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ABSTRACT:  A major advantage in the reassessment of existing structures is the possibility of 
including measured data that describe the actual properties and the current condition of the 
structure to be reassessed. Currently, the incorporation of such measured information is mostly 
unregulated. However, the use of measurement results is vitally important, since a measured 
data-based improvement of the computation models level of approximation can lead at least to 
more meaningful results, possibly to extended remaining life times of the structure and in the 
best case to a saving of resources. Conversely, not appreciating well measurable and relevant 
information can be equated with a waste of resources. In this paper, a concept for the comparable 
use of non-destructively measured data as basic variables in probabilistic reliability assessments 
is outlined and examined using a typical prestressed concrete road bridge as a case-study. An 
essential requirement is the calculation of measurement uncertainties in order to evaluate the 
quality of the measurement results comparably. In conclusion, the example of ultrasonic and 
radar measurement data is used to demonstrate the effects that the incorporation of the measured 
information has on the reliability of the structure. 
KEYWORDS:   Measurement uncertainty, Reliability, Assessment, Existing structures, 

Concrete Bridge, Non-Destructive Testing (NDT). 

1 INTRODUCTION 
The validity of computation results depends to a large 
extend on the trueness, on the precision and on the 
relevance of the underlying information. The decisive 
difference between the reassessment of an existing 
structure and the design of a new is the possibility and 
the necessity to include additional information about 
the current condition and actual structure parameters. 
The incorporation of measured information can lead 
to a reduction of both the bias of considered models 
and the uncertainty in the reassessment as well as to 
an increasement of the robustness of the computation 
results. On the one hand, measurements can be used 
to determine the current state of a structure and to 
represent it mathematically. On the other, errors that 
have occurred over the life cycle of the structure and 
that can have serious consequences can be obtained. 
Since measurements are considered particularly 
beneficial when necessary information is missing, 
doubts have arisen about the available information, 
and since traffic loads are continuously increasing, 
extensive destructive interventions into the structure 
should be avoided. 

This paper outlines an approach for the use of non-
destructively obtained measurement results as 
basic variables in the probabilistic reassessment of 
existing structures and discusses the advantages of 
applying that approach by means of a case study. 
The aim is the NDT-based stochastic modelling of 
sensitive basic variables to be incorporated in the 
reassessment explicitly. The reliability analyses 
are performed in two limit states in order to proof 
the bending and shear force resistance of a bridge 
using the First Order Reliability Method (FORM). 
For this purpose, two geometrical parameters were 
measured on site at the structure by applying both 
an ultrasound and a ground penetration radar 
measurement procedure. 

An essential part of the chosen approach is the 
calculation of measurement uncertainties (cf. sect. 
3.3). A useful model of a basic variable covers the 
uncertainty associated with both the acquisition 
and processing of information. The measurement 
uncertainty analyses ensure the comparability of 
the measurement results. Furthermore, the quality 
(i.e. accuracy and precision) of the measurement 
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results is known. The effects of the incorporation of 
the NDT-based basic variables are conclusively 
shown in relation to the reference values calculated 
without appreciating the measured information. 

2 CONCEPT 
The concept for the reassessment using measured 
data is summarized in Figure 1. 

The preliminary investigations (first step) serves 
the purposeful definition of the measurand (quantity 
to be measured) and specification of the requirements 
on the measurement derived from the analysis of the 
structural reliability without appreciating measured 
data (e.g. a maximum permissible uncertainty). For 
this purpose, sensitivity coefficients, elasticities and 
parameter studies are analyzed (see sect. 3.2). The 
prerequisite is the definition of the limit state function 
(cf. sect. 3.1) and the modelling of the initial basic 
variables (without consideration of measured data). 

In the second step, the measurements on site at the 
structure are planned, conducted and the observations 
are analyzed. This leads to a measurement result 
consisting of a best estimate and the measurement 

uncertainty attributed to this value and expressed
in accordance to internationally harmonized and 
accepted rules (cf. section 3.3). The measurand is 
composed by a multitude of input quantities. 

