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A B S T R A C T   

To accelerate the growth of Industry 4.0 technologies, the digitalization of mechanical testing laboratories as one 
of the main data-driven units of materials processing industries is introduced in this paper. The digital lab 
infrastructure consists of highly detailed and standard-compliant materials testing knowledge graphs for a wide 
range of mechanical testing processes, as well as some tools that enable the efficient ontology development and 
conversion of heterogeneous materials’ mechanical testing data to the machine-readable data of uniform and 
standardized structures. As a basis for designing such a digital lab, the mechanical testing ontology (MTO) was 
developed based on the ISO 23718 and ISO/IEC 21838-2 standards for the semantic representation of the me
chanical testing experiments, quantities, artifacts, and report data. The trial digitalization of materials me
chanical testing lab was successfully performed by utilizing the developed tools and knowledge graph of 
processes for converting the various experimental test data of heterogeneous structures, languages, and formats 
to standardized Resource Description Framework (RDF) data formats. The concepts of data storage and data 
sharing in data spaces were also introduced and SPARQL queries were utilized to evaluate how the introduced 
approach can result in the data retrieval and response to the competency questions. The proposed digital ma
terials mechanical testing lab approach allows the industries to access lots of trustworthy and traceable me
chanical testing data of other academic and industrial organizations, and subsequently organize various data- 
driven research for their faster and cheaper product development leading to a higher performance of products 
in engineering and ecological aspects.   

1. Introduction 

Digitalization of industrial activities and expansion of data-driven 
technologies are the main essentials of the fourth industrial revolution 
(Industry 4.0) with the aim of sustainable economic, environmental, and 
social development (Ghobakhloo, 2020). Within manufacturing-related 
industries especially, digitalizing the production processes is expected to 
facilitate increased productivity and production efficiency, reduced 
manufacturing costs, energy and resource sustainability, and carbon/
harmful gas emission reduction (Ghobakhloo, 2020; Xu et al., 2018). 
The rapidly and continuously growing computing power in the industry 
also offers sustainable product development and the designing of new 
functional products. In the traditional manufacturing concept, product 
design and development are achieved by producing and testing 

numerous test pieces. For example, the development of mechanically 
stressed components for applications in the automotive or aerospace 
industries requires deep knowledge about or an extensive investigation 
of the materials’ mechanical properties. Materials mechanical testing 
laboratories are the places for evaluating the materials’ mechanical 
properties (like tensile, compression, stress relaxation, creep, and fa
tigue) and providing manufacturers with the required information 
related to hardness, strength, ductility, fatigue limit, and other impor
tant mechanical properties of the produced materials. 

Plenty of mechanical testing data are generated daily in thousands of 
materials test labs around the world, and most of these data cannot be 
utilized by external parties for technical purposes, data-driven research, 
or product development. For example, Fig. 1 demonstrates that the 
valuable tensile test data that is frequently generated in the materials 
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mechanical testing labs may not often find research and computing 
possibilities for a variety of reasons. The first reason can be raised in the 
case that such data are not findable because the output results are in the 
form of printed papers or files stored in unstructured and non-publicly 
available repositories, or maybe the files cannot be found by search 
engines due to the lack of appropriate identification and documentation. 
Even access to the findable data may be regulated for authorized users or 
user groups with the necessary permissions or credentials while 
considering specific legal, ethical, or privacy constraints. Another 
obstacle is that such data may be findable and accessible, but their un
readable or image- or media-like data formats, distinct data languages, 
or a lack of the appropriate data structure and test metadata make them 
difficult to interoperate. In the case of those interoperable data sets, 
there are also sometimes concerns about their reusability. Some of these 
reusability concerns include inadequate documentation of the process
ing and testing parameters, inaccurate or non-standardized testing 
procedures, limited consent or usage agreements, and a lack of data 
quality control or long-term preservation strategies (Bayerlein et al., 
2022; Zhao and Qian, 2017). As a result, a high amount of data gener
ated daily in worldwide materials testing labs does not meet the criteria 
of being Findable, Accessible, Interoperable, and Reusable (FAIR) 
(Scheffler et al., 2022), and therefore cannot be (re-)used for data-driven 
product development purposes. Related, it has been estimated that the 
non-existence of FAIR data invokes costs to the European economy of at 
least €10.2 billion per year (European Commission, 2018). 

The main motivation of this research is to develop a lab digitalization 
approach for the generation and storage of FAIR data in mechanical 
testing labs (Fig. 1). The desired outputs of such digital labs would be 
testing results that are represented digitally and expressively using the 
standardized structures of common vocabulary and include the 
measured materials data along with the process metadata and materials 
testing standards they are based on. Hence, testing reports are machine- 
processable semantic descriptions of data and their generation pro
cesses, while efficient data management systems are utilized to store 
them as structured datasets in repositories and enrich and set up 
comprehensive, documented, and connected data spaces. As a result of 
such an approach, the advanced semantic search will enable materials 
engineers to easily and fully access all FAIR testing data made available 
in open-access data repositories. As shown in Fig. 1, the generation and 
storage of such FAIR data in the digital materials mechanical testing lab 
can accelerate data-driven materials research such as machine learning 
and deep learning approaches (Himanen et al., 2019) for the develop
ment and discovery of new materials. 

A prerequisite for implementing the FAIR principles and building a 
comprehensive database infrastructure is formulating the formal stan
dardized knowledge representation through the ontologies (Bayerlein 
et al., 2022). Studer et al. (1998). defined ontology as a formal, explicit 

specification of a shared conceptualization, where “formal” means 
machine-readable abstraction of a domain, “explicit” refers to 
well-defined constraints, relationships, and dependencies between the 
concepts, “shared” constitutes the building and agreement by a group of 
different people, and “conceptualization” is an abstract model 
describing a particular field of knowledge (Fensel, 2001). In other 
words, ontologies form a sustainable representation of expert knowledge 
by using a formal, standardized language to express a vocabulary as an 
interconnected collection of concepts, attributes, relations, constraints, 
individuals, and axioms (Ekaputra et al., 2017). Ontologies semantically 
structure and annotate materials data, represent knowledge sustainably, 
facilitate storing the data and information in semantically organized 
ways, and support data handling (Bayerlein et al., 2022). As a result of 
these functions, ontologies enable knowledge organization through hi
erarchical structure and relationships between concepts, global 
conceptualization for materials information integration, linked mate
rials data publishing, semantic query supports, interoperability between 
related domains, and automatic inference support for discovering new 
materials knowledge (Studer et al., 1998; Zhang et al., 2015). 

