDOF representing the pedestrian system in the Abaqus FEM and (b) FEM of the coupled pedestrian bridge system in
Abaqus.
Fig. 14. Schematic of the coupled pedestrian-bridge system in the modal domain for
one single structural mode.

From the theoretical results shown in Fig. 15, it is expected that
there will be high levels of interaction between the pedestrians and
the structure in the three considered vertical modes of vibration, such
that the SMD model representing the pedestrians can be identified.
To quantify the influence of the coupling between modes due to the
presence of the pedestrians, the coupling terms 𝐇1,2, 𝐇2,3 and 𝐇1,3
of the matrix formulation presented in Eq. (12) based on Caprani’s
formulation [17] were computed by varying the natural frequency of
the modelled pedestrians from 0 Hz to 10 Hz. The results are shown in
Fig. 16. It can be seen that the magnitude of the coupling terms has a
negligible influence since it is two to three orders of magnitude lower
than the computed FRFs shown in Fig. 15. Therefore, it is sufficient to
quantify the HSI effect by studying each mode of vibration separately
and then adding their corresponding contributions.

4.3. Optimisation method

An automated FRF-based modal updating procedure [46] was im-
plemented to address the inverse problem and to determine the mate-
rial properties and the pedestrians’ properties. The updating procedure
is treated as a nonlinear optimisation problem that involves minimising
the error between the theoretical FRFs 𝐇T(𝜔) and the experimental
FRFs 𝐇E(𝜔) of the system. To evaluate the correlation between the
theoretical and experimental FRFs, the frequency response assurance
criterion (FRAC), which is sensitive to inconsistencies between the
FRFs’ shapes, and the frequency amplitude assurance criterion (FAAC),
which is sensitive to the amplitude of the considered FRFs, were used.
These two criteria vary between zero and one, where one indicates
perfect correlation. For the specific accelerometer 𝑖, one obtains

FRAC𝑖 =
‖

‖

‖

(𝐇E
𝑖 (𝜔))

𝐻𝐇T
𝑖 (𝜔)

‖

‖

‖

2

E 𝐻 E T 𝐻 T , (14)
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((𝐇𝑖 (𝜔)) 𝐇𝑖 (𝜔))((𝐇𝑖 (𝜔)) 𝐇𝑖 (𝜔))
Table 3
Initial, lower and upper values of the decision variables of the structural system.

Initial Lower Upper
value bound bound

Steel 𝐸𝑠 (GPa) 215 190 220
𝜌a𝑠 (kg/m3) 8100 7800 8600

Elastic BC 𝑘1 (MN/m) 140 100 180
Damping 𝜁1 (–) 0.015 – –

𝜁2 (–) 0.008 – –
𝜁3 (–) 0.008 – –

aAdjusted to account for the mass of the deck and railings in the FEM.

Table 4
Initial, lower and upper values of the decision variables of the reference pedestrian.

Initial Lower Upper
value bound bound

Frequency 𝑓p (Hz) 5.5 1 15
Damping 𝜁p (%) 35 20 70

FAAC𝑖 =
2 ‖‖
‖

(𝐇E
𝑖 (𝜔))

𝐻𝐇T
𝑖 (𝜔)

‖

‖

‖

((𝐇E
𝑖 (𝜔))𝐻𝐇E

𝑖 (𝜔)) + ((𝐇T
𝑖 (𝜔))𝐻𝐇T

𝑖 (𝜔))
. (15)

The pattern search (PS) algorithm was used to minimise the ob-
jective function 𝑓 (𝐗) (Eq. (16)), where 𝑝 represents the number of
decision variables in the decision vector 𝐗 = (𝑥1, 𝑥2,… , 𝑥𝑝). The PS
method was chosen due to its high convergence rate for a well-defined
problem in which multiple local minima are not expected. To improve
the optimisation procedure, all the decision variables were normalised
from zero to one, which correspond to the lower bound and upper
bound of the considered range, respectively. The PS is performed with
an initial mesh size of 0.1, a mesh expansion factor of 1.95 and a
mesh contraction factor of 0.75, and a complete poll strategy is used.
The maximum number of iterations is set to 50 times 𝑝. The function
tolerance and the mesh tolerance were set to 0.005 and 0.001, respec-
tively. The objective function was computed for the different frequency
ranges according to the consideration of the different structural modes.
The analysis was performed on an Intel(R) Core (TM) i7-87000 CPU at
3.20 GHz (6 cores) with 32 GB of RAM. The initial values, as well as
the lower and upper bounds, of the properties of the bridge system are
shown in Table 3. The damping ratio of the considered modes is fixed
for both the FEM and the modal model. The initial values, as well as the
lower and upper bounds, of the properties of the reference pedestrian
are shown in Table 4.
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Fig. 15. Theoretical magnitude of the FRFs of the coupled pedestrian-bridge system as
a function of the natural frequency of the pedestrians at (a) 𝑥 = 22.5 m, (b) 𝑥 = 35.5

