Life-Cycle of Structures and Infrastructure Systems — Biondini & Frangopol (Eds)
© 2023 The Author(s), ISBN 978-1-003-32302-0
Open Access: www.taylorfrancis.com, CC BY-NC-ND 4.0 license

Temperature dependent modelling approach for early age behavior
of printable mortars

A. Robens-Radermacher & J.F. Unger
Modelling and Simulation, Bundesanstalt fiir Materialforschung und -priifung (BAM ), Berlin, Germany

A. Mezhov & W. Schmidt
Technology of Construction Materials, Bundesanstalt fiir Materialforschung und -priifung (BAM ), Berlin,

Germany

ABSTRACT: Structural build-up describes the stability and early-age strength development of
fresh mortar used in 3D printing. It is influenced by several factors, i.e. the composition of the print-
able material, the printing regime, and the ambient conditions. The existing modelling approaches
for structural build-up usually define the model parameters for a specific material composition with-
out considering the influence of the ambient conditions. The goal of this contribution is to explicitly
include the temperature dependency in the modelling approach. Temperature changes have signifi-
cant impact on the structural build-up process: an increase of the temperature leads to a faster dissol-
ution of cement phases and accelerates hydration. The proposed extended model includes
temperature dependency using the Arrhenius theory. The new model parameters are successfully
calibrated based on Viskomat measurement data using Bayesian inference. Furthermore, a higher
impact of the temperature in the re-flocculation as in the structuration stage is observed.

1 INTRODUCTION

For extrusion-based 3D concrete printing, the early age of printable mortars is of great
importance, which is affected by various time dependent phenomena like structural build-up,
plasticity as well as viscosity. Structural build-up is the time dependent structuration of
cementitious material at rest due to thixotropy and early hydration processes. It influences the
printability, buildability, and open time of printing processes (Reiter et al., 2018, Mohan
et al., 2021). For a deeper introduction it is referred to (Roussel et al., 2012). Generally, the
structural build-up is influenced by several factors from the raw material constituents to exter-
nal conditions such as temperature as discussed in detail in (Jiao et al., 2021).

There are several approaches to model the structural build-up of cementitious materials. Most
phenomenological models are based on a time-dependent internal structural parameter describing
the flocculation state, which is assumed to be zero after mixing and increases with time (Roussel,
2006). The approaches differ in the definition of the time dependency (linear, exponential, bi-
linear). In the most often used model proposed by (Roussel, 2006), the static yield stress at rest
increases linearly in time with the constant structuration rate A, from an initial value 7):

(1) = 7y + Appix 1. (1)
Covering the speed-up of the structural build-up after a certain time due to an onset of the

acceleration period of hydration, an exponential dependency is proposed in (Perrot et al.,
2015). The static yield stress following this exponential model is given as:

0(1) = Auncte (€ = 1) + 13, 2)
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with an additional parameter of the characteristic time 7.. Recently, (Kruger et al., 2019)
developed a bi-linear approach considering two stages of the structural build-up development
with different rates: re-flocculation and structuration. By differentiating between those stages
a higher precision of the first rapid re-flocculation stage dominated by physical processes is
possible. The structuration stage is mainly governed by chemical reactions. The static yield
stress according to the Kruger model is then given by two equations:

e+ Ryt ift < by
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In the latter, the re-flocculation time ¢, defines the time period between the first stage with
the re-flocculation rate R, and the second structuration stage (A,,,). The ratio between
both rates depends on the material mixture composition (Kruger et al., 2019). In (Ivanova
et al., 2022) the bilinear model is applied in the context of constant rotational velocity tests of
printable mortar and concrete and for several characterization methods of 3D printable
cementitious mortars in (Bos et al., 2021).