2. Related works 

Although relatively mature domain ontologies have been established 
recently in biology, medicine, environment, and art domains, semantic 
web technology’s growth in materials science and engineering was 
accompanied by the development of relatively few ontologies (Zhang 
et al., 2015). MASON manufacturing’s semantics ontology (Lemaignan 
et al., 2006), MatOWL ontology transformed from MatML schema 
(Zhang et al., 2009), materials ontology (Ashino, 2010), ONTORULE 
ontology for the steel domain (Sainte Marie et al., 2011), SLACKS 
ontology for laminated composites (Premkumar et al., 2014), STSM steel 
semantic model (Zhang et al., 2014), PREMaP ontology (Bhat et al., 
2013), and MMOY metallic materials ontology (Zhang et al., 2016) are 
some of the first ontologies that were established in the materials science 
domain. The mentioned ontologies often suffer from limited usability for 
various reasons. One significant limitation of these ontologies is their 
narrow and specific focus fields. By targeting specific applications or 
domains within materials science, these ontologies may not have been 
designed with broad applicability in mind. This restrictiveness arises 
from the fact that the ontology’s concepts, relationships, and axioms are 
tailored to a specific domain and may not generalize well to other do
mains or real-world applications. Another factor contributing to the 
limited usability of the mentioned ontologies is the inappropriate level 
of abstraction. Those abstract ontologies mostly missed the necessary 
level of detail required for practical application, while some of the 
granular and specific ontologies failed to capture the broader context 
and relationships between entities. Furthermore, the lack of identifiable 

Fig. 1. Lab digitalization: a motivation to benefit the generation and storage of FAIR data in mechanical testing labs.  
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and concrete definitions within some of these ontologies prevented their 
accurate interpretation and made it challenging to establish a common 
understanding and consistent usage of concepts and relationships within 
the ontology. Insufficient knowledge of instances in some of the ontol
ogies mentioned also contributed to the serious problems in validating, 
testing, and applying such ontologies in practical settings. Additionally, 
some of the ontologies mentioned lacked comprehensive documenta
tion, detailed guidelines, or standardized formats, making them less 
accessible and difficult to integrate into existing systems or applications. 
Finally, practical ontologies should be able to seamlessly integrate with 
other ontologies, leveraging and reusing their content to create a global 
framework of reference ontologies. However, the mentioned ontologies 
may not adequately incorporate such interoperability, preventing the 
advancement of data interoperability across different contexts and or
ganizations in their respective fields (Zhang et al., 2015; Ali et al., 2019; 
Mutz et al., 2022; Fraga et al., 2020). 

Extending the interoperability between the materials science domain 
ontologies can provide a possibility for linking the data from different 
domain ontologies, enabling more semantic context for domain experts, 
and exploring higher knowledge about the process-structure-property 
relationships of materials. One idea for building highly interoperable 
ontologies is to develop them as extensions of standardized upper-level 
ontologies. Generally speaking, different kinds of ontologies can be 
divided into three levels based on the degree of abstraction and formal 
expressiveness (Bayerlein et al., 2022):  

i) Top-Level Ontologies (TLOs) describe common general terms 
across many domains at the highest possible level of abstraction. 
TLOs establish semantic standards and incorporate universal and 
fundamental concepts to ensure the connection and interopera
bility of a wide range of conceivable domain ontologies. Basic 
Formal Ontology (BFO) (Arp et al., 2015; Otte et al., 2022), 
Elementary Multiperspective Material Ontology (EMMO) (Euro
pean Materials Modelling Counsil, 2020), and Descriptive 
Ontology for Linguistic and Cognitive Engineering (DOLCE) 
(Borgo et al., 2022) are some of the most applicable TLOs in the 
materials science domain.  

ii) Mid-Level Ontologies (MLOs) add finer granular entities to the 
TLOs and make them more modular to enable interconnecting of 
the complex and expressive domain-level ontologies. For 
example, Common Core Ontology (CCO) (Rudnicki, 2019) is an 
MLO that has been established based on the BFO top-level 
ontology.  

iii) Domain-Level Ontologies (DLOs) contain highly expressive and 
explicit expert knowledge and represent concepts, definitions, 
facts, statements, axioms, rules, and relations that belong to 
specific domains. Most of the DLOs (not basically all of them) are 
developed by extending the mentioned concepts of top-level on
tologies to facilitate the extension of domain knowledge in an 
organized and sustainable way. 

A few materials science domain ontologies were introduced in recent 
years that offer the construction of highly interoperable, formal, and 
specific knowledge based on their connection and integration with other 
existing top-level ontologies. For example, the Li-ion battery ontology 
(Mutz et al., 2022) and the Materials And Molecules Basic Ontology 
(MAMBO) (Piane et al., 2021) were structured based on the EMMO. The 
Materials Design Ontology (MDO) that represents the materials’ struc
tures, properties, calculations, and relationships has also used some 
entities of PROV-O (PROV Ontology), QUDT (Quantities, Units, Di
mensions, and data Types ontologies), and Dublin Core Metadata 
Initiative (DCMI) (Lambrix et al., 2023; Li, 2022). The materials char
acterization methodologies ontology (CHAMEO) has also been aligned 
with some EMMO-based domain ontologies for the classification of 
materials, models, manufacturing processes, and software products 
related to materials modeling (Del Nostro et al., 2022). The NanoMine 

ontology for polymer nanocomposites (McCusker et al., 2020) and the 
Additive Manufacturing Processing Ontology (AMPO) (Li et al., 2017) 
were developed by using top-level ontologies like PROV-O, QUDT, and 
semantic Science Integrated Ontology (SIO). Sanfilippo et al. (2019). 
utilized DOLCE as the TLO for ontology-based knowledge representation 
of additive manufacturing. Cheung et al. (2008, 2009). also developed 
the MatOnto ontology based on the DOLCE top-level ontology, for 
structured knowledge representation of general materials science and 
particular fuel cell domains. However, they revised the next MatOnto 
versions based on the BFO top-level ontology to improve its logical 
consistency and commonality (Zhang et al., 2015). Recently, BFO has 
been employed for building interoperable domain ontologies within 
disparate engineering fields (Hagedorn et al., 2019). Furini et al. (2016). 
developed a manufacturing ontology for functionally graded materials 
by using the BFO and the Ontology for Biomedical Investigation (OBI) as 
the TLO and MLO, respectively. Hagedorn et al. (2018). also established 
the Innovative Capabilities of Additive Manufacturing (ICAM) ontology 
according to the BFO and some BFO-compliant MLOs like CCO and the 
Information Artifact Ontology (IAO). In the same way, and reusing the 
BFO and CCO, the product life cycle ontology was represented by Otte 
et al. (2019). Furthermore, the BFO was used as the TLO for developing 
the NMR relaxometry ontology (Moreno Torres et al., 2021), and 
ontology-based input, thermal, microstructure, and mechanical prop
erties metamodels of metal additive manufacturing (Roh et al., 2021). 