The third step comprises the derivation of the 
NDT-supported models from the measurement 
results (see section 3.4). These measured data-
based basic variables replace the respective initial 
basic variables in the reliability analysis using the 
measured data in the fourth step (cf. sect. 3.5). 
This reliability analysis can in turn be the starting 
point for the definition of new measurands. 

The reliability analyses are based on the FORM 
proposed in (Hasofer & Lind, 1974) and enhanced 
i. a. by (Rackwitz & Fiessler, 1978) as well as
(Hohenbichler & Rackwitz, 1981). The reliability
index is computed according to (Hasofer & Lind,
1974). The proofs are performed time-invariant
and at cross-sectional level. The reference period
results implicitly from the modelled traffic loads
and is 𝑇 = 50	a . The measurement uncertainty
calculations are based on the rules of the Guide to
the Expression of Uncertainty in Measurement
(Joint Committee for Guides in Metrology, 2008).

Figure 1. Procedure for the targeted definition of quantities to be measured (measurands), the measured data-based modeling of 
basic variables and the reliability reassessment of existing structures appreciating measured information 
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Figure 2. The investigated prestressed concrete bridge. 

3 CASE-STUDY 

3.1 The structure and definition of limit states 
The structure investigated in the present case-study is 
a prestressed concrete bridge (cf. Figure 2) that has 
been dismantled recently. The three-span bridge was 
approx. 133 meters long, carried a two-lane federal 
highway over a river and had a single-cell hollow box 
girder cross-section (cf. Figures 3 and 4). It was built 
in 1965. The as-built plans show 44 to 46 longitudinal 
tendons in the center of the bridge (center among axis 
20 and 30). Shear force reinforcement was mounted 
in the area around the bridge pillars. The bridge is 
described further in (Küttenbaum et al., 2019). 

The bridge is to be reassessed in two ultimate limit 
states (ULS). The proof of the bending load-bearing 
capacity in longitudinal direction and the proof of the 
tension strut, which is considered decisive for the 
evaluation of the shear force load-bearing capacity, is 
chosen. The bending proof is performed in the center 
of the bridge. The shear force proof is conducted at a 
distance of two meters (corresponds to the effective 
depth of the cross-section 𝑑) from the axis 20 in the 
center field. 

The limit state function in ULS bending for 
structures with compressive reinforcement can be 
found in (Braml, 2010) and can after limiting the 
compression height be written as: 

𝑔(𝑀!) = 	𝑈!,# ∙ )𝐴$% ∙ 𝑓% ∙ ,ℎ − 𝑑&% − 𝑑') +
𝑎! ∙ 𝑏 ∙ 𝜉 ∙ ,ℎ − 𝑑&%4 ∙ 0,85 ∙ 𝑓( ∙ (𝑑' − 𝑘) ∙ 𝜉 ∙
(ℎ − 𝑑&%)4: − 𝑈* ∙ ,𝑀+ +𝑀, +𝑀-.4.  

(1) 

The statically determined bending moment is 
appreciated via the cross-sectional area 𝐴!"  and 
the tensile strength 𝑓" of the prestressing steel as 
well as the distance between the lower edge of the 
web and the longitudinal tendons 𝑑#".  

The limit state function for assessing the load-
bearing capacity of the tension strut (ULS shear) 
is: 

𝑔,𝑉!,$4 = 	𝑈!,$ ∙ )
/!"
0"

∙ 𝑓1 ∙ ,0,9 ∙ (ℎ& − 𝑑2)4 ∙

(cot θ + cot α) ∙ sin α: − 𝑈* ∙ ,𝑉+ + 𝑉, + 𝑉.4. 
(2) 

Equation (2) is based on the formula published 
in (Braml, 2010) and the truss model standardized 
in Eurocode; cf. (CEN, 2005). The descriptions of 
the variables in equations (1) and (2) as well as the 
models of the basic variables are given in section 
3.4 and in excerpts in Figures 5 and 6. 