Usually, the model parameters are defined for a specific material composition without consid-
ering the influence of ambient conditions. Nevertheless, ambient conditions such as temperature
and humidity will change in real life printing processes due to weather conditions, summer,
winter, day, night as well as the printing process itself (pumping process changes the tempera-
ture due to pressure changes (Strangfeld, 2022)). In the discussion of eight implemented 3D con-
crete printing projects from around the world by (Bos et al., 2022), the challenges of the
ambient temperatures’ influence were also pointed out. Printings were stopped or shifted to the
night by increased ambient temperature or a continuous measurement of the system tempera-
ture were applied. The temperature has a particularly significant influence on the structural
build-up process because an increase of the temperature leads to a faster dissolution of cement
phases and accelerates hydration. Nevertheless, there are only limited studies available to date.
(Bos et al., 2019) investigated the influence of material temperature and they have shown that
warm water accelerates the structural build-up rate but reduces the bonding strength between
layers. (Huang et al., 2019) have shown that the increase of the temperature in a constant shear
rate test of cement pastes results in an increase of the structural build-up rate. The temperature
sensitivity is studied by calculating the activation energy by Arrhenius theory. They extend their
studies by measuring the storage modulus by small amplitude oscillatory shear test (SAOS) in
(Huang et al., 2022). It was pointed out that a rise of the temperature leads to a faster storage
modulus development for cement paste samples with the same hydration degree. However,
(Bogner et al., 2020) using SAOS tests at 10, 20, 25 and 30°C, found out that regardless of the
ambient temperature, all investigated samples demonstrated a similar evolution of the complex
shear modulus during the first 1.4 h of hydration. After that, a significant temperature influence
on the modulus was observed. The discrepancy between those results could also be related to
the different material compositions, methods, and time scales. The authors themselves observed
a significant temperature influence on the storage moduli for cement pastes measured by SAOS
with a bi-linear increase over the resting time (Mezhov et al., 2022).

The goal of this contribution is to develop a temperature dependent structural build-up
model. Therefore, the bi-linear Kruger model (Equation 3) is extended by temperature
dependent parameters modelled based on the Arrhenius theory. The new model parameters
are estimated using Bayesian inference. Therefore, static yield stress data measured via Visko-
mat at four different temperature levels are used.

2 MATERIALS AND METHODS

2.1 Mixture composition and measurement set-up

Mortar samples were prepared according to the mixture composition given in Table 1. First
cement CEM 1 42.5 R, silica fume, sand, fly ash and superplasticizer were mixed with a spoon
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around 30 sec in a 600 ml cup. The water was added within 15 sec during the second mixing at
200 rpm for 1 min by IKA STARVISC 200-2.5 mixer. After a pause and hand mixing for 30
sec, the mortar samples were mixed at 400 rpm for 2 min.

Table 1. Mixture composition.

Components Amount [kg/m?]
Cement (CEM 142.5R) 650

Sand (0.1/0.5) 980

Fly ash 190

Silica fume 90
Superplasticizer powder 4.3

Water 260

Spread by DIN EN 1015-3:1999-04 190 mm

Water cement ratio 0.4
Temperature after mixing 27°C

The structural build-up measurements were performed using a Schleibinger Viskomat NT with
a double gab basket cell. The used device can measure torque from 0 to 500 Nmm. Note, the mix-
ture composition was designed in such a way that the maximum torque does not exceed those range
for all investigated temperature levels. Ten points with a rotational velocity of 0.1 rpm within 30 min
were measured. The test protocol is summarized in Figure 1. Three tests for every temperature were
carried out using a waterbed temperature control system with constant temperatures 17, 22, 27, 32
and 42°C. The initial temperature of the mortar after mixing was always 27°C.
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Figure 1. Test protocol for Viskomat NL measurements.

2.2 Temperature dependent structural build-up model

The bi-linear model of (Kruger et al., 2019) given in Equation 3 is extended to model the tem-
perature influence on the early age behavior of the static yield stress 7,. Therefore, the model
parameters re-flocculation rate, structuration rate, re-flocculation time and initial static yield
stress are introduced as temperature (7) dependent functions. So that the temperature depend-
ent bi-linear model reads:

(1) + Ry (1)1 i 1 <0y(T)
MR R R N I Adi et @

Where the temperature dependent parameter functions are defined as:

1195



1) = a8, (7-7-) )

for y € [ty Ruiv, Aumix, tyy]. This exponential functionality of a reaction rate of chemical as
well as physical processes is known as Arrhenius equation. In the Arrhenius equation, the pre-
factor B, in Equation 5 is defined by the negative ratio of a specific activation energy E, and
the gas constant R. Among other things, the Arrhenius theory is usually applied to model and
characterize the temperature dependency of the cement hydration, see e.g. (Poole et al., 2007,
Carette and Staquet, 2016). The unknown activation energy is thereby usually determined by
calorimetry. Here, the Arrhenius equation is used to consider the temperature dependency of
the structural build-up rates (re-flocculation rate and structuration rate) as well as for the re-
flocculation time and the initial yield stress. The extended temperature dependent bi-linear
model in Equation 4 and 5 has in total nine new unknown model parameters: the four a’s and
f’s and the reference temperature 7., Those are to be defined via measurement data at differ-
ent ambient temperatures for each mixture composition.