To enhance the reuse and adoption of modern formal ontologies in 
industrial applications, the Industrial Ontologies Foundry (IOF) core 
ontology was launched recently (The IOF Core Ontology et al., 2023). 
IOF is an initiative that aims to promote the reuse and interoperability of 
formal ontologies in industrial domains and provide an open-source 
platform for developing, validating, aligning, sharing, and curating in
dustrial ontologies (Ali et al., 2019; Kulvatunyou et al., 2018). The IOF 
core is a mid-level ontology, which was extended based on the BFO (The 
IOF Core Ontology et al., 2023). In this regard, a few of the very recently 
developed ontologies organized based on the BFO upper-level ontologies 
provided high compatibility with the IOF core ontology. The Additive 
Manufacturing Ontology (AMO) (Ali et al., 2019), the Functionally 
Graded Materials (FGM) ontology (Mohd Ali et al., 2021), 4D printing 
knowledge in design (Dimassi et al., 2021), the Zero Defect 
Manufacturing ontology (ZDM) (Psarommatis et al., 2023), and the 
Materials Science and Engineering Ontology (MSEO) (Materials Open 
Lab, 2021) are to date the only introduced ontologies in the materials 
science domain that provide industrial interoperability based on the IOF 
core ontology. 

Concerning mechanical testing, as one of the important domains of 
materials manufacturing and development, a small number of ontol
ogies were presented. The Creep ontology (Ashino and Fujita, 2006) was 
the first trial example for describing the creep properties and creep data 
analysis process. In 2010, the European Committee for Standardization 
provided a guide for developing the materials tensile testing ontology 
based on existing ISO standards (Austin et al., 2010). Although a 
well-defined ontology was provided, this approach remained unused 
due to its low interoperability with other existing ontologies and the 
impossibility of linking the process-structure-property knowledge of 
different repositories. To address this limitation, Morgado et al. (2020). 
suggested building a tensile testing ontology based on the EMMO. 
Currently, the Materials Open Lab (Mat-O-Lab) initiative is also working 
on developing the tensile and Brinell hardness ontologies based on the 
BFO, CCO, and MSEO upper-level ontologies (Chen et al., 2022; Mate
rials Open Lab, 2022). 

Based on the literature survey done, the ontology development 
methodologies in the domain of materials and processes are transition
ing to the introduction of higher interoperable and industrial applicable 
ontologies. However, few ontologies, especially in the domain of ma
terials testing processes, have been presented until now that provide 
these desirable capabilities. Moreover, those few existing ontologies on 
the materials testing processes are not applicable for building the digital 
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lab concept due to limitations like non-compliance with testing stan
dards, low level of details and relations for the description of the test 
process, lack of instances and process knowledge bases, low interoper
ability with BFO and other industrial applicable ontologies, and in
compatibility with real test reports of mechanical testing labs. On the 
other side, the lack of both suitable data spaces for data exchange and 
appropriate tools and infrastructures for linking the testing data and 
ontologies acted as barriers to the efficient usage of ontology-based 
approaches for the digitalization of industrial processes until now. 

To address the development and industrial application of ontologies 
in the materials and processes domains, the Platform MaterialDigital1 

(PMD) was initiated in 2019 by the German Federal Ministry of Edu
cation and Research (BMBF). Within the PMD projects, big communities 
of materials and data scientists are working in a collaborative environ
ment to define highly interoperable and industry-compatible ontologies 
and establish a virtual materials data space, databases, and toolchains 
for sustainably digital representation of the materials and their pro
duction. As one of the projects funded in the framework of Materi
alDigital, KupferDigital2 consists of different partners from science and 
industry to develop the data ecosystem for ontology-based digitalization 
of the entire life cycle of copper materials, with a focus on industrial 
applications. 

Concerning materials testing as one of the main chains of such a life 
cycle, this research aims to introduce innovative infrastructures for 
establishing the digital materials mechanical testing lab. To reach this 
aim, a series of materials testing standards and well-defined upper-level 
ontologies are utilized for developing a mechanical testing ontology 
(MTO), and highly detailed and standard-compliant materials testing 
knowledge graphs. Here, for a better presentation of the ontology and 
knowledge graphs in the process of data retrieval and connecting it with 
the identified problem, some typical competency questions were plan
ned as below:  

• What is the ultimate tensile strength (or Brinell/Vickers hardness, 
fatigue strength, creep life, etc.) of the material "x"?  

• Which processing parameter (or material, datasets, etc.) fulfills some 
specific mechanical properties (e.g., Vickers hardness more than 
"y")?  

• Which load (or temperature, testing machine, standard, etc.) was 
used for experiment "z"? 

To evaluate how the developed ontology and knowledge graphs can 
address such competency questions, this research also introduces some 
tools for mapping different types and formats of mechanical testing data 
and their conversion to RDF ones. 

The findings of this research are highly novel and interesting from 
different aspects. Here, the innovative idea of the digital mechanical 
testing lab was organized based on highly detailed and standard- 
compliant materials testing process graphs and ontologies. The process 
graphs and ontologies were developed with the collaboration of aca
demic and industrial partners and based on testing standards and sci
entific best practices. A highly interoperable and industry-applicable 
ontology was established based on the BFO and IOF core ontology, 
which is compatible with all types of test reports and can link data from 
other domains and facilitate the prediction of process-structure-property 
dependencies of materials. In addition, we introduce a well-designed 
methodology and several open-access user-friendly toolchains that 
simplify the development of process graphs and ontologies by domain 
experts. Furthermore, the introduced data ecosystems concepts for data 
transformation, mapping, and storage were utilized for the first time to 
digitalize the different formats/types of lab-generated testing reports. 

The proposed infrastructure of this study is generic enough to cover 

all types of materials testing labs at academic and industrial scales and 
enable their digital representation. The developed methodology and 
toolchains can also be extended into other chains of the material life 
cycles to accelerate digitalization and contribute to further developing 
the Industry 4.0 approach. The comprehensive machine-readable FAIR 
data that are generated in the digital lab, not only facilitate the struc
tured storage, retrieval, and exchange of the test data, but also enable 
complex semantic searches, as well as reusability, integration, and 
analysis of data from different repositories. Eventually, the generated 
FAIR data of such digital labs allows industrial partners to better un
derstand the properties and behavior of materials via data-driven ma
terials research, optimize and develop their products, make predictions 
in production, reduce the materials preparation and testing costs, and 
develop new advanced materials. The biggest obstacles to incorporating 
these advantages into most industrial parties’ current activities are a 
lack of user-friendly infrastructure for data management and the 
reluctance of most industries to share their data. On the other hand, 
several industries are still lacking an overall comprehension of the 
principles of digitization and data management, as well as the current 
methods and technologies. The presented approach and examples of this 
research not only provide an explanation of the principle and advan
tages of data digitalization to both industry and academic communities 
but also expose them to a simplified approach and user-friendly tool
chains to profit from making their data FAIR. 