Figure 4. Longitudinal view of the investigated prestressed concrete bridge; span lengths specified in m (Küttenbaum et al., 2019). 

Figure 3. Standard cross-section; dimension unit is m 
(Küttenbaum et al., 2019). 
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3.2 Results of the preliminary investigations 
The results of the reliability analyses in limit states 
ULS shear and ULS bending are plotted in Figure 5. 
The calculations are based on equations (1) and (2) 
and on the initial stochastic models in Table 1. Thus, 
the measured information is disregarded. A further 
discussion can be found in (Küttenbaum et al., 2021). 

 The value of the reliability index in ULS shear is 
𝛽$% = 1,08 (SORM: 𝛽$% = 1,05) and 𝛽$% ≈ 6,3 in 
ULS bending (FORM & SORM). The load-bearing 
capacity regarding bending in the bridge center is 
significantly higher than common target values as 
𝛽&'( = 3,8 (CEN, 2002) require. One reason for the 
small numerical shear force bearing capacity is that 
the truss model according to Eurocode 2 can produce 
rather conservative, in the sense of “too safe”, results. 

The computed values of the sensitivity factors 

indicate that the greatest stochastic impact can be
attributed to the model uncertainties in both limit 
states. The spacing of the stirrups 𝑠) accounts for 
12	% and the vertical position of the longitudinal 
tendons 𝑑#" for 5	% of the respective pie charts. 

It can be deduced from the elasticities of the 
mean values, that even a theoretical increase in the 
distance among the shear reinforcement by one 
centimeter results in a loss of numerical reliability 
of about −32	%. The influence of a change in the 
vertical position of the longitudinal tendons is less 
noticeable in this specific case. The results of the 
parameter studies shown as functions of the 
reliability index against the mean values of both 
normally distributed basic variables at the bottom 
are consistent with these observations. The basic 
variables 𝑠) and 𝑑#" are discussed in more detail 
below and defined as measurands in this paper. 

Figure 5. Results of the sensitivity analyses, elasticity analyses and parameter studies without appreciating measured information; 
extracted from (Küttenbaum et al., 2021), translated 
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3.3 Measurement uncertainty calculation 
The measurement uncertainty neither describes a 
mistake nor can it be eliminated by arbitrarily careful 
measurements. The aim of a measurement is to obtain 
the value of a quantity to be measured (measurand) 
and thus to generate knowledge. The true value of a 
measurand remains generally hidden. Consequently, 
measurement uncertainties must be specified in order 
to evaluate the quality of a measured information on 
the one hand. On the other hand, the calculation of 
measurement uncertainties ensures the comparability 
of the measurement results and creates confidence in 
measurements. A stochastic model to be incorporated 
as a basic variable in reliability reassessment is then 
considered useful, if the uncertainty associated with 
the acquisition and processing of information, i.e. the 
measurement uncertainty, is appreciated. In a broader 
sense, a measured value to which no measurement 
uncertainty has been attributed is useless. For this 
reason, its specification is an essential requirement 
for the use of measured information in reassessment 
of existing structures. 

Internationally harmonized and approved rules for 
measurement uncertainty considerations are provided 
within the Guide to the Expression of Uncertainty in 
Measurement (GUM)-framework. The subsequent 
discussion is based on the main document JCGM 
100:2008 (Joint Committee for Guides in Metrology, 
2008). Basically, a model of the measurement is to be 
formed, which consists of multiple input quantities 𝑋* 
known to be involved in a measurement, cf. VIM 
(Joint Committee for Guides in Metrology, 2012). 
The mathematical relation among these quantities 
serves to determine the output quantity (measurand) 
and can be expressed as an explicit model equation: 