and (c) 𝑥 = 48.5 m in terms of the layout of the line of accelerometers shown in
ig. 5. The red dashed (- -) lines indicate the natural frequencies of the empty bridge.

. Results and discussion

In this section of the work, the results of the updated FEM, the
pdated simplified models, i.e. Caprani’s HSI formulation (referred to
s the full HSI model), and the closed-form expression of the HSI
roblem are compared to the experimental results.

.1. Bridge system

The updated parameters of the FEM are shown in Table 5. The
arameters of the modal model that were updated using the experimen-
ally fitted modes are shown in Table 6. Negligible differences in the
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Fig. 16. Quantification of the magnitude of the coupling terms of Caprani’s formulation
as a function of the natural frequency of the pedestrians 𝑓p: (a) accelerance FRFs 𝐇1,2,
(b) accelerance FRFs 𝐇2,3 and (c) accelerance FRFs 𝐇1,3. The red dashed (- -) lines
indicate the natural frequencies of the empty bridge.

natural frequencies between the models are found. The total weight of
the adjusted model is 90.3 tons. The linear mass density assumed for
the modal model is 930 kg/m. The updated FRFs obtained from the
FEM and the modal model are presented in Fig. 17. Good agreement
between the FRFs of both models was obtained: the peaks and shapes of
the FRFs of both models coincided. The partial mismatch in the peak of
the first mode of vibration can be explained by the influence of the first
lateral mode of the structural system, which has a vertical component
at the centre of the bridge that is shown in Fig. 17c. Additionally, in
Fig. 17c, a small peak around 3.50 Hz produced by a torsional mode can
be seen. The contribution of this mode was not completely examined in
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Fig. 17. Updated accelerance FRFs of the FEM (dashed lines (- -)) and the modal model (blue solid lines (-)) and the measurement FRFs (grey solid lines (-)) at (a) 𝑥 = 22.5 m,
(b) 𝑥 = 35.5 m and (c) 𝑥 = 48.5 m. Panels (a), (b) and (c) correspond to the layout of the line of accelerometers shown in Fig. 5. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
Fig. 18. Mode shapes from the FEM of the Folke Bernadotte Bridge.
Table 5
Updated variables of the structural system based on the FEM.

Updated value

Steel 𝐸𝑠 (GPa) 210.5
𝜌a𝑠 (kg/m3) 8395

Elastic BC 𝑘1 (MN/m) 152.2
Modes 𝑓1 (Hz) 1.70

𝑓2 (Hz) 3.03
𝑓3 (Hz) 5.32

Table 6
Updated variables of the structural system based on the modal model and the
experimentally fitted modes.

Updated value

Modes 𝑓1 (Hz) 1.69
𝑓2 (Hz) 3.01
𝑓3 (Hz) 5.28

the averaging of the two opposing accelerometers. The three considered
modes of vibrations of the FEM are shown in Fig. 18. Finally, Fig. 19
shows the MAC matrices computed between the experimental curves
and the FEM for the two different boundary condition configurations.
Negligible differences were found for the calibrated FEM. Figs. 19(a)
and 19(b) prove the reliability of the FEM (both with fixed–fixed (FF)
ends and fixed–movable (FM) ends, in the same order). Fig. 19(c)
compares the two configurations considered for the FE model, showing
overall the strong similarity of the mode shapes resulting from the
numerical simulations. Finally, the updated FEM and the updated
modal model can be used to calibrate the human SMD model, as well
as to quantify the HSI effect. To evaluate the modelling approach of
adjusting the steel density instead of modelling the timber, the spruce
pieces conforming the deck were considered in a separated model. The
differences in mass were less than 1% and the differences in frequency
of the first, second and third mode were 1.19%, 0.66% and 0.57%,
respectively. Hence, the model in which only the steel is used was
further verified.
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Table 7
Updated values of the reference pedestrian, taking into account all the considered
modes (1.35–6.00 Hz).