3. Digital lab architecture (methodology and toolchains) 

The materials mechanical testing lab is an important unit of mate
rials production lines for quality assurance and more specifically eval
uating the mechanical properties of produced materials based on 
standardized mechanical testing methods. Within its traditional format, 
different kinds of test samples are prepared and tested in mechanical 
testing labs, and then the test data of heterogeneous structures are 
generated and stored in private, local, or maybe exclusive resources and 
delivered to materials engineers for further evaluation of the products. 
To address the generation and storage of FAIR data in such units, the 
schematic architecture of a digital materials mechanical testing lab is 
presented in Fig. 2. In the proposed digital lab concept, all the in
frastructures needed for process digitalization are prepared in a digita
lization workflow as the basis of the lab (first level of Fig. 2), so the lab 
technicians will follow the regular standardized testing processes and 
will perform just one more step to digitalize their testing data by using 
user-friendly and open access software and store them in the special data 
repositories (second level of Fig. 2). The generated FAIR data in such 
digital labs then can be used by the materials engineers (third level of 
Fig. 2) for purposes like data exchange, data discovery from other 
sources, machine learning, data-driven materials research, and product 
development. 

The main idea of designing the digital lab infrastructure (first level of 
Fig. 2) is to provide an environment for mapping the materials testing 
data to the modeled test process graphs (more accurate: knowledge 
graph of processes) and storing the resulting digitalized data in suitable 
data spaces. Here, the process graphs are the graphical and semantic 
representation of the experimental procedure which are developed 
based on materials testing standards and enriched by valuable metadata 
about the used materials, equipment, specifications, and objects relevant 
to producing the results. The process graphs for different materials’ 
mechanical testing procedures were prepared with the cooperation of a 
group of materials and data scientists, and are available in KupferDigital 
GitLab (see data availability). Regarding, the minimum level of detail 
required for designing such process graphs, essential concepts, and their 
definitions, as well as the relationship between different testing con
cepts, were extracted from the materials testing standards (glossary 

1 https://www.materialdigital.de/.  
2 https://www.materialdigital.de/project/1. 
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collection). The process graphs were subsequently designed in the open- 
access graphical editing tool of diagrams.net (Draw.io).3 In this case, the 
shapes required for presenting the necessary semantic representations 
can be provided by the standard libraries of Chowlk4 or Ontopanel,5 and 
then the resulting process graphs of XML formats are converted into the 
Ontology Web Language (OWL) formats like Resource Description 
Framework (RDF) or turtle syntax (TTL), using the Chowlk/Ontopanel 
converter. Furthermore, OntoFlow6 automatically validated the process 
graphs and ontologies against SHACL shapes7 and documented them as 
HTML with pyLODE.8 Finally, MTO was prepared in the software 
Protégé,9 by collecting all the concepts used in the process graphs of 
various mechanical tests, explicit definition of entities, merging the 
planned upper-level ontologies, and construction of a hierarchical order 
of new concepts and classes. The design and preparation of the process 

graphs and MTO are discussed in detail in Section 4. 
To evaluate the generation of FAIR data in a digital lab, extensive 

mechanical tests such as tensile, Brinell, and Vickers hardness tests were 
performed on different cast copper samples (Beygi Nasrabadi et al., 
2023) and the resulting testing data of various structures and formats 
(like CSV and XLSX) were mapped in the process graphs. It should be 
noted that trial digitalization of materials testing data was performed in 
an accredited materials testing laboratory of the German Federal Insti
tute for Materials Research and Testing (BAM), which assured the gen
eration of test results according to the testing standards, and attached 
with maximum possible metadata about the sample history, equipment, 
calibration, etc. 

While the current research mostly focuses on the standard-based 
ontology development and evaluation of the approach by addressing 
the competency questions, the data mapping tools are required to map 
the testing data of different types and formats in the developed graphs 
and generation of RDF data. Section 5 evaluates two methods of Mat-O- 
Lab and Ontopanel for mapping the test data in the process graphs. By 
the Mat-O-Lab approach, CSVToCSVW10 tool was used to convert the 

Fig. 2. Digital materials mechanical testing lab: infrastructures, FAIR data creation, and data usage. The main proposed approach of this research, digital lab 
infrastructure for FAIR data generation and application, is basically established based on the following steps and toolchains: i) collaboratively designing and vali
dating the knowledge graphs of the mechanical testing processes according to the test standards via GitLab-based tools like Ontopanel and OntoFlow; ii) Developing 
the standard-compliant mechanical testing ontology in Protégé; iii) Metadata generation, data mapping, and RDF conversion with Mat-O-Lab and Ontopanel tools; 
and iv) Data management and SPARQL query using Sparklis. (Reproduced with permission: Draw.io and Chowlk logo under Apache License 2.0; Protégé logo 
licensed by The Board of Trustees of the Leland Stanford Junior University; GitLab logo under the terms of the MIT license, CKAN logo under GNU Affero General 
Public License, AGPL). 

3 https://app.diagrams.net.  
4 https://chowlk.linkeddata.es.  
5 https://github.com/yuechenbam/yuechenbam.github.io.  
6 https://gitlab.com/infai/ontoflow.  
7 https://github.com/MaastrichtU-IDS/shacl-shapes.  
8 https://github.com/RDFLib/pyLODE.  
9 https://protege.stanford.edu/. 

10 http://csvtocsvw.kupferdigital.org/. 
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raw test data to machine-readable formats like JSON-LD. Following, the 
MapToMethod11 tool allows the user to link the different data of the test 
report to the related items of the process graphs, and the YARRRML files 
resulting from mapping are converted to the RDF dataset by the 
RDFConverter12 tool. In the second method, Ontopanel (Chen et al., 
2022) was used for graphically mapping the secondary test datasets in 
the process graphs and converting the resulting data to RDF. 

The RDF models of the test data resulting from the digital mechanical 
testing lab were placed into the CKAN-data management repository (see 
data availability), where it can be easily processed by a knowledge base 
triple store. Section 6 represents how materials engineers and data sci
entists can now easily use, exchange, reproduce, and analyze such 
generated FAIR data. Furthermore, this section evaluates how the 
introduced approach can support the data retrieval, connecting it with 
the stated problem, and response to competency questions. In this case, 
Sparklis13 (Ferré, 2017) has been utilized for the SPARQL (a semantic 
query language, SQL) query of data stored in the RDF format. 

4. Mechanical testing knowledge graphs and ontology 

The first step in developing the mechanical testing knowledge graphs 
is to collect all the important terms related to the mechanical testing 
processes. There are various resources for collecting ontology termi
nologies, such as test standards, test reports, manuals, scientific litera
ture, and interviews with experts. Meanwhile, the materials testing 
standards are the most important resource for preparing the ontology 
vocabulary, since they provide the specific names and definitions for the 
different concepts of the processes, and orient the structuring and 
categorization of test process entities based on the information that has 
already been agreed by an expert standardization committee (Bayerlein 
et al., 2022). In addition, developing the ontologies based on the ma
terials testing standards ensures their acceptance and applicability in the 
industry. A variety of materials testing standards have been used in the 
construction of mechanical testing process graphs and ontology, like ISO 
6892–1 (tensile testing) (ISO, 2019), ISO 6506-1 (Brinell hardness test) 
(ISO, 2014), ISO 6507–1 (Vickers hardness test) (ISO, 2018), DIN EN 
10319-1 (relaxation test) (DIN, 2003), and ISO 12106 (fatigue test) (ISO, 
2017). Furthermore, ISO 23718 (mechanical testing vocabulary) (ISO, 
2007) was used as the main resource for collecting the mechanical 
testing vocabulary. Accordingly, the minimum relevant terminology of 
the mechanical testing processes was gathered and well defined from the 
materials testing standards and other mentioned resources, and the 
resulting collection was stored in a KupferDigital GitLab repository (see 
data availability). For example, Fig. S1 shows a part of such terminology 
collection for the tensile test process. 