𝑌 = 𝑓(𝑋*). (3) 

The identified and individually relevant input 
variables are to be quantified, i.e. for each variable a 
(mostly stochastic) model is to be found. The analysis 
of independent, identically distributed observations 
by means of statistical methods (Type A evaluation) 
as well as the incorporation of knowledge generated 
otherwise (Type B) are equally appropriate for this 
purpose. Regarding Type A, the sample mean 𝑥̅ is the 
best estimate of a directly measurable input quantity 
in many cases, provided that the systematic errors are 
corrected. The standard measurement uncertainty is 
to be attributed to this best estimate. This uncertainty 
is expressed as the standard deviation of the mean: 

𝑢(𝑥=) = >+!

,
= > -

,(,/-)
∑ (𝑥* − 𝑥̅)1,
*2- . (4)

Accordingly, when the Type A evaluation is 
conducted, the standard uncertainty results from 
parameters of a probability distribution defined on 
the basis of measured information. Uncertainties 
determined by Type B evaluation are derived from 
distributions assumed e.g. in accordance with 
previous measurement uncertainty considerations, 
experience, etc. If adequate probabilistic models 
have been found for all identified, relevant input 
quantities, the measurand can be calculated. For 
this purpose, the best estimates 𝑥=*  of the input 
quantities are inserted into the model equation (3) 
in order to derive the best estimate 

𝑦= = 𝑓(𝑥=*). (5) 

This measured value 𝑦=  needs to be corrected 
for systematic measurement errors that have not 
yet been appreciated. 

An appropriate measure for the uncertainty 
associated with the measurand 𝑌 is the combined 
standard measurement uncertainty derived by the 
propagation of the standard uncertainties 𝑢(𝑥=*) 
attributed to the input quantities: 

𝑢(𝑦$) = '(𝑐"#𝑢#(𝑥$") + 2( ( 𝑐"𝑐$𝑢(𝑥$" , 𝑥$$)
%

$&"'(

%

"&(

%

"&(

. (6) 

The coefficients 𝑐*  are also called sensitivity 
factors (of the input quantities). They are the result 
of the partial derivation of the model equation 
according to the input quantities 𝑋* at the expected 
values corresponding to the best estimates 𝑥=*. The 
values of 𝑐* provide information on how sensitive 
the result 𝑢(𝑦=) is to (small) changes in the models 
of the 𝑋*. They thus serve to differentiate between 
relevant and negligible input quantities and to 
purposefully define future metrological research 
demands. 

The term on the right in equation (6) indicates 
that correlations should be appreciated, provided 
that sufficient information about the statistical 
interaction is available. In the present case-study, 
correlations between measured input quantities 
(Type A) are estimated via empirical covariance. 

 With regard to the choice of a distribution type 

Accepted version of a contribution to ICOSSAR 2021-2022, 
13th International Conference on Structural Safety & Reliability

13-17 September 2022, Tongji University, Shanghai, China

5



to define the function of the measurand, reference is 
made to the central limit theorem and to the GUM. 
The choice of the normal distribution for modelling 
the measurands discussed in the present case-study 
was validated by means of simulation computations. 

Subsequently, a model for the determination of the 
lateral position of a reflector (related to the measuring 
surface) is used as an example to briefly illustrate 
how a model of the measurement can be designed. 
The explanations are limited to the application of a 
specific ground penetration radar (GPR) procedure.  

The results may serve as a starting point for future 
measurement uncertainty calculations. Inadmissible 
generalizations are to be refrained from. A model of 
the measurement is basically valid for the individual 
case considered. The following discussion is based 
on chosen results provided in (Küttenbaum, 2020). 