FEM Full HSI Closed-
model form

Frequency 𝑓p (Hz) 5.01 5.00 5.00
Damping 𝜁p (%) 37.13 44.09 42.85

Table 8
Updated values of the reference pedestrian, taking into account the second and third
modes (2.30–6.00 Hz).

FEM Full HSI Closed-
model form

Frequency 𝑓p (Hz) 5.01 5.08 5.00
Damping 𝜁p (%) 35.57 40.62 41.35

5.2. Human–structure system

Once the modal model and the FEM were updated, they were
used as a reference to calibrate the human SMD model. The modal
mass ratios of the coupled pedestrian-bridge system (∑35

𝑟=1 𝑚p,𝑟𝜙2
r,𝑛∕𝑚b,𝑛)

for the first, second and third modes are 5.58%, 4.90% and 4.15%,
respectively. Moreover, three different frequency bands were consid-
ered to quantify the influence of the different structural modes. In
the first case, all three structural modes were taken into account by
considering a frequency band from 1.35 Hz to 6.00 Hz. In the second
case, the second and third structural modes were taken into account
by considering a frequency band from 2.30 Hz to 6.00 Hz. In the
third case, only the third structural mode was taken into account by
considering a frequency band from 4.00 Hz to 6.00 Hz. The results
of the aforementioned cases of the updated SMD model are shown in
Tables 7–9, respectively.

It can be seen that there is consistency in the results among the three
considered models and the three considered frequency bands regarding
the natural frequency of the pedestrians; the results indicate a value
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Fig. 19. MAC matrices of the experimental findings (without pedestrians, layout A) vs. (a) the FEM with FF boundary conditions and (b) the FEM with FM boundary conditions.
(c) MAC values between the two numerical models.
Table 9
Updated values of the reference pedestrian, taking into account the third
mode (4.00–6.00 Hz).

FEM Full HSI Closed-
model form

Frequency 𝑓p (Hz) 5.15 5.26 5.20
Damping 𝜁p (%) 39.46 39.20 38.50

around 5 Hz. This is a result consistent with the values for the human

SMD models found in [47–50].
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In the case of the damping associated with the pedestrians, in both
the first case and the second case, the updated FEM led to lower
values with respect to both the full HSI model and the closed-form
solution. In the first case, in which all the structural modes are taken
into account, the difference in damping between the FEM and full HSI
model was 6.96%. The difference in damping between the FEM and
the closed-form solution was 5.72%. In the second case, in which the
second and third structural modes are taken into account, the difference
in damping between the FEM and full HSI model was 5.05%. The
difference in damping between the FEM and the closed-form solution
was 5.78%. In the third case, in which only the third structural mode
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is considered, the difference in damping between the FEM and full HSI
model was 0.26%. The difference in damping between the FEM and
the closed-form solution was 0.96%. The differences found indicate
the difficulties involved in quantifying the human SMD model. The
results suggest that a probabilistic approach may be more suitable for
characterising the human model.

A comparison among the FRFs obtained from the updated FEM,
the full HSI model and the closed-form solution for the first case,
in which all structural modes are taken into account, is shown in
Fig. 20. It can be seen that there is great agreement between the FEM,
the full HSI model and the closed-form solution with respect to the
measurements for the second mode and the third mode. However, there
is disagreement for the first mode in terms of both the amplitude and
frequency. Considering the agreement of the three models, the authors
make the following suggestions:

• The human SMD model consisting of one SDOF system is not able
to replicate the influence of the HSI effect for all of the considered
frequency band, suggesting that a more complete model that uses
at least two SDOF systems to represent the pedestrians may lead
to better results.

• The stiffness of the considered elastic boundary conditions
changed due to the presence of pedestrians. As a result, it would
be possible to again update the stiffness value of the FEM to
increase the agreement between the FEM and the measurements.
However, the authors consider the experimental results as a case
study that shows the importance of not only the uncertainties
related to the human models but also the uncertainties associ-
ated with the load case scenario [51] and the structural system
itself [52]. Indeed, the damping ratio of the structural system
is inherently random and difficult to quantify [53], and the
estimate of the natural frequencies is influenced by uncertainties
in the numerical models [54], the environmental conditions of
the particular system [55], the load case scenario and boundary
conditions, as shown by the measurements made while there were
pedestrians on the Folke Bernadotte Bridge [51].