In the next step, the knowledge graphs of different mechanical 
testing methods were designed based on the previously prepared testing 
terminologies and the semantic relationships between them. Designing 
the process graphs was graphically performed in the Draw.io tool with 
the help of the Ontopanel plugin (Chen et al., 2022). In this regard, the 
Ontopanel plugin facilitates the process graph development by using the 
shapes provided in its library, reusing the entities of the upper-level 
ontologies in EntityManager, and converting the graphical schema 
into OWL codes in its convertor (Fig. S2). 

Fig. 3 shows an example of the process graph that has been designed 
for the tensile testing method. As seen in its yellow namespace box 
(Fig. 3A), the upper-level ontologies BFO, CCO, IOF, QUDT, and MSEO 
were utilized for designing the tensile test process graph. We selected 
BFO as the top-level ontology not only because it is very well structured 
for learning and usage, but also for its wide applications and capabilities 
of merging with a variety of ontologies, and therefore its potential to 

make the developed ontologies highly interoperable. It is worth noting 
that according to the recent ISO/IEC 21838-2 standard, BFO is con
formant to the requirements specified for top-level ontologies (ISO, 
2022). In the mid-levels also, CCO and IOF ontologies enable high 
compatibility with BFO and provide lots of manufacturing and indus
trialization concepts for designing process graphs. The QUDT ontology 
has also been used particularly for its valuable units of measurement. 
Eventually, the application of MSEO enables the process graphs to access 
a wide entity in the field of materials and their mechanical parameters. 
Furthermore, the namespaces of MTO and KD (from KupferDigital) were 
utilized for indexing the newly created class/properties and individuals, 
respectively. As can be seen in Fig. 3, the description of the complex 
tensile test process can be mostly performed by reusing the entities of 
mentioned higher-level ontologies, and only specific domain entities 
need to be added. This use case shows why reusing as many as possible 
higher-level ontologies have been recommended for developing 
domain-level ontologies (Arp et al., 2015). Reusing these higher-level 
ontologies not only facilitates the development of process graphs, but 
also establishes the usage of well-defined entities and standardized 
ontology design with a universal hierarchy, and eventually higher 
interoperability of designed process graphs with other ontologies. 

For the sake of enabling the knowledge graphs to answer the planned 
competency questions, the ontology and knowledge graphs should be 
designed in such a way that provide a general description of the test 
method according to the level of detail given in the materials testing 
standards. In other words, they should describe the concept of a testing 
process in terms of its relationships to other materials concepts like 
materials characteristics, process history, test equipment, and data 
analyzing methods. On the other side, the process graphs need to be 
compatible with the different types of test data, be able to fully map the 
reported metadata of the test reports, and further use universal terms to 
enable the users to easily manage the data mapping process. To cover all 
the requirements raised by the competency questions, materials testing 
standards, and useful metadata of test reports, the tensile test process 
graph has been designed in several boxes:  

• The provenance box (Fig. 3B) contains the basic semantics of the test 
standard, test date, and test data file.  

• The test pieces box (Fig. 3C) defines the specimen metadata like its 
name, composition, manufacturing information, processing history, 
shape, and dimensions.  

• The equipment box (Fig. 3D) with entities around the name and type 
of the testing equipment.  

• The test process box (Fig. 3E) can be divided into two parts of “the act 
of measuring” and “the act of analyzing”. The first part provided the 
measurement-related concepts of the testing process, such as test 
temperature, gauge length, stress/strain rate, test speed, and 
measured time-force-displacement dataset. In the second part, the 
parameters like stress, strain, stress-strain curve, yield point, elastic 
modulus, tensile strength, elongation, reduction of area, and test 
uncertainty are calculated using the provided semantics and by using 
the analysis methods given in the algorithm box. 

The expression of ontological statements in Draw.io is performed 
using the different shapes that are assigned to classes, individuals, 
properties, axioms, and restraints. These shapes and their embedded 
texts are subsequently converted to OWL or TTL codes using the Onto
panel converter. For example, the upper first row of the provenance box 
(extracted in Fig. S3a) was converted to TTL codes of the machine- 
processable subject–predicate–object triples format in Fig. 3F. The 
OWL codes of the same context were also represented in Fig. S3b. Here, 
Regulation and NonNameIdentifier are respectively classes from MSEO 
and CCO, while TensileTest is a new class that will be added to MTO. In 
addition, designated_by and in_accordance_with are object properties from 
CCO and MSEO, respectively. Moreover, TensileTestExperiment, Test
Standard, and TestStandardIdentifier are individuals from mto:TensileTest, 

11 http://maptomethod.kupferdigital.org/.  
12 http://rdfconverter.kupferdigital.org/.  
13 http://www.irisa.fr/LIS/ferre/sparklis/. 
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Fig. 3. Knowledge graph of the tensile testing method and some of its magnified parts: A) namespaces and metadata, B) provenance, C) test piece, D) equipment, E) 
test process, F) TTL codes representing the first row of the knowledge graph. The full version of the developed knowledge graph can be found in the KupferDigital 
GitLab repository (see data availability). 
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mseo:Regulation, and cco:NonNameIdentifier classes. In this case, those 
individuals in red boxes are planned for mapping the testing data. For 
example, we will map the TestStandardIdentifier individual to the met
adata like “DIN EN ISO 6892–1″ from the test data report. For this 
purpose, we will show later that all the planned individuals for mapping 
the metadata should be instances of one of the cco:Informa
tionContentEntity classes. 

In Fig. 3, the colored arrows also model the complex relationships 
between the mentioned concepts of the process graph boxes. For 
example, calculating the ultimate tensile strength is part of the mseo: 
ActOfAnalysing whose process graph and TTL codes are represented in 
Fig. S4. Here, the maximum force, test piece cross-section, and stress are 
the input concepts for calculating the ultimate tensile strength, and it 
uses a cco:Algorithm for the calculation method that is described in the 
test standard. The mseo:UltimateTensileStrength result of this calculation 
is a value that can be mapped in the kd:Measur
ementOfUltimateTensileStrength. Later and during the data mapping 
process, the users just see the final item of kd:Measur
ementOfUltimateTensileStrength, and they can easily map the tensile 
strength data of the test report in it. 