The measurand is the lateral position of a reflector 
in a specified small area around a sampling point to 
be formulated. The model equation can be written as 

𝑋# = 𝑋3 − 𝑋45 − 𝑋% − 𝑋6#7,9 − 𝑋6#7,:	,     (7) 

where 

𝑋# : lateral position of a sampling point 
𝑋3 : measurement series (coordinates) 
𝑋45 : measurement data logging delay 
𝑋% : limited resolution of the scale 
𝑋6#7,9 : shifted mounting of the scanner 
𝑋6#7,: : twisted mounting of the scanner 

The designations of the listed input quantities 
indicate that automated measurement systems were 
used to locate (in this case) the shear reinforcement. 
These scanners may have been mounted displaced 
from the intended and geodetically measured position 
of the measuring area on the surface of the structure.  

This model of the measurement was developed in 
(Küttenbaum, 2020). Without further explanations in 
the present paper it will be shown in the following, 
how an input quantity can be quantified according to 
the GUM using the example of the logging delay 
𝑋45. The reason for evaluating this input quantity is 
that delays in measurement data recording have been 
observed in the past, especially at a higher motion 
speed of the GPR-antenna mounted on the structure 
scanner (Trela et al., 2012). This would cause the 
position of a recorded time signal on the measuring 
line to shift at least systematically with respect to the 
actual measurement position. For the NDT-system 

used in this particular case, this observation could
not be confirmed. Nevertheless, an uncertainty 
component with an equivalent effect could be 
measured in the laboratory. Variations included 
the motion speed of the antenna, the measurement 
line length, which partly did not correspond to any 
multiple of the measuring point distance, and the 
measurement direction (positive, negative). 

As a result, it was found that the recorded time 
signals in a measurement line shift by two to three 
times the measurement point spacing in the 
measurement direction compared to the actual 
antenna positions, provided that the measurement 
direction is negative. The cause may lie in the data 
acquisition software. This would mean, that 𝑋45 is 
an NDT-system-specific uncertainty component. 
Since the systematic measurement error by two to 
three times the measuring point distance cannot be 
precisely quantified on the basis of the available 
information, a random measurement error must be 
added to this systematic measurement deviation. 
The interpretation of the observed shift as limit 
values leads referring to the principle of maximum 
entropy to 𝑋45~U. Provided the measuring point 
distance is 4	mm, it follows for the expected value 
that 𝐸(𝑋45) = 𝑥=45 = 10	mm . Given the choice 
of the uniform distribution, the attributed standard 
uncertainty is 𝑢(𝑥=45) = 4	mm/2√3 = 1,2	mm. 

According to the boundary conditions, all other 
relevant individually identified input quantities 
are quantified and the sampling points 𝑋#  are 
calculated, each describing the (in this case lateral) 
position of a shear reinforcement stirrup related to 
the longitudinal bridge axis. The sampling points 
scatter in the direction of this axis. The uncertainty 
attributed to the lateral position with respect to this 
x-axis is 𝑢(𝑥=#) < 3	mm for all calculated points
within a measured volume.

In total, 64 sampling points were calculated 
from 448 observed positions of 𝑖 = 16 stirrups on 
𝑗 = 4 horizontal lines imposed in the longitudinal 
bridge direction and upon the other in a range 
around the investigated cross-section of ±1,30	m. 
By combining these points 𝑋#,*,; (appreciating the 
combined standard measurement uncertainties of 
the considered 𝑋#,*,;), the averaged spacing of the 
shear reinforcement bars has been calculated. The 
entire model, the measured data and the related 
discussions can be found in (Küttenbaum, 2020). 
The result can be expressed as follows: 𝑆<~𝑁 
with 𝑠̂< = 14,827	cm and 𝑢(𝑠̂<) = 0,012	cm. 
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The procedure for determining the measurand 𝑑#" 
is methodologically equivalent. The corresponding 
model of the measurement is given in (Küttenbaum, 
2020) as well. It should be noted that the combination 
of many sampling points can sometimes (and as here) 
result in exceptionally small values of measurement 
uncertainties compared to usual NDT-measurement 
results. This is reasonable in that the displacement of 
many or all reflectors, such as the geometrical center 
of a bundle of tendons, is less likely than a shift of a 
single reflector. This is valid especially if – as in this 
case – measured data is available providing sufficient 
evidence about that at least the displacement of some 
reflectors can be precluded. Nevertheless, absolute 
positions of reflectors obviously cannot be measured 
by means of ultrasonics or radar with measurement 
uncertainties comparable to the values calculated for 
the measurands composed of a multitude of sampling 
points in the present case. However, the approach is 
consistent to the conclusion in (Thoft-Christensen & 
Baker, 1982), that the definition of the distribution of 
a basic variable by means of analyzing empirical data 
then results in convenient models, if the distribution 
is synthesized incorporating all available information 
about components of uncertainty. 