2.3 Bayesian model parameter estimation

In general, the estimation of unknown model parameters based on measured data is an inverse
problem. The aim is to find appropriate values for a set of unknown model parameters @ (here
the model parameters in Equation 4 and 5) minimizing the error between a given set of measure-
ment data y and the corresponding model output values g(#) (here Equation 4). In deterministic
methods, the best parameter set is found by minimizing this difference by optimization
approaches e.g. least-squares, L, norm or weighted least square ansatz (see e.g. (Mohammad-
Djafari, 1998)). The solution is a single set of the parameters’ estimates and carry no information
about how reliable or likely they are. In contrast, probabilistic methods provide a probabilistic
description of information and beliefs, allowing the consideration of various uncertainties. In
those approaches, the posterior probability distribution is computed using the Bayes’ rule via

P(y|©)P(©)
FOY) = Tp)le)e)de ©

In the latter, the unknown parameter vector ® = (#,0) includes beside the model param-
eters @ additional noise parameters o (describing e.g. the standard deviation of a Gaussian dis-
tributed additive noise e~N(0,0%)). The prior probability density function P(®) reflects the
prior knowledge on the parameters, while the likelihood P(y|®) defines the probability that
the model has generated the data under the given model parameters. The normalization term
in the denominator describes the evidence for the data considering the model. More details on
the mathematical background can be found e.g. in (Watanabe, 2018).

The computation of the posteriori (Equation 6) is cumbersome, especially with increasing
dimensionality of the parameter space. For that reason, sampling-based methods (Lye et al.,
2020) are usually applied to evaluate Equation 6. In this paper, the well-known Markov Chain
Monte Carlo (MCMC) sampling (Metropolis et al., 1953) is used. The parameter estimation is
conducted via the open-source Python package probeye (https:/Ipypi.orglproject/probeyel ).

3 RESULTS AND DISCUSSION

The measured temperature effect on the static yield stress evaluation in the first 30 minutes is
given in Figure 2. The mean and standard deviation of the static yield stress based on three tests
(stars) for all investigated temperature levels are given over the time as solid line and bars,
respectively. The static yield stress is computed from the measured torque multiplied by the con-
version factor for the specific cell. Two aspects are shown. First, a significant temperature effect
in the yield stress evaluation is observed. With increasing ambient temperature, the rate of the
static yield stress evolution increases confirming the need of a temperature dependent modelling
approach. Second, the evaluation is split into two stages: a re-flocculation stage followed by
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Figure 2. Mean and standard deviation of static yield stress measurements over time for five different
temperatures. Separation into re-flocculation and structuration stage demonstrated for the data at 27 °C.

a structuration stage which is additional demonstrated using the data at 27°C on the right side
of Figure 2. The change between the two stages, the re-flocculation time, happens around 15
min. Independent of the ambient temperature, the first (re-flocculation) rate is usually higher
than the second (structuration) rate. The rate’s ratio depends on the temperature.

In a Bayesian parameter estimation, the model parameters of the proposed temperature
dependent model were inferred using the measured data at temperature 17, 22, 27 and 42°C
(the data at 7 = 32°C is used for the verification). Therefore, a MCMC solver with 10° steps
in 20 chains and 5000 initial steps were running using the open-source Python module probeye.
The prior distribution for the nine model parameters were chosen as:

az, ~N (20, 6%) [Pa],ag,~N (6, 2?) [Pa/min], a,,~N (4, 1?) [Pa/min], a, ~N (10, 3?)[min]

0 thix
tJ’0~N —30, 92) [l/K]7 ﬁRt,”-;VN(_?’O? 92) [I/K]v ﬁAthi;vN(_lO? 32) [I/K]7 ﬁtrf"’N(Ov 32) [I/K]
o~U(1, 30) [Pa].
For the reference temperature, the sample’s temperature after mixing was used: 7,,, =27°C.
The resulting predictive posterior probability is plotted in Figure 3 as a pair plot. Here, the
advantage of using a probabilistic approach can be seen. Instead of one parameter set (like the
result of a deterministic approach), the deviation and correlation of the model parameters are

estimated. Especially, the parameter ag.,;, (in the figure a,) and g, (a1) as well as ﬁ% (B>)
and B (B)) are clearly correlated, showing the ill-posedness of the inverse problem. Note,

the results are also influenced by the here chosen prior distributions. Furthermore, a close to
zero mean of f, ” (f,) indicates a neglectable temperature dependency of the re-flocculation

time. An averaged ratio between iz (f,) and B, (B;) of around two suggests a significant
higher activation energy of the re-flocculation stage compared to the structuration stage.