It should be noted that although more concepts can be added to 
different boxes of the process graph, the presented graphs modeled the 
level of detail that fulfills the requirement of the competency questions 
and test standards. In other words, the creation and review of process 
graphs by the collaboration of BAM (as a participant of the standards 
committee and host of accredited materials testing laboratory) and well- 
known industrial/academic partners leads to the development of 
workflows that meet both the needs of test standards and data structures 

of industrial labs. 
Moreover, the process graph was validated against SHACL shapes 

employing the OntoFlow tool (Fig. S5). Finally, Ontopanel is utilized for 
converting the whole graphical process graph to OWL and TTL files. 
Similarly, some other process graphs were developed for different me
chanical testing methods like Brinell and Vickers hardness, and the 
corresponding modeling files were stored in the KupferDigital GitLab 
repository (see data availability). 

MTO was built by collecting the entities of developed mechanical 
testing process graphs and based on ISO 23718 standard. Fig. 4 repre
sents part of the MTO new classes hierarchy. According to ISO/IEC 
21838-2 standard, BFO was used as the top-level ontology for the 
development of MTO. As seen in Fig. 4, BFO is constructed by an upper 
class entitled bfo:Entity, which has two subclasses of bfo:Continuant and 
bfo:Occurrent. A bfo:Continuant is an entity that persists, endures, or 
continues to exist through time while maintaining its identity, while the 
bfo:Occurrent is an entity that unfolds itself in time. The bfo:Continuant 
has three subclasses: bfo:IndependentContinuant with two main sub
classes of bfo: ImmaterialEntity (like bfo:SpatialRegion) and bfo:Materi
alEntity (especially bfo:Object and bfo:ObjectAggregative), bfo: 
GenerallyDependentContinuant, and bfo:SpecificallyDependentContinuant 
that provides important subclasses of bfo:Quality (bfo:RelationalQuality) 
and bfo:RealizableEntity (like bfo:Disposition and bfo:Function) for devel
oping the ontology. On the other side, bfo:Occurrent subclasses of bfo: 
Processes and bfo:TemporalRegion highly contribute to the construction of 
testing process concepts of MTO. 

As a mid-level ontology, CCO added a set of conservative extensions 
to the different parts of BFO. Particularly, four parts of CCO were widely 

Fig. 4. Part of the MTO new classes hierarchy.  
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used for the development of MTO: artifact ontology with concepts like 
cco:PortionOfMaterial, information entity ontology that represents cco: 
InformationContentEntity, a quality ontology for representing qualitative 
concepts (such as size, shape, temperature, amount, strength, hardness), 
and event ontology which deals about the acts in processes (like cco: 
ActOfMeasuring, or cco:ActOfManufacturing). As already mentioned, cco: 
InformationContentEntity is one of the important entities of the MTO 
since it represents the generic types of information like reports, sen
tences, data values, algorithms, and specifications that can map a wide 
variety of metadata in the process graphs. As another high- and middle- 
level ontology, IOF added concepts like iof:ManufacturingProcess and iof: 
MaterialResource to MTO and made it more applicable for industrial 
purposes. QUDT was also utilized for mapping a wide variety of mea
surement units. In the case of new units which were not available there 
(like HBW and HV, the Brinell and Vickers hardness units) we also added 
them to the qudt:DerivedUnit. At a lower level, MSEO provided many 
entities about materials and their mechanical parameters, such as 
specimen, equipment, experiment, deformation, strain, stress, mechan
ical strength, ultimate tensile strength, yield strength, and Elastic 
modulus. 

It can be found from Fig. 4 that appropriate concepts of such 
mentioned upper-level ontologies covered around 50 % of the MTO class 
entities. Reusing these upper-level ontologies not only provides a global 
hierarchy and well-defined concepts for MTO but also makes it more 
interoperable with other ontologies in the fields of materials science and 
engineering and desirable for industrial applications. As a domain-level 
ontology, MTO was developed in four main parts:  

• Mechanical testing experiments: Entities for mechanical testing 
methods like tensile, hardness, creep, and fatigue tests were created 
as the subclasses of mseo:Experiment.  

• Mechanical testing quantities: Entities related to the parameters of 
mechanical testing were placed in the appropriate hierarchies of bfo: 
Disposition and bfo:Quality classes. As examples of such entities mto: 
Toughness, mto:Elongation, and mto:FatigueStrength can be named.  

• Mechanical testing artifacts: Entities of mechanical testing devices 
and their components and accessories (like mto:Hardnes
sTestMachine, or mto:Indenter), according to the level of requirements 
details mentioned in the test standards. These entities were classified 
as subclasses of cco:Artifact. 

• Mechanical testing data: As subclasses of cco:InformationContentEn
tity, mechanical testing data like stress-strain, S-N, or creep curves 
provide the basic data representation of mechanical testing 
processes. 

Table S1 lists parts of the 110 newly created classes of MTO, along 
with their definitions and correct hierarchies in the ontology. It should 
also be noted that the level of defined properties in the upper-level 
ontologies was enough for developing MTO, in such a way that no 
new property entity was defined for MTO. 

As shown in Fig. S6, MTO was built in the Protégé ontology editor 
software by importing the reused concepts of higher-level ontologies 
(for assuring correct naming, URI, definition, relation, and hierarchy of 
reused entities), adding newly created entities of Table S1 along with 
their definitions and restrictions, and importing the designed process 
graph of various test methods (for providing the individuals and 
expressing the relationships between different concepts). Fig. 5 shows 
the schemas of the MTO classes and object properties structures in the 
Protégé environment. MTO is publicly available via the KupferDigital 
GitLab repository (see data availability). 

It should be noted that the MTO development based on the test 
standards and reusing the well-developed upper-level ontologies can 
also highly resolve the semantic heterogeneities in the data sources. 

Fig. 5. Images of MTO in Protégé showing imported process graphs, ontology metric, and the hierarchy of classes, object properties, and individuals.  
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Semantic heterogeneity in data refers to the variations in the meaning 
and interpretation of datasets that are provided by different sources. 
Differences in terminology, concept classification, and data models are 
the main reasons for the semantic data heterogeneity. Here, the key 
concept for resolving the semantic heterogeneities is that both the 
ontology and datasets are prepared based on the test standards. It means 
that almost the same terminology, data processing equations, and units 
are used for preparing the test data from different sources, which are 
identical to the concept of ontology derived from the standards. For 
example, different data sources may use varying terminologies to refer 
to "ultimate tensile strength", like maximum tensile strength, peak ten
sile strength, ultimate strength, tensile limit, etc. Here, the standard- 
derived ontology provides a universal and community-accepted termi
nology, description, equation, and unit for this concept. Therefore, any 
data with such structures can be mapped to this common concept and 
resolve this heterogeneity. Furthermore, designing the MTO based on 

the BFO upper-level ontology ensures its unified and standard classifi
cation and resolves semantic data heterogeneity from concept classifi
cation. Finally, employing the tools developed in the next sections, three 
examples of different heterogeneous test data are mapped into their 
knowledge graphs. It will be shown that mapping the metadata- 
contained XML to RDF using the MTO ensures interoperability and se
mantic consistency across different XML-based data sources. 