3.4 Stochastic models of the basic variables 
A concept for the transformation of non-destructively 
obtained measurement results expressed according to 
the GUM into FORM input quantities will shortly be 
published in (Küttenbaum, 2020). The imaging of the 
measured data and the calculation of the measurands 
𝑑#"  and 𝑠)  dealt with in this paper are described 
further in (Küttenbaum et al., 2019), (Küttenbaum et 
al., 2021). The individual specifications in modelling 
the geometrical basic variables considered in the 
present case-study are summarized below:  

The NDT-based basic variables 𝑑#"==  and 𝑠)== equal 
the related measurands. The statically indeterminate 
part of the prestressing 𝑀>?

==  has been updated based 
on the measured curves of the tendons. This will not 
be discussed further here. The FORM is not merged 
with the measurement uncertainty calculation, since 
the operating points differ in linearization, in order to 
maintain comparability of measurement results, and 
because both methods serve different purposes. The 
combined measurement uncertainty (cf. equation (6)) 
is taken as standard deviation of the best estimate of 
the measurand and is consequently a suitable measure 
to describe the scattering of the characteristics to be 
modelled by the basic variables (here: 𝑑#"==  and 𝑠)==). 

The tail sensitivity problem (c.f. (Diamantidis, 
2001), (Benjamin & Cornell, 1970), (Ditlevsen, 
1994), etc.) plays a minor role in the present case, 
since the modelling recommendations given e. g. 
in (JCSS, 2001/2002), as well as the initial basic 
variables and the measurands follow normal 
distributions, respectively. In other cases, the 
inclusion of conjugate priors via Bayes’ theorem 
might become necessary. Additional uncertainties 
need not to be covered here, since the statistical 
uncertainties are negligible due to large numbers 
of observations (an advantage of conducting 
NDT), and because competing models from which 
one would have to be chosen arbitrarily based on 
the information available are delimited here. Any 
prior knowledge about the vertical positions of the 
tendons that have not been reliably detected was 
already incorporated in the measurand calculation. 

Table 1. Initial stochastic models of the basic variables, 
extracted from (Küttenbaum et al., 2021). 