The inferred temperature dependency of the primary parameters: initial yield stress z,,, re-
flocculation rate Ry, structuration rate A, and re-flocculation time #,, modelled by the
functionality given in Equation 5 is evaluated in Figure 4. The solid line represents the mean
values, whereas the bars give the first standard deviation based on the MCMC samples. The
plot visualizes the significant temperature dependency in the rates. But the structuration rate
is less temperature dependent as the re-flocculation rate. The physical processes in the re-
flocculation stage seems to have a higher temperature sensitivity, where rising temperatures
increase the Brownian motion between the particles. Additionally, the shape of the tempera-
ture dependency of the two rates differs. The re-flocculation rate increases nearly linear, where
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Figure 3. Pair plot of the posterior distribution with the abbreviations 1 : 7, 2 Ry, 3 Agpic, 41 1.

the structuration rate temperature function seems to be logarithmic. Furthermore, the initial
static yield stress increases like the re-flocculation rate since both parameters describe the re-
flocculation stage. In contrast, the re-flocculation time is approximately independent of the
temperature with an aver-aged value of around 15 min. The measurement noise was assumed
to be temperature independent, and its mean is estimated as 12 Pa.

As verification of the proposed temperature dependent structural build-up model in Equation 4
and 5 the model is reevaluated for the training temperature values 17, 22, 27 and 42°C using the
estimated parameter distribution as well as newly evaluated at temperature 32°C and compared to
the corresponding measured data. That comparison is shown in Figure 5 given the mean model

w
w

—+— T,0(T) [Pa]
—+— tAT) [min]
—+— o [Pa]

(e}

w
o
00

N
w
(o)) ~

N
o
w

NN

identified parameters A:ix, Rinix

identified parameters Ty, b, O
-
w

w

~+— Renix(T) [Pa/min]
y ! —— Awmix(T) [Pa/min]
20 25 30 35 40
Temperature [C]

[y
o

Figure 4. Inferred temperature dependency computed with Equation 6.
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response as well as its first standard deviation for each temperature value and the measured data.
A very good agreement for all investigated temperature values is reached even for those which
were not included in the calibration part. In this way, the proposed model seems promising in
predicting the temperature influence on the structural build-up of fresh mortar.
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Figure 5. Inferred temperature dependency (mean as solid line and first standard deviation as dashed
line of the static yield stress according to Equation 5 compared to the measured data (stars).

4 CONCLUSION

The present paper presents experimental results of the constant shear rate test indicating the
influence of different ambient temperatures on the structural build-up evolution of mortar.
The measured yield stress data show a presence of two stages: a re-flocculation period and
a structuration stage. The temperature influence is more pronounced in the first re-
flocculation stage dominated by physical processes. A new temperature dependent model
approach is derived by extending the bi-linear Kruger model capturing this temperature sensi-
tivity of the structural build-up for fresh cementitious materials. The model assumes tempera-
ture dependent functions based on the Arrhenius equation for the rates (re-flocculation and
structuration rate) as well as for the initial yield stress and re-flocculation time parameters. In
a Bayesian parameter estimation, the proposed model parameters are estimated for the inves-
tigated mortar composition. The analysis identifies a nearly linear temperature dependency in
the re-flocculation rate, whereas the re-flocculation time is nearly temperature independent.
Furthermore, a lower temperature sensitivity of the structuration rate with a logarithm shape
over temperature is detected. The identified model shows very good agreement with the meas-
ured data, even for those not included in the parameter estimation process. Therefore, the pro-
posed model could be used predicting the temperature sensitivity of structural build-up of
cementitious materials. Of course, for more general conclusions further verification studies are
required based on additional experimental data e.g. varying the cement type, the water content
as well as using different admixtures and additions.
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