All the aforementioned uncertainties are present in the service-
bility assessment, evaluation and identification of the structural re-
ponse [51,56–58]. Additionally, in the context of the serviceability
imit state, even the variability of the perception of the vibration levels
f a considered system should be taken into account [59,60].

Furthermore, the perfectly modulated attached mass model, i.e. the
odel that assumes that the pedestrians are perfectly attached to

he system, is considered, and the changes in the natural frequency
f the system for the first mode of vibration are evaluated. This is
one by considering two systems consisting of an SDOF in which the
tiffness has a constant value and the natural frequency and the mass
hange. From the experiment, the structure without humans has a first
atural frequency of 1.70 Hz. Considering humans, it has a first natural
requency of 1.46 Hz. This leads to a modal mass ratio of 16.44%.
onversely, the modal mass ratio for the first mode was equal to 5.58%.
ence, it is demonstrated that the mismatch cannot be explained by the
erfectly modulated attached model, suggesting that either changes in
he boundary conditions due to the load case (experimental campaign
ith standing pedestrians) occurred or that a more complete human
odel is needed.

The three modes of vibration of the FEM, considering the pedes-
rians, are shown in Fig. 23. The MAC values computed between these
odes and the corresponding experimental measurements (series 7 and
) are reported in Fig. 21.

Additionally, Figs. 22(a) and 22(b) show, respectively, the MAC
alues of the pedestrian-loaded FEM vs. the unloaded experimental
ode shapes. Specifically, Fig. 22(a) refers to series 1 and 2 (layout
), while Fig. 22(b) refers to series 3 and 4 (layout B). These results
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learly highlight that the differences between the human-loaded FE
Table 10
Range of values considered for the parametric analysis.

Parameter Solution Range

𝑓p (Hz) 5.00 [4,6]
𝜁p (%) 0.4285 [0.20,0.70]
𝑓1 (Hz) 1.69 [1.60,1.80]
𝑓2 (Hz) 3.01 [2.90,3.10]
𝑓3 (Hz) 5.28 [5.18,5.38]

model and unloaded mode shapes are small in absolute terms (the MAC
values on the main diagonal never fall below 0.97) but non-negligible
in relative terms, as the MAC values of Fig. 21 were all higher than
0.99. Nevertheless, one should consider that the changes induced by
the pedestrians in the mode shapes are limited.

Taking 𝑓p = 5 Hz and the calibrated values of the empty structure
from Table 6, the tuning parameters, i.e. the frequency ratios between
the natural frequencies of the first, second and third modes, are 2.96,
1.65 and 0.94, respectively. It can be seen in Fig. 23 and in [5]
that the level interaction between the two subsystems is defined by
the ratio between the natural frequency of the reference pedestrian
and the natural frequency of the considered mode such that (i) for
low-frequency ratios (𝜔p∕𝜔b < 0.5), the crowd and the supporting
structure are decoupled, (ii) for intermediate-frequency ratios (0.5 <
𝜔p∕𝜔b < 1.5), a high level of interaction is developed, increasing the
ffective damping of the system and shifting the natural frequency of
he coupled system, and (iii) for high-frequency ratios (𝜔p∕𝜔b > 1.5),
he crowd is stiffer than the supporting structure, and hence it acts as an
dditional mass. This is shown in Fig. 23c for intermediate-frequency
atios; the SMD models representing the pedestrians are nearly tuned
o the third natural frequency of the bridge, dissipating most of the
nergy, increasing the damping and changing the natural frequency of
he coupled system, i.e. the HSI effect. It can be seen that this effect
s gradually reduced in Fig. 23b and in Fig. 23a, which correspond
o high-frequency ratios for which the SMD models representing the
edestrians follow the supporting system as attached masses. Finally,
n order to verify the results, a sensitivity analysis is performed in the
icinity of the solution found for the human SMD model (𝑓p, 𝜁p) in the
ext subsection.