Basic variable Distribution type and parameters 
(initial) Type Mean CoV 
Concrete strength 𝑓) Normal 35 MN/m² 8,6 % 1) 
Prestr. steel. str. 𝑓* Normal 1536 MN/m² 2,6 % 2) 
Yield strength 𝑓+ Normal 400 MN/m² 7,5 % 3) 
Height midspan ℎ, Normal 1,40 m 0,7 % 3) 
Height (axis 20) ℎ- Normal 2,25 m 0,4 % 3) 
Width cross-sect. 𝑏 Normal 1,56 m 0,6 % 3) 
Tendon position 𝑑-* Normal 0,247 m 12 % 
Pos. reinforcem. 𝑑( Normal 0,18 m 5,6 % 3) 
Pos. reinforcem. 𝑑# Normal 0,13 m 7,7 % 3) 
Coefficient 𝛼. const. 0,8 
Coefficient 𝑘/ const. 0,4 
Height compr.zone 𝜉 const. 0,29 
Concr. strut angle 𝜃 const. 31,07° 
Angle stirrups 𝛼 const. 90° 
Area prestr. steel 𝐴0* Normal 5,47 ∙ 101# m² 3,0 % 4) 
Area stirrups 𝐴02 Normal 6,93 ∙ 1013 m² 3,0 % 5) 
Spacing stirrups 𝑠2 Normal 0,15 m 6,7 % 3) 
Model uncert. 𝑈.,5 Log.-N. 1,025 7,0 % 6) 
Model uncert. 𝑈.,0 Log.-N. 1,1 10 % 7) 
−	ǁ − (bending) 𝑈6 Log.-N. 1,0 7,0 % 
−	ǁ − (shear) 𝑈6 Log.-N. 1,0 10 % 3) 
Dead loads 𝑀7 Normal 18,933 MNm 10 % 4) 
Prestr. (𝑀)*,89:) 𝑀;< Normal 13,279 MNm 5,0 % 
Traffic loads 𝑀= Gumbel 7,589 MNm 15 % 8) 
Dead loads 𝑉7 Normal 5,339 MN 5,6 % 
Prestressing 𝑉< Normal −1,455 MN 5,0 % 
Traffic loads 𝑉= Gumbel 1,276 MN 15 % 8) 
1) (Spaethe, 2013), (Rüsch et al., 1969), (Mirza et al., 1979)
2) (JCSS, 2001/2002), (Jacinto et al., 2012)
3) (JCSS, 2001/2002) 4) (Braml & Wurzer, 2012)
5) (JCSS, 2001/2002), (Braml & Wurzer, 2012)
6) (Bach, 1992)     7) (Braml et al., 2009)     8) (Braml, 2010)
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Table 2. NDT-based stochastic models, extracted from 
(Küttenbaum et al., 2021). 

Basic variable Distribution type and parameters 
(NDT-based) Type Mean CoV 
Tendon position 𝑑-*>>  Normal 0,223 m 0,6 % 
Spacing stirrups 𝑠2>> Normal 0,148 m 0,1 % 
Prestr. (𝑀)*,89:) 𝑀;< Normal 13,763 MNm 5,0 % 

This reflects an advantage of the GUM-concept: All 
information can be processed. The modelling results 
can be found in table 2. With respect to the relatively 
small uncertainty covered in 𝑠)==, it should be noted, 
that only the relative distances of the reflectors to 
each other in the measurement coordinate systems are 
of interest. The number of observations is large and 
the precise absolute position of the stirrups irrelevant. 

3.5 NDT-supported reliability analyses 
The NDT-supported reliability analyses are based 
on equations 1 and 2 and on the stochastic models 
given in tables 1 and 2, with the NDT-based basic 
variables listed in table 2 substituting the 
corresponding initial models given in table 1. The 
results are plotted in Fig. 6, analogous to the initial 
results in Figure 5. 

The values of the reliability index increase by 
Δ𝛽 = +	0,14	(+	13	%) in ULS shear and slightly 
by Δ𝛽 = +	0,27	(+	4	%)  in ULS bending. The 
values of the sensitivity factors of the NDT-based 
quantities tend to zero, because the uncertainties 
covered lead to the quantities 𝑑#"  and 𝑠)  being 
stochastically insignificant after incorporating the 
information measured onsite. The elasticities of 
the standard deviations are correspondingly small. 

Figure 6. Results of the sensitivity analyses, elasticity analyses and parameter studies incorporating the measured information; 
stated changes refer to the initial results given in Figure 5; extracted from (Küttenbaum et al., 2021), translated 
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The elasticities of the means further indicate that a 
change in stirrups spacing Δ𝜇!)  would continue to 
have a significant effect on the structural reliability in 
ULS shear. In contrast, a shift of the vertical position 
of the tendons in ULS bending has less effects on the 
reliability in this specific case. The value of 𝑒@,A+B is 
comparatively small, since the elasticities are defined 
by a one percent change in a parameter and the mean 
value of 𝑑#"  is small. Nevertheless, the inner lever 
arm 𝑧 has a significant influence on reliability, as can 
be seen i. a. from 𝑒@,C = 1,55. 