5. FAIR data generation in the digital materials mechanical 
testing lab 

Generation of FAIR data in the digital lab can be achieved by data 
mapping of each test result in its corresponding process graph and the 
construction of machine-readable RDF test data. In the trial phase of 
materials testing data digitalization, different cast copper samples were 
tested by extensive mechanical testing methods (like Brinell and Vickers 

Fig. 6. Mat-O-Lab approach for mapping an example tensile test data in its process graph.  
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hardness tests, and tensile tests), and according to related ISO standards. 
The heterogeneous test data of various structures, languages, and for
mats (like CSV, XLSX, and complex Excel sheets) resulted from different 
testing processes (Beygi Nasrabadi et al., 2023). Within this project, 
different ontology-based approaches like Platform MaterialDigital 
(PMD), Data Space Management System (DSMS), Mat-O-Lab, and 
Ontopanel are utilized for the data parsing, mapping, and RDF conver
sion. Although the current paper essentially doesn’t aim to rely on RDF 
data conversion tools and their comparison, we address this interesting 
topic in our next papers. There, various data mapping and RDF con
version tools are evaluated by considering the requirements of the data 
sharing, different test data types and formats, compatibility with varied 
ontologies and knowledge graphs, and their user-friendly and 
simple-applicability features. However, to evaluate the capabilities of 
developed knowledge graphs in mapping a wide range of test data, just 
two approaches of Mat-O-Lab and Ontopanel are utilized in the 
following sections for data mapping the datasets of different structures 
and formats. The mentioned tools also enable direct RDF data genera
tion. Here, data generating in RDF format offers several benefits, like 
providing a meaningful and detailed data representation by explicitly 
capturing the ontology-based data and semantic relationships between 
resources, being highly qualified for web applications and highly 
interoperable with most other linked data on the web, enabling powerful 
querying capabilities using standardized query languages (e.g., 
SPARQL), supporting the representation of provenance information and 
metadata, and serialization into other different formats (e.g., RDF/XML, 
Turtle, JSON-LD). 

5.1. Mat-O-Lab approach 

Fig. 6 represents the serialization of CSV tensile test data into other 
different formats and the generation of machine-readable RDF data 
utilizing the Mat-O-Lab toolchain. As seen in Fig. S7, the example CSV 
file of tensile test data contains a variety of metadata about the sample 
and testing along with the dataset of the measurements in a human- 
created structure and German language. Therefore, CSVToCSVW tool 
was utilized in the first step to convert such test data into standardized 
and machine-readable structures. For example, it is shown in the right 
corner of Fig. 6 that the content of one line of the CSV file (about tensile 
strength, “Zugfestigkeit” in German language, data of the test with a 
value of 314 MPa) has been converted into the machine-readable codes 
of the JSON-LD format. The CSVToCSVW tool has also the ability to 
convert all other data of the CSV test report into the standardized 
structure of a uniform language, unit, and numerical system. In the next 
step and using the MapToMethod tool, the user can import the JSON-LD 
metadata file and select the corresponding process graph from the pro
vided options (in this case tensile test process graph) to start the map
ping procedure. By running the mapping procedure, another window 
(Fig. S8) appears that lists all the cco:InformationContentEntity in
dividuals of the tensile test process graph. Clicking on each item, the 
user can select the correct option from the cco:InformationArtifactBearing 
individuals of the test data file. For example, “Zugfestigkeit” should be 
mapped in the “MeasurementOfUltimateTensileStrength” item (Fig. S8). 
In the same way, all the other items of test data can be mapped into their 
corresponding individuals on the process graph. The result of such a data 
mapping process is a YARRRML file, and its codes for mapping the ul
timate tensile strength data are shown in Fig. 6. In the last step, the 
YARRRML file obtained from the data mapping is converted into the 
machine-readable RDF data by the means of RDFConverter tool. Here 
not only all the items of the tensile test report were successfully mapped 
in their corresponding process graph concepts (like mapping the “Zug
festigkeit” metadata in “MeasurementOfUltimateTensileStrength”), but 
also the data values and their units were represented in uniform 

structures. 
Using the RDF Grapher14 tool, Fig. S9 graphically shows how the test 

data were mapped in the tensile test process graph and what kind of 
complex relationships and semantics exist between different testing 
concepts and their data. 

Furthermore, the XLSX Brinell hardness test data of a copper sample 
was also successfully converted to the machine-readable JASON-LD, 
YARRRML, and RDF files by utilizing the Mat-O-Lab toolchain 
(Fig. S10), indicating the high capability of this approach for converting 
the different and heterogeneous types and formats of the test data. 

5.2. Ontopanel approach 

Ontopanel is a Draw.io plugin that not only helps with the graphical 
development of the process graphs and ontologies but also enables 
graphical data mapping of big datasets and converting the mapped 
graphs to RDF files. An example process for mapping the Vickers hard
ness dataset to its process graph is represented in Fig. 7. Here, the 
Vickers hardness dataset was collected for different copper alloys in a 
complex and human-created XLSX sheet and contains a variety of col
umns dealing with the materials and testing metadata, along with their 
measurement and analysis values (see complete dataset in Fig. S11). 
Such a complex dataset can be easily and graphically mapped into its 
corresponding process graph via the Ontopanel tool. The orange part of 
Fig. 7 shows part of a Draw.io page which contains the Vickers hardness 
process graph and Ontopanel-Converter plugin. Here, the mentioned 
complex Excel datasets can be imported into the plugin, and the data 
mapping process can easily be performed by choosing a cco:Informa
tionContentEntity individual and linking it (clip sign) to the related data 
column (Fig. 7). After mapping all the columns of the dataset in the 
process graph, the dataset mapped process graph is converted in RDF or 
TTL via the Ontopanel-Convertor plugin (right side of Fig. 7). 

6. Utilization of FAIR mechanical testing data 

The RDF mechanical testing data of standardized content and 
structure are stored in functional data spaces like KupferDigital CKAN 
(see Data availability) to ensure data sovereignty and the availability of 
distributed data (Fig. S12). The data spaces offer the users to store their 
real metadata which cannot be edited by other parties, prevent any data 
leakage, and allow large, decentralized amounts of heterogeneous data 
to be implemented by providing generic data formats and structures. By 
the storage of such RDF files in publicly available data spaces, the me
chanical testing data satisfies all the requirements of FAIR data. The 
following paragraphs describe some potential examples of utilizing the 
generated FAIR mechanical testing data in the industrial domains. 

6.1. Data sharing 

The published datasets in the data spaces are referenceable with a 
uniform resource identifier (URI) or more specifically a uniform 
resource locator (URL). Here, the data providers ensure full data sov
ereignty and can manage their triple stores, establish the applicable 
publication policy, and even identify and authorize their data users by a 
central identity provider. Accordingly, industries can protect their pri
vate data in the data spaces and share publicly available data with other 
industries and academic centers. On the other side, the companies 
obtain the opportunity to access lots of trustable and traceable me
chanical testing data of other organizations that are available in the data 
spaces. 