.3. Sensitivity analysis

In this subsection, a sensitivity analysis of the determined solution is
resented for the human SMD model (𝑓p, 𝜁p) and the reference system
𝑓1, 𝑓2, 𝑓3) based on the closed-form solution. The sensitivity analysis
s performed using the closed-form solution, given the validity of the
esults, considering the frequency range of 1.35 Hz to 6.00 Hz (the
hree structural modes). The objective function (Eq. (16)) is sampled
onsidering the range of parameters shown in Table 10.

The results of the sensitivity analysis of the case study are shown in
ig. 24.

The sensitivity analysis results are discussed in a top-down, left-to-
ight order:

• 𝜁p vs. 𝑓p: This plot shows that the objective function around
the reference solution (red circle) of the human SMD model
behaves as a convex valley in which variations of the pedestrian
parameters will not significantly change the objective function.
Variations of the natural frequency of the pedestrian 𝛥𝑓p = 4.7 −
5.4 = 0.7 Hz, in combination with variations of the damping of
the pedestrian 𝛥𝜁𝑝 = 0.55− 0.35 = 0.2, will produce similar values
of the objective function (<5.2). This exposes the difficulties
involved in defining the human SMD model. However, these
ranges of values for 𝑓p and 𝜁p are in agreement with [47–50]. The
location of the reference solution with respect to the evaluated
surface indicates the quality of the solution.
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Fig. 20. Updated accelerance FRFs of the FEM (black dashed lines (- -)), the full HSI model (Caprani’s formulation) (blue solid lines (-)) and the closed-form solution (dashed red
lines (- -)) and the measurement FRFs (grey solid lines (-)) at (a) 𝑥 = 22.5 m, (b) 𝑥 = 35.5 m and (c) 𝑥 = 48.5 m. Panels (a), (b) and (c) correspond to the layout of the line of
accelerometers shown in Fig. 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 21. MAC matrices of the FEM with fixed-spring boundary conditions and pedestrians vs. the experimental findings (with pedestrians, layout C).

Fig. 22. MAC matrices of the FEM with fixed-spring boundary conditions and pedestrians vs. (a) without pedestrians — layout A, and (b) without pedestrians — layout B.

Fig. 23. Mode shapes of the coupled pedestrian-bridge system of the FEM: (a) First vertical mode of vibration, (b) second vertical mode of vibration and (c) third vertical mode
of vibration.
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Fig. 24. Sensitivity analysis of the determined solution. The red circles denote the reference solution.
• 𝑓1 vs. 𝑓p: This plot shows the mismatch of the first mode of
vibration and that the reference value of the natural frequency
of the pedestrian 𝑓p is at the centre of the descending surface,
indicating the high quality of the solution that minimises the
objective function.

• 𝑓2 vs. 𝑓p: This plot shows that there is a combination of the con-
sidered parameters that can give similar values of the objective
function (mostly because of variations of the natural frequency
of the pedestrian). These results show the importance of char-
acterising the supporting structure properly and the difficulties
involved in defining the human SMD model. The location of the
reference solution with respect to the evaluated surface indicates
the quality of the solution. The results reflect the importance of
the second mode of vibration in the modal updating scheme that
was adopted, given the variations of the objective function on the
vertical axis.

• 𝑓3 vs. 𝑓p: This plot shows that there is a region in which a
combination of the considered parameters can give similar values
of the objective function (<5.2). That is, variations of the natural
frequency of the pedestrian 𝛥p = 5.5−4.5 = 1.0 Hz, in combination
with variations of the third natural frequency of the empty bridge
𝛥𝑓3 = 5.3 − 5.2 = 0.1 Hz, will produce similar values of the
objective function. This is consistent with the differences found
between the calibrated FEM and the closed-form solution model
shown in Tables 7–9. The diagonal behaviour of the surface of the
objective function indicates the predominately high level of the
HSI effect between the third structural mode and the pedestrians.
The location of the reference solution with respect to the evalu-
ated surface indicates the quality of the solution that minimises
the objective function.

• 𝑓1 vs. 𝜁p: This plot shows the mismatch of the first mode of
vibration and that the reference value of the damping of the
pedestrian 𝜁p is at the centre of the valley, indicating the high
quality of the solution that minimises the objective function,
i.e. in the direction of the steepest descent.
2263
• 𝑓2 vs. 𝜁p: This plot shows that there is a region in which a
combination of the considered parameters can give similar values
of the objective function (mostly because of variations of the
damping of the pedestrian). These results show the importance
of characterising the supporting structure properly and the dif-
ficulties involved in defining the damping of the human SMD
model. The location with respect to the evaluated surface of the
reference solution that minimises the objective function indicates
the quality of the solution.