The functions of the reliability index against the 
scattering characteristics of the NDT-based basic 
variables plotted in Figure 6 illustrate on the one hand 
the effects of the incorporation of the measured data 
on the reliability. On the other hand, the flat function 
curves in the area around the NDT-based uncertainty 
provide information about a certain robustness of the 
measured data-based stochastic models. 

Overall, the measurement of 𝑠) is precise, simple 
and fast, the quantity sensitive and a bias regarding 
previously available information significant. The 
measurement of 𝑑#"  turns out to be difficult in the 
present case because not all tendons could be located 
reliably. The increase in reliability after including the 
measured tendon positions is small in this specific 
case. In comparison to the initial models, the effects 
of the larger inner lever arm and of the higher value 
of the (destabilizing) bending moment due to the 
statically indeterminate effect of the prestressing 
largely equalize.   

4 CONCLUSION AND OUTLOOK 
If information on a system is the essential basis for 
decisions regarding the reliability of structures, then 
the utility of all eligible sources of relevant, quality-
evaluated information in reassessment should be 
analyzed. This paper emphasizes how measurement 
results generated demand-oriented, onsite and non-
destructively can be used explicitly as basic variables 
in the probabilistic reassessment of the bending and 
shear load-bearing capacity of a prestressed concrete 
bridge and what effects the implementation of the 
non-destructively measured information can have. 
This can be seen as a first step towards considering 
NDT as an additional component in and an expansion 
of the number of reliable sources of information for 
reliability assessments of existing bridges. Regarding 
the case-study, the radar measurement of the stirrup 
spacing particularly proved to be simple and useful. 
The effect of incorporating the measured position of 

the tendons is individually small and the solution
of the testing task complex, among others because 
a large number of tendons should be detected 
whose distances correspond approximately to the 
tendon duct diameters. 

The state of knowledge about the investigated 
bridge was sufficient prior to the measurements. 
Plans, reports of structural analyses, etc. were 
available. The measurement-supported reliability 
assessment as shown in this paper is particularly 
useful if information required for the reassessment 
is missing or doubts about relevant information 
have arisen. Not only the uncertainty but also the 
bias in the stochastic models can be reduced. In 
addition, the application of the harmonized rules 
of the GUM-framework, whose main objective is 
to ensure the comparability of measurement 
results, can also increase the comparability and, as 
the circumstances require, the robustness of 
individual reliability analyses. In any case, the 
level of approximation of the computation model 
used for the reassessment can be increased. 

The results presented are part of an ongoing 
research project. An intermediate objective is to 
simplify the concept outlined in this contribution 
to a semi-probabilistic approach. Characteristic 
values and individual, structure-specific partial 
safety factors are to be derived on the basis of data 
individually measured onsite non-destructively. A 
further goal is to quantify the utility and the value 
of non-destructively measured information in the 
reassessment process. One metrological goal is to 
methodically combine approaches for deriving the 
detection capability of NDT-systems, such as 
POD-analyses, with measurement uncertainty 
considerations. Based on this, the measurement 
uncertainty of combined measurands such as the 
center of a tendon bundle could be plotted against 
the number of objectively and reliably detected 
components of such measurands. Additionally, the 
comparable specification of strengths, weaknesses 
and limitations of non-destructive measurement 
procedures as well as the designation of 
uncertainties that can reasonably be expected 
under certain boundary conditions allows a 
purposeful planning and commissioning of tests to 
be performed at a structure. For this purpose, 
systematic investigations of the input quantities 
under typical boundary conditions are conducted 
and the effects of changes in the conditions on the 
measurement results are analyzed. 
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