14 https://www.ldf.fi/service/rdf-grapher. 
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6.2. Data reuse 

One big advantage of sharing FAIR mechanical testing data is that 
the industries and academic environments can reduce duplication of 
costly compound preparation and testing, and reuse, compare, and 
reproduce the already existing experimental databases, which paves the 
way for the creation of automated data pipelines. Other potential users 
of mechanical testing data are the data scientists and model developers 
who need data for the calibration and validation of their models. 
Furthermore, data management platforms provide a logical and digital 
architecture that enables the retrieval, integration, visualization, and 
analysis of data between different networks. 

6.3. Data-driven materials research, prediction, and product development 

With the digitalization of materials testing data, extensive and 
comprehensive machine-readable data will be available for data-driven 
materials research, such as machine learning and deep learning ap
proaches. This will lead to a better understanding of the properties and 
behavior of materials, optimizing the process, and predicting the most 
efficient production processes. The solutions developed give industrial 
partners also the opportunity to strengthen their international compe
tition, and proactively evaluate new materials of better properties for 
their value chains. 

6.4. Semantic query 

The FAIR mechanical testing data can be dynamically queried by 
complex semantic searches. For instance, the below examples show 
SPARQL queries of some competence questions from the prepared RDF 

files of Section 5, which can eventually utilized for evaluating the 
introduced ontology development and data mapping approaches:  

• Example 1 – What is the ultimate tensile strength value of an alloy 
with a composition of CuSn6? This query aims to evaluate whether 
the developed tensile test knowledge graph and mapping the CSV 
tensile test data in it (utilizing the Mat-O-Lab approach) can result in 
successful data retrieval. As seen in Fig. S7, the ultimate tensile 
strength value of this alloy is 314 MPa, while the correct answer was 
also successfully obtained by the SPARQL query (Fig. 8a).  

• Example 2 – What is the final Brinell hardness and uncertainty value 
for the alloy with a composition of CuSn6? According to Fig. S10, the 
answer to this question is 83 ± 6 HBW 2.5/62.5, which was also 
correctly answered by the SPARQL query (Fig. 8b). This finding 
suggests that the XLSX Brinell hardness test data were successfully 
mapped in the Brinell hardness knowledge graph utilizing the Mat-O- 
Lab approach.  

• Example 3 - What is the maximum Vickers hardness among the 
measured values in the dataset? In this case, the complex Excel sheet 
from the various Vickers hardness measurements was mapped into 
the Vickers hardness knowledge graph using the Ontopanel tool. 
According to this dataset (Fig. S11), the alloy CuNi12Al3 has the 
maximum Vickers hardness value of 273.6 HV5. As shown in Fig. 8c, 
this value was also correctly recognized through the natural lan
guage query of the mentioned question within the Sparklis interface. 

More competency questions that have been considered for the 
evaluation of the introduced approach can be found in KupferDigital 
GitLab repository (see data availability). As a result of successful data 
retrieval by the SPARQL queries, it can be concluded that different types 

Fig. 7. Mapping of a complex Vickers hardness dataset into its process graph and conversion of data-mapped graphs to RDF/TTL files by the Ontopanel approach.  
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and formats of the test data were successfully mapped in the developed 
knowledge graphs. On the other side, considering both the test standards 
and competency questions’ requirements led to the development of the 
mechanical testing ontology and knowledge graphs that represent the 
highly detailed materials testing process with standardized and well- 
defined entities. Accordingly, such important findings can clarify how 
the introduced approach connects with the stated research problem; i- 
The way that the ontology and knowledge graph are developed makes 
them compatible with all types of test reports, industrial data, and other 
kinds of ontologies in the materials science domain. ii- The introduced 
methodology and toolchains for ontology development, data trans
formation, mapping, and storage enable the digital representation of 
different types of lab-generated testing reports. iii- The introduced 
approach can covert the experimental test data of heterogeneous 
structures, languages, and formats to the comprehensive machine- 
readable FAIR data. 

7. Conclusion 

A schema for designing a digital mechanical testing lab was intro
duced in this research. As a prerequisite for designing such labs, the 
highly detailed process graphs of a variety of mechanical testing 
methods (such as the tensile test, Brinell, and Vickers hardness) were 
developed based on the requirements of test standards and the test 
metadata of industrial labs. Regarding, the KupferDigital GitLab and its 
developed workflows like OntoFlow have been used for the collabora
tive design of process graphs and ontologies, and their automatic vali
dation. MTO was prepared by collecting all the designed entities of 
different process graphs and gathering the mechanical testing vocabu
lary from ISO 23718 standard. Based on ISO/IEC 21838-2 standard, 
MTO was developed by utilizing the BFO, CCO, IOF, QUDT, and MSEO 
as upper-level ontologies. Reusing these upper-level ontologies and 
materials testing standards not only makes MTO highly interoperable 
with other ontologies but also ensures its acceptance and applicability in 
the industry. MTO represents the mechanical testing methods in the 230 
classes via four main parts of mechanical testing experiments, quanti
ties, artifacts, and report data. The infrastructure of the mechanical 
testing lab provides an environment for mapping the materials testing 
data in the modeled process graphs and storing the resulting data in 
suitable data spaces. In this regard, two approaches were evaluated for 
mapping the test data in their corresponding process graphs. While the 
Mat-O-Lab approach provided a professional and powerful environment 
for the parsing, mapping, and RDF conversion of test data, the Onto
panel approach can graphically map the complex test datasheets in the 
process graphs and convert them to RDF files. Although the current 

research basically doesn’t rely on the tools’ evaluation, our next paper 
will compare the functionality of Mat-O-Lab, Ontopanel, PMD, and 
DSMS tools for the mapping, conversion, and storage of the created RDF 
datasets. However, both Mat-O-Lab and Ontopanel approaches resulted 
in perfect data mapping performances and ensured that the different test 
data reports of heterogeneous structures, languages, and formats could 
successfully be converted to machine-readable RDF data of uniform and 
standardized structures. Efficient data management systems were uti
lized to store such test data within the structured, comprehensive, and 
documented data repositories. The RDF data stored in such data spaces 
can allow industries in the future to access lots of trustable and traceable 
mechanical testing data of other academic and industrial organizations. 
Such FAIR data were also successfully queried by the Sparklis natural 
language interface, indicating that the introduced approach can support 
data retrieval, response to competency questions, and eventually 
address the research problem. The generation and storage of such FAIR 
data in the digital materials mechanical testing lab can eventually 
accelerate data-driven materials research such as machine learning and 
deep learning approaches. 
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tal/process-graphs. 

Mechanical testing ontology (MTO): https://gitlab.com/ 
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kupferdigital/ontologies/mechanical-testing-ontology, http://matpor
tal.org/ontologies/MTO, and http://industryportal.enit.fr/ontologies/ 
MTO. 

Raw materials mechanical testing data (CSV, XLSX): https://doi.org/ 
10.5281/zenodo.7670583. 

Digitalized materials mechanical testing data (RDF): http://ckan. 
kupferdigital.org/. 
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