• 𝑓3 vs. 𝜁p: This plot suggests that variations of the third natural fre-
quency of the empty structure, i.e. 𝛥𝑓3 = 5.3−5.24 = 0.06 Hz, with
respect to variations of the damping of the pedestrian, i.e. 𝛥𝜁𝑝 =
0.55− 0.35 = 0.2, can give similar values of the objective function
around the determined solution (red circle). This exposes the
difficulties involved in defining the damping parameter associated
with the human SMD model and the importance of properly
defining the modal parameters of the supporting structure. The
location of the reference solution with respect to the evaluated
surface indicates the quality of the solution.

• 𝑓2 vs. 𝑓1: This plot shows that the second natural frequency 𝑓2 is
very well defined and the mismatch of the first mode of vibration.

• 𝑓3 vs. 𝑓1: This plot shows that the third natural frequency 𝑓3 is
defined within the considered range and the mismatch of the first
mode of vibration.

• 𝑓3 vs. 𝑓2: This plot shows that the third natural frequency 𝑓3
has variations within the considered range with respect to the
second natural frequency 𝑓2. This is explained by the HSI effect:
the FRFs concerning the third mode of vibration of the coupled
system are highly damped due to the tuning of the pedestrians
(𝜔b∕𝜔b). The location with respect to the evaluated surface of the
reference solution that minimises the objective function indicates
the quality of the determined solution.

The previous analysis shows how difficult it is to characterise the
human SMD model and the need to take the system variability, from
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both the human SMD model perspective and the supporting struc-
ture perspective, into account by means of a reliability-based frame-
work [61] or using interval analysis, as in [62]. For other frequency
ranges in which the second and third structural modes are considered
and for the case in which only the third mode is considered, the cor-
responding surfaces of the evaluated objective functions are narrower
and well defined.

6. Conclusions

An analytical expression for the FRF of the coupled pedestrian-
bridge system was presented. The analytical expression was validated
by the presented case study on the Folke Bernadotte Bridge. Great
agreement was obtained between the theoretical and experimental
FRFs. The quantification of the coupling terms between the structural
modes in the HSI formulation allowed these terms to be evaluated,
and it was found that they had a negligible influence. The determined
analytical expression was proven to be suitable for the case in which
one single structural mode is taken into account, and it was validated
against the calibrated FEM and the considered HSI formulations. The
partial mismatch between the theoretical and experimental FRFs sug-
gests the importance of considering the uncertainties of the system,
its boundary conditions and the limitations of the considered human
model. The properties of the pedestrian SMD model were identified,
and good agreement with the properties reported in the literature was
obtained. Finally, by preforming a sensitivity analysis of the determined
solution, it was demonstrated that, in this case, an optimisation scheme
is not the best approach for characterising the human model. A proba-
bilistic approach or a framework based on interval analysis that can be
used to define the human SMD properties are more suitable strategies
for defining a human model with reliable values of the mechanical
properties. The sensitivity analysis validates the closed-form expression
of the FRF for the coupled pedestrian-bridge system.
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Appendix. Fitted mode shapes

𝜙1(𝑥∕𝐿) = 0.5292 sin(0.0127(𝑥∕𝐿) + 0.9588)

+0.4757 sin(0.07355(𝑥∕𝐿) + 4.306).

𝜙2(𝑥∕𝐿) = 0.6894 sin(0.05439(𝑥∕𝐿) + 0.5589)

+0.7176 sin(0.1236 ∗ (𝑥∕𝐿) − 2.812)

+0.2181 sin(0.1426(𝑥∕𝐿) − 0.6552).

𝜙3(𝑥∕𝐿) = −2.5756 − 1.215 cos(3.6608(𝑥∕𝐿)) + 4.1696 sin(3.6608(𝑥∕𝐿))

+2.3447 cos(7.3216(𝑥∕𝐿)) + 1.4501 sin(7.3216(𝑥∕𝐿))

+1.4112 cos(10.9823(𝑥∕𝐿)) − 1.2107 sin(10.9823(𝑥∕𝐿)). (A.1)
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